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Abstract
We consider two coupled quantum harmonic oscillators with different free frequencies.
Here the interaction between the twomodes does not involve the RotatingWave Approximation
(RWA). The Heisenberg equations of motion are solved analytically using an approximate
technique and the solutions are used tomeasure nonclassicalities associated with the system.
The nonclassicality criteria chosen in this study are experimentally measurable. The
analytical solutions are matched with numerical simulations with the help of a numerical
toolbox. It is evident from the time developments of the operators that nonclasities,
namely squeezing and quantum entanglement are present in the system. The counting
statistics for the oscillator with lower free energy and the coupledmode are shown to be
sub-Poissonian for a particular set of parameters. Consequently, the systemmay exhibit
quantummechanical antibunching.

1. Introduction

The systems of coupled harmonic oscillators have been drawing attentions for quite sometimes [1–9].
These systems raise considerable discussions due to their applications in quantum physics and quantum
field theory [10–13]. Diffrent biophysical processes, in particular, photosynthesis, can be explained with
the help of these coupled oscillators [14, 15]. Two linearly coupled harmonic oscillators constitute a
quantum system comprising of classical mass-spring components which can be solved exactly [16]. They
provide efficient models to explore the fields like quantummeasurements, quantum entaglement
etc [17, 18].

The ubiquitous nature of nonclassical states is apparent in the rapid developments of thefields like quantum
computation and communication. In particular, nonclassical states are essential in the studies of quantum
cryptography [19, 20], dense coding [21, 22], quantum teleportation [23, 24]. In this paper, the nonclassical
properties, namely squeezing, antibunching and quantum entanglement are studied in case of two coupled
harmonic oscillators. For a nonclassical state, theGlauber-Sudarshan p-function ismore singular than
δ-function. Although a single photon state is themost nonclassiacal of the quantum states, itmay involve a
number of photons [25]. The negativity ofWigner function,Mandel’sQ parameter, etc., serve as the criteria for
themeasurement of nonclassicality. The present study involves some practicallymeasurable nonclassicality
criteria.

For light field and harmonic oscillator, theoretical studies on squeezed states are widespread [26–28]. They
are accompanied by experimental works [29, 30]. Squeezed states are relevant for the preparation of Fock
states of harmonic oscillator strongly coupled to a single two level atom [31]. These states attract wide interests
and fundamental connections between the squeezed state and entanglement are studied [8, 32–35]. For
producing antibunched photons, the single photon sources remain the essential component. Or reversibly,
presence of antibunching confirms the single photon emitter in the system. The process like parametric down
conversion are used to generate antibunched photons [36–38]. Quantum entanglement is the one of the
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important-most key factors for the quantum information processing, information splitting or teleportation.
Several inseparability criteria are proposed to examine whether amixed state with two ormoremodes is
separated or entangled [39, 40].

In this study the Heisenberg equations of motion is first derived from themodel Hamiltonian
corresponding to the system of two coupled oscillators. The approximate solutions of these equations
are presented up to cubic order on the interaction constant using an approximate perturbative approach.
This approximation technique is more general than short time approximation technique. Next the
general dynamics is given in terms ofmean particle numbers. The general solutions are then applied to
study nonclassicalities using several criteria which have so far not been investigated collectively for this
system. The expressions corresponding to squeezing, particle counting statistics and quantum
entanglement are plotted. The nonclassicality criteria for eachmode along with the coupledmode are
investigated. The numerical simulations are also shown for the verification of the approximate analytical
expressions.

2. ThemodelHamiltonian

For the systemofNharmonic oscillators coupled by bilinear interaction, theHamiltonian is given as [16]

H a a a a a a
1

2

1

2
1

p q
pq p q pq p q pq p q

,

*å w l l= + + ( )† † †

where ap ap( )† is the annihilation (creation) operator corresponding to the p th oscillator and ωpq and
λpq are the coupling constants. To estimate quantity such as mean particle number, onemay resort
to the approximation where the non energy conserving terms like a ap q

† † or apaq is neglected at resonance.
This approximation is called resonance approximation or RWA. The present study considers the
system of two oscillators connected with position-position coupling at region far from resonance
without RWA. As thematter of fact, for the oscillators of unit mass, the Hamiltonian can be
expressed as

