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Abstract

We consider two coupled quantum harmonic oscillators with different free frequencies.
Here the interaction between the two modes does not involve the Rotating Wave Approximation
(RWA). The Heisenberg equations of motion are solved analytically using an approximate
technique and the solutions are used to measure nonclassicalities associated with the system.
The nonclassicality criteria chosen in this study are experimentally measurable. The
analytical solutions are matched with numerical simulations with the help of a numerical
toolbox. Itis evident from the time developments of the operators that nonclasities,

namely squeezing and quantum entanglement are present in the system. The counting
statistics for the oscillator with lower free energy and the coupled mode are shown to be
sub-Poissonian for a particular set of parameters. Consequently, the system may exhibit
quantum mechanical antibunching.

1. Introduction

The systems of coupled harmonic oscillators have been drawing attentions for quite sometimes [1-9].
These systems raise considerable discussions due to their applications in quantum physics and quantum
field theory [10—13]. Diffrent biophysical processes, in particular, photosynthesis, can be explained with
the help of these coupled oscillators [14, 15]. Two linearly coupled harmonic oscillators constitute a
quantum system comprising of classical mass-spring components which can be solved exactly [16]. They
provide efficient models to explore the fields like quantum measurements, quantum entaglement
etc[17,18].

The ubiquitous nature of nonclassical states is apparent in the rapid developments of the fields like quantum
computation and communication. In particular, nonclassical states are essential in the studies of quantum
cryptography [19, 20], dense coding [21, 22], quantum teleportation [23, 24]. In this paper, the nonclassical
properties, namely squeezing, antibunching and quantum entanglement are studied in case of two coupled
harmonic oscillators. For a nonclassical state, the Glauber-Sudarshan p-function is more singular than
o-function. Although a single photon state is the most nonclassiacal of the quantum states, it may involve a
number of photons [25]. The negativity of Wigner function, Mandel’s Q parameter, etc., serve as the criteria for
the measurement of nonclassicality. The present study involves some practically measurable nonclassicality
criteria.

For light field and harmonic oscillator, theoretical studies on squeezed states are widespread [26—28]. They
are accompanied by experimental works [29, 30]. Squeezed states are relevant for the preparation of Fock
states of harmonic oscillator strongly coupled to a single two level atom [31]. These states attract wide interests
and fundamental connections between the squeezed state and entanglement are studied [8, 32-35]. For
producing antibunched photons, the single photon sources remain the essential component. Or reversibly,
presence of antibunching confirms the single photon emitter in the system. The process like parametric down
conversion are used to generate antibunched photons [36-38]. Quantum entanglement is the one of the
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important-most key factors for the quantum information processing, information splitting or teleportation.
Several inseparability criteria are proposed to examine whether a mixed state with two or more modes is
separated or entangled [39, 40].

In this study the Heisenberg equations of motion is first derived from the model Hamiltonian
corresponding to the system of two coupled oscillators. The approximate solutions of these equations
are presented up to cubic order on the interaction constant using an approximate perturbative approach.
This approximation technique is more general than short time approximation technique. Next the
general dynamics is given in terms of mean particle numbers. The general solutions are then applied to
study nonclassicalities using several criteria which have so far not been investigated collectively for this
system. The expressions corresponding to squeezing, particle counting statistics and quantum
entanglement are plotted. The nonclassicality criteria for each mode along with the coupled mode are
investigated. The numerical simulations are also shown for the verification of the approximate analytical
expressions.

2. The model Hamiltonian

For the system of N harmonic oscillators coupled by bilinear interaction, the Hamiltonian is given as [ 16]

H =7y wyayaq + )‘M ayag + )‘pq“p“q @
sq

where a,, (aT) is the annihilation (creation) operator corresponding to the p th oscillator and w,,, and
Apqarethe couphng constants. To estimate quantity such as mean partlcle number, one may resort

to the approximation where the non energy conserving terms like a, a,; or a,a, is neglected at resonance.
This approximation is called resonance approximation or RWA. The present study considers the
system of two oscillators connected with position-position coupling at region far from resonance
without RWA. As the matter of fact, for the oscillators of unit mass, the Hamiltonian can be

expressed as

H= % + zwl 1 + 1;—2 + E 2X2 + 2AJ(JJ1W2X1.‘X2 (2)

where w; and w, are the natural frequencies of the first and the second oscillator respectively. Here
withoutanyloss of generality, the energy of the first one is taken greater than the energy of the second
one,i.e.,w; > w,. Expressing the transformations of position (x) and momentum (p) in terms of

dimensionless bosonic creation and annihilation operatorsas x; = ,/— (aT +a), p, = i\ =+ Zwl (@ — a)

and x, = / (bT +b),p, = /'”2 (b" — b), (2) can be rewritten as
H= /iwl(aTa + %) + fl/bdz(bv? + %) + 7ZN(a" + a)(b' + b) (3)

Neglecting the vacuum energy terms and taking 2 = 1 from here through the rest of the study, the
Hamiltonian now becomes

H = wia’a + w,b'b + Aa" + a)(b' + b) (4)

3. Solution
The Heisenberg equations of motion can be derived from the Hamiltonian (4)

a(t) = —ifwia + A" + b)]
b(1) = —ilwrb + A(a' + )] ®)
The above Heisenberg equations of motion were solved at resonant condition [16] and comparisons

of dynamical behaviours of various observables have been made between the solutions with or without
RWA. The disparity between two results increases with the dimensionless time as expected. In this
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study the general solutions of equation (5) are achieved from an approximate perturbative approach
resembling that in the references [41, 42]. The solution of the first of equation (5) may be written
as

