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A B S T R A C T

Degradation of soil due to unsuitable land management practices is a chief impairment of optimum land pro-
ductivity. The spatial variability of soil properties is needed for agricultural productivity, food safety and en-
vironmental modeling. The present study was conducted in lateritic soils of West Bengal, India to understand the
spatial variability of soil properties using a geostatistical model. Nitrogen (N), soil pH, electrical conductivity
(EC), Phosphorus (P), Potassium (K) and organic carbon (OC) were measured. Surface maps of soil properties
were prepared using the semivariogram model through Kriging techniques. A positive correlation was observed
between OC and N. The Quantile-quantile plots showed a normal distribution of EC, K, pH, N, and OC. The value
for nugget/sill of K, N, and EC were 0.25–0.75 indicating moderate spatial autocorrelation among the variables.
Phosphorus (P) was highly concentrated in the eastern part, whereas the agglomeration of higher EC was found
in the north east and south west corner of the study site. The cross validation results illustrated the smoothing
effect of the spatial prediction. The present study suggests that the geostatistical model can directly reveal the
spatial variability of lateritic soils and will help farmers and decision makers for improving soil-water man-
agement.

Introduction

Restoration of soil must be improved for achievement of a sustain-
able agricultural system [1]. Accurate estimation of quantitative in-
formation on spatial variability of soils is significant for intensive
agriculture, sustainable development and natural resource management
[2–4]. Spatial distribution patterns of soil properties is a pervasive
characteristic of natural communities of living organisms [5] and a key
driver of bio-physical processes [6]. Several attempts have been made
to investigate the causes of removal of soil and the temporal variation of
physical characteristics of soil in the region [7–9]. However, most
studies spotlight usually of the soil samples obtained from agricultural
fields with special history of agricultural recuperation and remedial
measure [10,11]. Spatial variability of soil properties has been studied
by earlier researchers in various soils under diverse management sys-
tems worldwide [12,13]. The geographical distribution of chemical
properties of soil like pH, electrical conductivity (EC), organic carbon
(OC) content, nitrogen (N), Phosphorus (P), and Potassium (K) in la-
teritic soils of under-developed countries (like India) is weakly implicit
and used for modern spatial prediction techniques [12]. Therefore,

improving knowledge of the spatial distribution of soil characteristics
will facilitate sustainable farming and ecological management practices
by recognition of site-specific soil conservation [14].

There are a number of traditional statistical techniques available for
quantifying the spatial distribution of soil properties. Geostatistics is an
efficient method of study for spatial distribution of soil properties and
their inconsistency [12,15]. Estimation through spatial statistical tools
aids in forecasting values at unsampled sites by fascinating in the
geographical association between projected and sampled points and
reducing the variance of assessment error as well as execution costs
[12,16]. Previous studies have applied to assess spatial association in
soils and to evaluate the geographical changeability of soil character-
istics [17,18]. reported that Kriging and Co-kriging are more suitable
techniques in comparison to inverse distance weighting (IDW) for ac-
quiring precise information of the geographical distribution of soil
properties.

Weller et al. [19] conducted different geostatistical techniques for
spatial variability of soil properties and reported the Kriging technique
is better than any other technique [20]. Adopted three geostatistical
techniques such as Kriging, IDW, and Radial Basis Function (RBF-
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Spline) to examine the spatial distribution of the soil pH and organic
content but the results of Kriging were most suitable among other
techniques.

Out of the total 8.87m ha, West Bengal alone contributed about
2.2 m ha of soil erosion in India [21]. Soil loss is a critical concern that
pretense serious intimidation to the ecological environment and human
livelihood in western part of Paschim Medinipur in West Bengal (India)
due to undulating topography with unsuitable land management
practices [22]. Scrubland and forest have been domesticated in most of
the area for feeding the population, thereby resulting in severe soil
erosion and ecosystem destruction. However, excessive soil erosion in
the west and southwest part of Paschim Medinipur district than the
tolerance limit brought the un-sustainability of the production system
and thereby accompanying ecological problems. Therefore, appraising
the geographical distribution of soil properties in the lateritic upland
region of Paschim Medinipur district, West Bengal in India is imperative
for conniving outline for sustainable soil conservation. This study is
concerned with the geographical allocation of topsoil properties like
soil pH, Nitrogen (N), Phosphorus (P), Potassium (K), electrical con-
ductivity (EC), and organic carbon (OC) using classical and geostatis-
tical methods to understand the spatial association between soil nu-
trients in agriculture potential region for site-specific soil management
practices.