H
p

x
p

x x x
2

1

2 2

1

2
2 21

2

1
2

1
2 2

2

2
2

2
2

1 2 1 2w w l w w= + + + + ( )

whereω1 andω2 are the natural frequencies of the first and the second oscillator respectively. Here
without any loss of generality, the energy of the first one is taken greater than the energy of the second
one, i.e.,ω1>ω2. Expressing the transformations of position (x) andmomentum (p) in terms of

dimensionless bosonic creation and annihilation operators as x a a p i a a,1 2 1 21

1 = + = -
w

w( ) ( )† †

and x b b p i b b,2 2 2 22

2 = + = -
w

w( ) ( )† † , (2) can be rewritten as
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Neglecting the vacuum energy terms and taking ÿ=1 fromhere through the rest of the study, the
Hamiltonian nowbecomes

H a a b b a a b b 41 2w w l= + + + +( )( ) ( )† † † †

3. Solution

TheHeisenberg equations ofmotion can be derived from theHamiltonian (4)

a t i a b b

b t i b a a 5

1

2

w l
w l

= - + +

=- + +

( )˙ [ ( )]
( )˙ [ ( )] ( )

†

†

The above Heisenberg equations of motion were solved at resonant condition [16] and comparisons
of dynamical behaviours of various observables have beenmade between the solutions with or without
RWA. The disparity between two results increases with the dimensionless time as expected. In this
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study the general solutions of equation (5) are achieved from an approximate perturbative approach
resembling that in the references [41, 42]. The solution of the first of equation (5)may be written
as

a t iHt a iHt a it H a
it

H H aexp exp ,
2

, , ... 6
2

= - = + + +( ) ( ) ( ) [ ] ( )
!

[ [ ]] ( )

and b(t) follows in the samemanner as a(t). The commutators in equation (6) are evaluated and the terms
comprising of a, a†, b, b† or any combination of them are taken up to the desired order of the coupling constant
alongwith their time dependent coefficients. The trial solutions of equation (6) assumes the following form
taking up to 3 l( ) terms

a t f t a f t b f t b f t a f t a f t b f t b 71 2 3 4 5 6 7= + + + + + +( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )† † †

and

b t h t b h t a h t a h t b h t b h t a h t a 81 2 3 4 5 6 7= + + + + + +( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )† † †

where f1(h1) is the term free of the interaction constant λ, f2(h2) and f3(h3) are l( ) functions, f4(h4)
and f5(h5) are the functions of λ

2 whereas f6(h6) and f7(h7) depend upon λ
3. This is evident from the

sequence of the terms in equation (7) that next two terms would contain only a and a† but are not
considered since the coefficients would carry λ4. The same reasoning goes with equation (8) also. The
initial conditions for the functions fis and his are f1(0)=h1(0)=1 whereas fi(0)=hi(0)=0 for i=2, 3,
4, 5, 6, 7 and the reason behind this choice is that if there is no coupling constant (λ=0), all the terms
other than the first one would vanish. This is equally evident from equation (6) also. The corresponding
solutions for fis and his are
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where t i t t i texp , expa b= D = S( ) ( ) ( ) ( ),Δ=ω1−ω2 andΣ=ω1+ω2. The validity of the solution is
given by the limitλt<1. Therefore the dynamics of various observables are explored throughout the studywith
λ=1. This is worth noting that the trial solutions (7) and (8) satisfy the equal time commutation relations
a t a t, 1=[ ( ) ( )]† and b t b t, 1=[ ( ) ( )]† .

4. Particle number dynamics

The initial states of both the oscillatormodes are considered coherent. If añ∣ and bñ∣ are the eigenkets of thefield
operators a and b respectively, the eigenvalue equations are a a a añ = ñ∣ ∣ and b b b bñ = ñ∣ ∣ . The initial
composite coherent state is given as

0 11y a bñ = ñ Ä ñ∣ ( ) ∣ ∣ ( )

which gives rise to the following eigenvalue equations for composite system at t=0

a 0 12y a a bñ = ñ Ä ñ∣ ( ) ∣ ∣ ( )

b 0 13y b a bñ = ñ Ä ñ∣ ( ) ∣ ∣ ( )

The quantities 2a∣ ∣ and 2b∣ ∣ are the average number of atoms formode state añ∣ and bñ∣ respectively. The
more general expression forα andβ can be given by

e eand 14i ia a b b= =q f∣ ∣ ∣ ∣ ( )

where θ andf are the phases ofα andβ respectively.

