2022

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

[P.G.]

(M.Sc. Second Semester End Examination-2022)
PAPER-MTM 202

Full Marks: 50

Time: 02 Hrs

The figures in the right hand margin indicate marks
('andidates are required to give their answers in their own words as
far as practicable

Illustrate the answers wherever necessary

[Numerical Analysis]

Attempt Question No. 1 and any four from rest:

1. Attempt any four questions:

 $4 \times 2 = 8$

a) A function f(x) is defined by

$$f(x) = \begin{cases} 1 + x, \forall x \in [0,3] \\ (x-3)^2 + x + 1, \forall x \in [3,4] \end{cases}$$
. Prove that $f(x)$ is a cubic

- spline.
- b) Prove that closed type Newton's quadrature formula is more accurate than open type.
- c) What type of stability in Milne's method? Justify your answers.
- d) Find the weights w_1, w_2, w_3 so that the relation

$$\int_{-1}^{1} f(x)dx = w_1 f\left(-\sqrt{0.6}\right) + w_2 f\left(0\right) + w_3 f\left(\sqrt{0.6}\right)$$

Is exact for the functions $f(x) = 1, x, x^2$

- e) What are the advantages to approximate a function using orthogonal polynomials?
- f) Discuss the merits and demerits of finite difference method to solve an ordinary differential equation.
- 2. Suppose a table of values (x_i, y_i) , i = 0, 1, 2, ..., n, is given. Describe natural cubic spline method to fit this set of data. **8**
- 3. a) Describe a least square method for approximating a function by Chebyshev polynomials in [-1, 1].
 - b) Solve the system of equation by Crout's decomposition method.

$$x+2y=3$$

 $x-2y+3z=5$
 $-3y+2z=1$
4+4

4. Describe 3-point. Gauss-Legendre quadrature formula. Use this formula to find the value of

$$\int_{0}^{2} (x^{5} + 2x^{2} + 3x) dx$$
 4 + 4

5. Derive fixed point iteration method to solve a system of non-linear equations f(x, y) = 0 and g(x, y) = 0. Find its condition of convergence and also order of convergence using maximum norms of vector. 3 + 2 + 3

- 6. a) Find the largest eigen value and corresponding eoigen vectors of the matrix $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{bmatrix}$ by power method.
 - b) Solve the boundary problem $\frac{d^2y}{dx^2} = y$ with y(0) = 0 and y(2) = 3.627 and take h = k = 0.5 4 + 4
- 7. Describe the Crank-Nicolson implicit method to solve the following equation:

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$

Subject to the boundary conditions $u(0,t) = f_1(t), u(1,t) = f_2(t)$ and initial condition u(x,0) = g(x).

[Internal Assssment-10]