Materials and methods

Study area

A pilot study was carried out in two mouzas (Adali and Hatia
Mouza), Goaltore Farm Area of Paschim Medinipur district in West
Bengal, India which is geographically extended between 22° 44′ 336” N
– 22° 45′ 909” N latitude and 87° 07′ 210” E – 87° 08′ 884” E longitude
measuring a total area of 45 ha (Fig. 1). Geomorphologically, the study
area is undulating in nature on the upper part and the lower portion is
characterized by gentle slopes. Annual average rainfall is ∼1450mm
and approximately ∼70% rainfall is received during June and Sep-
tember. The average yearly temperature is about 28.4° C in the dry
season (November–February). The rainfall erosivity factors (R) ranges
from 1200 to 1500MJmmha-1 h−1 year−1 [23]. The area is

intermittently linked with rainfed cultivation practice with soil loss and
less productivity of crop yield. Lateritic and younger alluvial soils are
the predominant soil in the study area. Land use/land cover char-
acteristics of the study area were classified into five types, namely
grassland/scrub land (10.62%), degraded vegetation cover (2.09%),
fallow land/barren land, canal and road. Most of the area in the study
site is covered with fallow land/barren land stretching over 81.53%.

Soil sampling and analysis

A field survey was conducted to analyze the soil properties in the
proposed farm area. A systematic random technique was used for field
sampling during 6–7 April 2017 to study the soil nutrient status. 27
samples were collected from different land cover regions, namely
grassland/scrub land, degraded forest and fallow land/barren land of
the proposed farm area. A portable GPS was employed to collect the
spatial location from each sample site. The soil samples were collected
from five soil cores of undisturbed topsoil sample at depths ranges
between 0 and 20 cm. Soil samples were desiccated and conceded
through a 2mm sieve for laboratory analysis textural characteristics
(e.g., pH, EC, P, K, and OC). Soil texture was analysed using mechanical
sieves. Soil pH was measured with pH- meter (Model: ML 962). Organic
carbon concentration was determined by Walkely-Black Wet oxidation
method [24]. Soil available P was measured by Spectrophotometer,
ensuing wet ingestion in concentrated H2SO4 [25]. Potassium (K) was
measured by Flame Spectrophotometer following wet digestion in HF-
HCIO4 [26]. Nitrogen (N) was calculated using the method followed by
Ref. [27].

Statistical analysis

A descriptive statistical analysis was applied to the collected data of
all variables. The correlations among OC other soil properties (N, P, K,
EC and soil pH) were delineated. The statistical packages for social
sciences (SPSS v18.0) software was used for statistical analysis.
Geographical locations of sampling points were recorded by GPS
handset. Exploratory analysis of soil properties in farm areas was illu-
strated through trend analysis using the Geostatistical Ánalyst of ArcGIS
v9.0 software package.

Fig. 1. Location of the study area and sampling sites.
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Geostatistical analysis

Semivariogram was calculated to examine the spatial correlation
within the measured data points. Geostatistical methods were employed
to comprehend soil properties and its association with relief factors and
land use characteristics. Spatial inconsistency is estimated as a semi-
variogram which portrayed the mean square variability between the
two neighbouring sample locations of distance h as shown in Eq. (1):
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Where γ (h)=magnitude of the lag distance between the two samples
location.

N (h)= number of observation pairs separated by distance h,
z (xi)= random variable at location xi.

The values of semivariogram increase from minimum to maximum
values demonstrating higher spatial autocorrelation at the small lag
distance [28]. The soil variability data has been confirmed by a histo-
gram analysis and Quantile-quantile (Q-Q) plots to observe the normal
distribution pattern of the data variables. Presence of global trends in
geographical data of soil properties was recognized by the semivario-
gram model through curve fitting techniques. The curve through the
projected points was flat, indicating on global trend exists. While fitting
the semivariogram model for the data, it was visually observed that the
model should pass through the centre of the cloud of binned values and
also it should pass as closely as possible to the averaged values (blue
crosses). The ratio of Nugget and Sill [C0/(C0+C)] can be used to in-
dicate the degree of spatial correlation of soil properties [29].