4

J. Phys. Commun. 2 (2018) 055004 AMukhopadhyay



Wefirst consider themean particle number for the first oscillatormode. The average particle number for the
first one is given by

a a f f
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TheO(λ2) calculation for the abovemean particle number is
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The similar expression formode b is as follows
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The solution (15) is a better approximation as expected. This is evident from figure 1(a). But both the 3 l( )
and the 2 l( ) solutions agreewell with the numerical simulation in the region of dimensionless timeλt<0.1.
The simulations are done by the quantumoptical toolboxQuTip 3.1.0 [43]. To investigate the unitary time
evolution of closed system (4), the toolbox function qutip.essolve is used.Here the exponential-series technique
is considered for the time evolution of the initial state of the system. Figure 1(c)) shows that the average particle
number is not conserved throughout the time evolution.

5.Nonclassicalities

As amatter of fact, all the states of light are nonclassical or quantum states. Among all, the single photon state is
themost nonclassical one. For coherent states, theGlauber -Sudarshan P function is a δ function, and for all
other pure nonclassical states, P function becomes negative for some regions in phase space [44]. Among
different nonclassical states, this study considers quadrature squeezing, sub-Poissonian quantum statistics with
antibunching and quantum entanglement. Various experimentally realizable criteria for different types of
nonclassicality are used in the present study as described below.

5.1.Quadrature squeezing
The non vanishing commutator a a, 1=[ ]† is responsible for the vacuumfluctuation for the electromagnetic
field. Thefluctuation over one quadrature can be lower than the vacuumfluctuation at the cost of the other one.
This phenomenon is known as squeezing. The quadrature defined for squeezing is as follows

Figure 1. (a)Plot of the average particle number for thefirstmodewith dimensionless time in near resonant region. The parameters
used are,ω1=1.0,ω2=0.99,λ=0.01,α=1.0 andβ=1.0. The plot shows that the 3 l( ) calculation provides better
approximation as expected. In figure (b), the analytical solution formode a in non resonant region is shown by continuous linewhich
is well supportedwith the numerical solutions given by circular dots. The dotted line represents the analytical solution for themode b.
Here, the periodic conservation of the average particle number is apparent. The parameters used are same as (a) exceptω1=3.0,
ω2=1.0. (c)Non conservation of the average particle numbers in near resonant regionwith the parameters used in (a).
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where the upper ‘+’ sign is for Xa
2D( ) and lower ‘−’ is for Ya

2D( ) . The complex conjugate terms are abbreviated
by c.c.

Similarly for the secondmode
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The quadrature for the coupledmode squeezing are written as
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The coupledmode squeezing is given by the following expression
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TheTime evolution of quadrature variances are shown infigure 2.

5.2.Quantum statistics
The second order correlation function for thefirstmode corresponding to no time delay is given by

g
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0 . 252

2 2

=
á ñ

á ñá ñ
( ) ( ) ( )

( ) ( ) ( ) ( )
( )( )

†

† †

The condition g0 0 12< <( )( ) implies the sub-Poissonian distribution of oscillator-mode number and is
associatedwith the nonclassical effect, quantum antibunching [25, 45, 46]. As is well-known, the distribution

Figure 2. (a) Squeezing is found in both quadratures formode a in a perodicmanner. (b)Variances in quadratures formode b go in
phase and antiphase periodically exhibiting squeezing. (c)Only one of the quadratures show squeezing all through the time evolution.
Numerical solutions are represented by circular dots and squares. The parameters are taken asω1=3.0,ω2=1.0,λ=0.01,α=1.0
andβ=1.0.
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becomes super-Poissonian if g 0 12 =( )( ) and particles are in coherent state if g 0 02 =( )( ) . The equation (25) is
rewritten as

g
N N

N
0 1 . 26a a

a

2
2

2
= +

á D ñ - á ñ
á ñ

( ) ( ) ( )( )

Writing the numerator that appeared in R.H.S of equation (26) asDa, the condition of themode a exhibiting
sub-Poissonian distributionwhichmay accompany antibunching, becomes

D N N 0 27a a a
2= á D ñ - á ñ <( ) ( )

