2022

CHEMISTRY

M.Sc. Second Semester End Examination - 2022
PAPER - CEM-203
(Inorganic Chemistry - II)

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group - A

1. Answer any four questions.

 $2\frac{1}{2} \times 4 = 10$

- (a) How metal-dioxygen complexes are prepared?
- (b) Why heavier transition metals from more dinitrogen complexes than lighter elements?
- (c) Determine the number of IR active vCO stretching mode of the following compounds.
 - (i) cis-Mo(CO)₄(PMe₃)₂ (ii) Ni(CO)₃(PPh₃)

(Turn (Iver)

- (d) Briefly explain the term 'Agostic interaction'.
- (e) W(CO)₆ reacts with MeLi to give an intermediate which upon treatment with CH₂N₂ gives compound X. Find X.
- (f) The molecule (CO)₅=M=C(OMe)Ph obeys 18 electron rule. What are the two metals from 3d and 5d which satisfy the condition?

Group - B

Answer any four questions.

 $5 \times 4 = 20$

- 2. (a) Give possible explanation of increased reactivity of dioxygen upon coordination with metal. Give examples of some reactions of metal-dioxygen complexes.
 - (b) Draw the structure of Creutz-Taube complex and explain with reasoning of its high intense color. 2+3
- 3. (a) Write short notes on 'Vaska's complex'.
 - (b) Give a scheme in which metal-dinitrogen complexes produce pyrrole and N-aminopyrrole. 3+2
- 4. Extend the concept of SALC to construct the MOS of cyclic H₄ using the character table of C₄ point group.

C ₃	Е	C ₃ 1	C ₃ ²	ε=e ^{2πi/3}
A_1'	1	1	1	
E'	1	ε	ε'	
L	1	ε*	ε	

5

- 5. Decompose the following direct product in O point group.
 - (1) T_1xT_2 (2) ExT_2

0	E	8C ₃	$3C_2(=C_4^2)$	6C ₄	6C ₂
A_{i}	1	1	1	1	1
A ₂	1	1	1	-1	-1
E	2	-1	2	0	0
T ₁	3	0	-1	1	-1
T,	3	0	-1	-1	1

5

- 6. a) Discuss the bonding of metal-alkeni complexes with orbital diagram.
 - (b) Comment on the major and minor product of the given reaction with explanation.

$$Cr(CO)_6 + 3PMe_3 \rightarrow$$

3+2

(a) Match the [Rh(CO)(Phosphine)₂Cl] complexes with their corresponding CO streehing frequencies (v_{co}cm⁻¹). Give explanation for selection.

Pho	sphine	$[v_{\infty}^{cm^{-1}}]$
(i)	$P(C_6H_5)$	1923
(ii)	$P(p-C_6H_4F)_3$	1965
(iii)	$P(p-C_6H_4Me)_3$	1984
(iv)	$P(t-C_4H_9)_3$	2004

(b) Explain why Fe(CO)₅ shows only one peak at room temperature while 2 peaks at low temperature in ¹³C nmr spectroscopy. 3+2

Group - C

Answer any one question.

10×1=10

8. (a) Determine the symmetry types of the genuine vibrations in furan (C₄H₄O, Point group : C_{2V}) by Cartesian coordinate method. How many of them are Raman active? The character table for C_{2V} point group is given below.

C_{2v}	E	C ₂ (z)	$\sigma_{v}(xz)$	$\sigma_{v}^{i}(yz)$		
Α _ι	1	1	1	1	z	$x^2.y^2.z^2$
A ₂	1	1	-1	-1	R	ху
B ₁	1	-1	1	-1	x, R _y	xz
B ₂	1	-1	-1	1	y, R _x	yz

(b) Comment on the feasibility of following transitions in $C_{3\nu}$ point group. [2+2=4]

$$A_1 \rightarrow A_2$$
 and $E \rightarrow E$

The Character Table for C_{3v} is shown below:

C _{3V}	E	2C ₃	3σ,	
A	1	1	1	Z
A ₂	1	1	-1	R _z
Е	2	-1	0	(x,y)
				(R_x,R_y)

(a) Calculate the styx numbers of B₆H₁₀ and B₅H₁₁.
 Determine and draw the most probable structures of these compounds. Classify these compounds as closo, nido, arachano and hypho type. (2+2+1)

- (b) Classify the following compounds by structural type
 - $C_2B_9H_{12}^-$, $[Ru_5(CO)_{16}C]$, $[Co_4(CO)_{12}]$
- (c) Complete the following reaction
 - (i) $[R(H_2O)(NH_3)_5]^{3+} + Aq.N_2H_4$
 - (ii) $B_4H_{10} + NaBH_4$