Predictive maps of soil properties were generated using a semivar-
iogram model through Ordinary Kriging (OK). OK was used to trans-
form soil samples in point location data into incessant fields of soil
properties. Variograms from ArcGIS 8.1 software package were used to
predict maps of soil properties. OK model is the most familiar type of
Kriging and provides an accurate estimate for an area around a measure
sample [8]. Finally, a cross-validation approach was conducted to
evaluate the efficiency and error of the of the prediction maps for soil
properties. The root-mean-square-error (RMSE) and the mean error
(ME) of the model were also calculated. A value of RMSE close to zero
illustrates the accuracy of prediction of the model. The following for-
mulas were followed to calculate the RMSE and ME values:
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Result and discussion

Descriptive statistical analysis of soil properties

The descriptive characteristics of soil properties were represented in
Table 1. Soil pH had a mean of 4.63 with value of SD and CV being
0.257 and 5.30% respectively in the top soil layer. The CVs of available
N is less than 15% and available P and available K exceeded 35%,
which shows substantial geographical dissimilarity in the P and K
properties within the study area. The mean value of EC of the study area
was 32.84 μs with more than 28% CVs. The average concentrations of
N, P and K at a depth of 0–20 cm were 30.48%, 2.744% and 48.22%
respectively for all sampling points. Average values for all of these
properties peaked at a depth between 0 and 20 cm and dropped towards
the north-east part of the study area. The descriptive characteristics of
soil properties imply that distribution of soil properties varies from
slightly negatively skewed (skewness≤−0.47) to moderately positive
skewed (skewness > 2.67). The median values were very near to the
mean values (excluding in Silt), representing the nonappearance of
outliers in the calculation of central tendency for the soil characteristics
analysis. The CV indicates the overall variation of soil characteristics,
varying from low to high values based on Warrick guidelines [30]. The
maximum variation for CV was documented in P (67.99%), and the
smallest observations recorded for clay soil (0.23%). This changeability
can be attributable to the rolling nature of the relief and non-uniform
management of fallow land with degraded vegetation cover, ensuing in
noticeable variations in the surface soil within small distances.

Correlation analysis

A correlation matrix was calculated to understand the association
between soil nutrients (Table 2). OC concentration was significantly
and positively correlated with N. Subsequently, negative correlation
was observed between OC and K. The value of N was strongly con-
nected with OC concentration (r=0.201, p < 0.05), but its coefficient
of correlation with K was negative and very weak. Correlations of P
with N, pH and EC were also weak. In addition, K, pH and EC had
significant positive correlations with each other. The difference in OC
concentration was instigated by natural circulation of organic matter.
Consequently, soil nitrogen level is influenced by accumulation of OC
through soil micro-organisms. Different concentrations of P and K can
be caused by different effects of organic matter, different pH values,
and mineral composition. To the depth of 0–20 cm, the strong positive
correlation between soil OC concentration and topographic attribute
reveals that OC concentration decreases at higher elevation. The coef-
ficient of correlation between OC and elevation was strong and positive
(r= 0.516, p < 0.05).

Geostatistical analysis

The results of autocorrelation functions portrayed variation in
geographical variation of soil properties. The significant confidence
interval of the autocorrelation was estimated though 95% cumulative

Table 1
Descriptive statistics of soil properties in goaltore farm area (n= 27).

Descriptive Statistics Sand (%) Silt (%) Clay (%) N (ppm) P (ppm) K (ppm) Soil pH Organic Carbon (%) EC (μs)

Min 10.48 7.7 8.87 23.8 1.4 25 4.63 0.16 14.3
Max 75.45 50.39 53.20 40.6 8.6 77.5 5.51 0.43 54.8
Mean 40.84 21.98 35.52 30.48 2.74 48.22 4.89 0.29 32.84
Median 39.58 24.18 35.23 29.4 2.3 42.5 4.86 0.29 31.7
SD 11.22 6.89 8.83 4.02 1.56 15.23 0.26 0.06 9.10
CV (%) 0.26 0.25 0.23 13.682 67.99 35.84 5.30 22.39 28.71
Skew 0.64 0.56 −0.47 0.75 2.67 0.58 0.61 −0.047 0.55
Kurt 0.59 4.28 0.15 0.40 7.70 −0.67 −0.14 −0.06 1.14
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probability for a standardized normal distribution [31,32]. The Quan-
tile–quantile (Q-Q) plot showed that N, P, K, pH, and EC exhibited a
normal distribution between the actual and predictive value (Fig. 2).
The scatter plots between the observed and predicted values were