Similarly, the condition for bmode is as follows,

D N N 0 28b b b
2= á D ñ - á ñ <( ) ( )

From equations (7), (8) and (27), the expression forDa is,

D f f

f f f f f f f c c. . 29

a 2
2

3
2 2

1 4
2

1 5 1
2

2 3
2* * * *

a

a a

= +

+ + + +

(∣ ∣ ∣ ∣ )∣ ∣
{ ∣ ∣ ( ) } ( )

and for themode b,

D h h

h h h h h h h c c. . 30

b 2
2

3
2 2

1 4
2

1 5 1
2

2 3
2* * * *

b
b b

= +

+ + + +

(∣ ∣ ∣ ∣ )∣ ∣
{ ∣ ∣ ( ) } ( )

The coupledmode antibunching is given by

D f h

f f h h h h f f c c

1

. . 31

ab 3
2 2

3
2

1 3 1 2
2

1 3
2

2 3
2* * * *

b

a a b

= + -

+ + + +

∣ ∣ (∣ ∣ ) ∣ ∣
{ ( ∣ ∣ ) } ( )

Figure 3 exhibits the presence of antibunching in somemodes. The nonclassical effect is present in bmode,
whereas it is absent in amode for the same set of parameters. Infigure 3(c), the coupledmode shows
antibunching for different phase of the eigenvalueβ.

5.3. Entanglement
Intermodal entanglement is investigated in this study by the criteria conceived byHillary andZubairy [47–49].
Thefirst sufficient criterionHillary-Zubairy criterion 1 (HZ-1) is given as

a ab b ab 0 322á ñ - á ñ <∣ ∣ ( )† † †

whereas the second sufficient criterionHZ-2 is

a a b b ab 0. 332á ñá ñ - á ñ <∣ ∣ ( )† †

Using equations (7), (8), (32) and (33), we have the expression forHZ1 criterion

E h f

f f h h f f c c

3 1 3

. . 34

ab 3
2 2

3
2

1 3 2 3
2

2 3
2* * *

a

a b

= + +

+ + + +

∣ ∣ ( ∣ ∣ ) ∣ ∣
{ } ( )

Figure 3. (a)Nonclassicality such as sub-Poissonian counting statistics is absent inmode a for the set of parametersω1=3.0,
ω2=1.0,λ=0.01,α=1.0 andβ=1.0. (b) Signature of nonclassicality is found inmode b for the same set of parameters as in (a).
(c) Signature of nonclassicality in coupledmodewith the same set of parameters exceptβ=−i.
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and forHZ2 criterion

E f h

h h f f f f h h c c

1

. . . 35

ab 3
2 2

3
2 2

1 3 1 2
2

1 3
2

2 3
2* * * *

b a

b b a

¢ = - +

- + + +

∣ ∣ ∣ ∣ ∣ ∣ (∣ ∣ )
{ ( ∣ ∣ ) } ( )

TheDuan inseparability criterion [40] is another criterion fromwhich entanglement between twomodes is
investidgated. This criterion is given by

u v 2 0. 362 2á D ñ + á D ñ - <( ) ( ) ( )

Using (7), (8) and (36)we have the following expression of theDuan’s inseparability criterion,

d f f f f f h f h h h c c2 . . . 37ab 2
2

3
2

1 4 1 2 2 1 1 4* * * *= + + + + + +(∣ ∣ ∣ ∣ ) { } ( )

The equations (34), (35) and (37) are plotted infigure 4. The exhibits entanglement which is apparent from
the plots 4(a) and (b). This is noteworthy thatDuan’s criterion (equations (36) and (37)) can assume negative
values for different phases ofα orβ.

6. Conclusion

Wehave derived the approximate analytical solution for the systemof two linear oscillators boundwith
position-position coupling. The analytical solutions are then used to investigate the particle number dynamics
and various nonclassicalities.We have chosen a region away from the resonancewhre the nonclassicalities
namely squeezing, sub-Poissonian quantum statistics and quantum entanglement are found in individual
modes as well as in coupledmode. Themean particle number shows a periodic kind of particle number
conservation. The present findingswould have potential applications in different fields of the likes of quantum
information or optical simulations. This study can be extended to investigate higher order nonclassicalities such
as higher order quantum entanglement.
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