illustrated in Fig. 3. Table 3 represents the key parameters of semi-
variogram models. The best fitting models of semivariogram for N, P, K,
pH, and EC are portrayed in Fig. 4. Their optimal theoretical model is
considered as an exponential curve. The R2 values were calculated to
measure the goodness of fit [33]. The coefficient of determination (R2)
of all variables, except for P, K, and EC were greater than 0.5, indicating
a good fit (Table 3). Nitrogen (N) had a moderate fit, with R2 values of
0.48. The residual sum square (RSS) were all approximate near to 0, but
the theoretical model for pH and OC weakly fitted with R2 values of
0.43 and 0.41 respectively. This result indicates that theoretical models
of N, P, K and EC are better to imitate the geographical distribution
characteristics of such soil properties, whereas the investigational data
series of P, OC and pH represent strong the spatial associations.

The information derived through semivariograms determines the
continuation of different spatial characteristics for soil properties

Table 2
Correlation matrix among the variables.

N P K pH OC EC

N 0
P 0.045077 0
K −0.00498 −0.18378 0
pH −0.29095 0.00799 0.101976 0
OC 0.201077 −0.27346 0.195177 −0.0354 0
EC 0.113927 0.102371 0.35282 0.368164 −0.1320 0

Fig. 2. Q-Q Plots for soil properties; (a) K, (b)pH, (c) N (d) OC, (e)P (f) EC.
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(Table 3). C0 is the nugget variance; C is the structural variance, and Sill
(C0+C) represents the degree of spatial variability, which are affected
by both structural and stochastic factors (Fig. 4). The Nugget/Sill higher
ratio indicates that the spatial variability is primarily caused by sto-
chastic factors, such as fertilization, farming measures, cropping sys-
tems and other human activities. The lower ratio suggests that

structural factors, such as climate, parent material, topography, soil
properties and other natural factors, play a significant role in spatial
variability [34]. The values of< 0.25, 0.25–0.75, and>0.75 show
strong, moderate and weak spatial autocorrelation in soil properties,
respectively. With regard to OC and EC, the values for nugget/sill ratio
are all more than 0.25 but less than 0.75, indicating moderate spatial

Fig. 3. Observed and predicted values of variables for validation of the results by semivariogram model; (a) K, (b)pH, (c) N (d) OC, (e)P (f) EC.

Table 3
Summary of semivariogram parameters of best-fitted theoretical model to predict soil properties and cross-validation statistics.

Soil property Model Nugget (C0) Sill (C0 +C) Range (m) Nugget/Sill R2 RSS ME RMSE

N (ppm) Exponential 0.15 1.10 1.076 0.14 0.48 0.002 0.09 0.20
P (ppm) Exponential 0.001 0.97 1.335 0.10 0.63 0.008 0.02 0.16
K (ppm) Exponential 0.001 1.08 1.210 9.26 0.53 0.001 0.03 0.21
pH Exponential 0.25 0.98 1.418 0.25 0.43 0.0009 0.05 0.14
Organic Carbon (%) Exponential 0.66 1.00 1.254 0.66 0.41 0.001 0.03 0.23
EC (μs) Exponential 0.76 1.10 1.371 0.69 0.52 0.005 0.04 0.22

R2=coefficient of determination, RSS= residual sum square, ME=mean error, RMSE= root mean square error.
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autocorrelation. While the ratio values for N, P, and pH are less than
0.25, they indicate very strong spatial autocorrelation. As such, the K
value indicates very weak spatial autocorrelation. Therefore, stronger
spatial correlation of soil N, P, and pH can be accredited to structural
characteristics, whereas a moderate degree of spatial correlation of OC,
and EC are mostly a result of random factors. Consequently, fertiliza-
tion, irrigation, and other management behaviours could decrease the
heterogeneity of a soil characteristic and reduce its spatial correlation.

Spatial interpolations of soil properties

Fig. 5 shows the spatial variability of soil properties like N, K, P, EC,
OC and pH using Ordinary Kriging (OK) interpolation methods. OK was
used to switch soil samples into continuous fields of soil characteristics.
Interpolated spatial variability maps indicate soils high in K are found
in south-east parts of the study area (Fig. 5a). Concentration of N was
observed in the central and eastern parts. The value of P is highly
concentrated in the eastern part, whereas the agglomeration of higher
EC is in the northeast and southwest corner of the study site. Spatial
distribution of topsoil of P did not vary extremely with land use prop-
erties; however, well reflected changes were observed in the spatial
distribution for OC and soil pH. The OK interpolation technique pre-
dicted significant decreases of OC in the central part where land use
was dominated by fallow land (Fig. 5e). The value of OC increased in
the western part which extends to the higher altitudes with agricultural
plantation. Alteration of forest and grassland ecosystem into wasteland
and fallow land had resulted a significant turn down of OC at topsoil at
depth of 0–20 cm. Plowing forest soils is expectant fast mineralization
of the OC that was accumulated earlier at the topsoil and transported
through the overland flow in lower part (western part) of the study
area. This result suggests certain management practices, e.g., minimum

tillage, cover crops, and crop rotations, should be followed to recover
OC of the topsoil. The greater amount of soil OC perhaps is due to the
maximum concentration of root mass, waste material and secretes root
increases growing physical steadiness and microbial activity [35,36]. In
this analysis, it is found that storage of OC in soil is mainly influenced
by the land use characteristics. Earlier reports also suggested that the
amount and quality of litter input, the litter decomposition rate and
processes control the organic matter stabilizes the soils [37,38].

The spatial distribution of the soil pH was shown in Fig. 5f. The soil
pH was represented as acidic and varied between 4.63 and 5.51. Soil pH
values of the entire study area varied between 4.80 and 5.20 whereas
soil pH of 4.8–5.5 was recorded in the northern and southern part of the
farm area and low value is recorded in the eastern part. This may be due
to the fallow land and the undulating topography in the eastern part of
the area. A map of soil EC (Fig. 5d) showed that areas of higher soil
salinity area was more towards the southern part (low altitude) and
most of the central part of the study area, whereas minimum salinity of
soil was documented at high altitude of relief. This maximum change-
ability over short distances could be accredited to variations in the
instability, surface drainage and micro-topography [12]. The spatial
relation of soil properties evidenced the different amounts of hetero-
geneity of field management factors such as landscape pattern, polli-
nation, irrigation, or intrinsic factors such as relief, drainage, erosion,
and soil texture [39]. Therefore, results of this study are corroborated
with the previous studies [40–42].

Validation

Internal (cross-validation) and external validation were used to
confirm the results. The cross-validation technique generated for testing
the semivariogram model validates the OK method at each sample

Fig. 4. Semivariograms with fitted models for soil properties (a) K, (b)pH, (c) N (d) OC, (e)P (f) EC.
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location by neighbouring samples; after that evaluates approximates
with actual values. Present analysis also reports that most of soil
properties had low ME (Table 3), demonstrating a lack of logical bias
for forecast spatial distribution using OK method and a good fit of the

semivariogram to the data set. The RMSE was calculated form the va-
lidation dataset and values are near to zero (Table 3). The cross-vali-
dation analysis showed the smoothing effect of the spatial prediction.
The calculated values of R2 area approximate to 1 estimated through

Fig. 5. Spatial Distribution of Soil Properties, (a) K (ppm), (b) N (ppm), (c) P (ppm), (d) EC, (e) Organic Carbon (%), (f) Soil pH.
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actual and predicted values. However, ME and RMSE are approximate
to 0. Both indices express that the projected maps of soil properties
form Ordinary Kriging and the results are consistent.

Conclusion

Understanding geographical distribution and precise mapping of
soil properties at large scale are very important for soil conservation
and environmental modeling. Geostatistical models were fitted for six
soil properties, namely nitrogen (N), phosphorus (P), potassium (K),
soil pH, electrical conductivity (EC), and soil organic carbon (OC).
Semivariogram models for each soil property were identified using a
cross validation approach. Cross-validation of semivariogram techni-
ques derived through OK portrayed that spatial extrapolation of soil
properties was more accurate than assuming the mean of the observed
values at any unmeasured location. Finally, six prediction maps were
developed using best fit semivariogram models with OK. The outcomes
of the present work were valuables by depicting the effect of poor
management practices on soil quality parameters. The preponderance
of soil properties represented a moderate spatial dependency at short
distances in the topsoil. However, the study has been limited by small
soil samples and thereby a large number of samples is required for fu-
ture research. Finally, the result derived in this study may help farmers
and decision makers for improving the soil-water management plan.
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