(1 )2

a(t) = exp(iHt)a exp(—iHt) = a + it[H, a] + [H [H, a]] + ... (6)

and b(¢) follows in the same manner as a(t). The commutators in equation (6) are evaluated and the terms
comprising of a, a', b, b or any combination of them are taken up to the desired order of the coupling constant
along with their time dependent coefficients. The trial solutions of equation (6) assumes the following form
taking up to O(X’) terms

a(t) = fiHa + LOb + (OB + fi(ha + f;(D)a" + f (Db + f(0)b' ™)

and

b(t) = ()b + hy(Ha + hs()a" + ha()b + hs(O)b' + hg(t)a + hy(H)a’ (8)

where fi(h,) is the term free of the interaction constant A, f,(h,) and f5(h;) are O(\) functions, fy(hy)

and fs(hs) are the functions of A2 whereas f¢(he) and f;(h;) depend upon A*. This is evident from the
sequence of the terms in equation (7) that next two terms would contain only a and a' but are not
considered since the coefficients would carry A*. The same reasoning goes with equation (8) also. The
initial conditions for the functions f;s and h;s are f;(0) = h;(0) = 1 whereasf(0) = h;(0) = 0fori = 2,3,
4,5, 6,7 and the reason behind this choice is that if there is no coupling constant (A = 0), all the terms
other than the first one would vanish. This is equally evident from equation (6) also. The corresponding
solutions for f;s and h;s are

fi — efiwlt

A

fszfl{l — a()}
A

f3:§f1{1 — B@®)}

fi= AZfl[L{a(t) A1) - %{5(1‘) - 1}]

t
— )\2f1|: ( it 1) _ %}

& 1 _ pliwgt
by + Zwl( ¢ )}]

1
A

= ASf[ —(a(t) — 1) —it(a(t) + 1)}
LD B YR OO ) (DO VO IR N
22{2w1(6 D=x (A it 1) Nt A}
1 2iwrt _ L w _ & i)

__{_@Q_EQ_LyJ%
A 2w\ A b A by
A

__%_@Q_QQ_L%J%
Y 2w\ X A ) A

LN N ST BMO _ a® L)
A{ZEwl(l )+ sz( 5 A + A }] 9)
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and

hl — efiwzt

m:—%mu—&M}

ngmu—mm

1 . 1 .
hy = )\zhl[y{a*(t) + iAt — 1} — E{ﬁ(t) — Xt — 1}]
1 [a¥f@) = ewt 1
hs = Xhy| —4 —= + - —
> 1[2{ A 2(4}2 20}2}

L Afpm e 1
A by 2(4)2 2&12

1 2 .
he = Aahl[E{K(l — o) —it(1 + a*(t))}
1L i @*(f)(é : )f 2 L
+22{2w2(e 1+ A A + Xt 41 N A}

BN I P N A R
_fr (e B 1), it
A{Zwl( Ay A)+E}]

h, = Aahl[L{L(l _ e2iwzf) + &(é +1— iAt) — A — l}
by by

N | 2w, )y 2y
1 (2 .
+§{§a—mm+na+mm}
1 L(@Jr a*(t) _L)_i_t
> ) 20\ & A x») A
— i 1 2iwat L i _ & _ a*(t)

where a(f) = exp (iAr), B(t) = exp (iXt), A = w; — wrand ¥ = w; + w,. Thevalidity of the solution is
given by the limit At < 1. Therefore the dynamics of various observables are explored throughout the study with
A < 1. This is worth noting that the trial solutions (7) and (8) satisfy the equal time commutation relations
[a(t), a’(t)] = 1land [b(t), bT ()] = 1.

4. Particle number dynamics

The initial states of both the oscillator modes are considered coherent. If | ) and | 3) are the eigenkets of the field
operators a and b respectively, the eigenvalue equations are a|a) = a|a)and b|3) = (| 3). The initial
composite coherent state is given as

1¥(0) = la) ® |5) (11)

which gives rise to the following eigenvalue equations for composite systematt = 0
aly(0)) = ala) ® |6) 12)
blv(0) = Bla) ® |B) (13)

The quantities || 2 and | 3| ? are the average number of atoms for mode state |) and | 3) respectively. The
more general expression for o and 3 can be given by

a = |a| eand § = |B] e (14)

where 0 and ¢ are the phases of o and (G respectively.

4



10P Publishing

J. Phys. Commun. 2 (2018) 055004 A Mukhopadhyay

1.025

— Analytical O(\%) N 1.02
18| - Analytical 0(\?) N
- Numerical N 1.020
N
.N 1.01
N A o Aros
1.6/ e = -
i = =
A N
s ~ v V 1.010
e N < 100 5 <
V14 N AT \ ! | A
v N S \ i | .S Loos
NN N § h ' s
/ \
! 0.99 bt i Soe v 1.000
- v
1.2 2 o |I ,l | H ] 1
1 ? ) 1
Y ) o 0.995/
"
1 0.98 g i
0.0 0.2 0.4 0.6 0.8 1.0 0.00 0.02 0.04 0.06 0.08 0.10 0.4
At At
(a) (b)

Figure 1. (a) Plot of the average particle number for the first mode with dimensionless time in near resonant region. The parameters
used are, w; = 1.0,w, = 0.99, A\ = 0.01,« = 1.0and 8 = 1.0. The plot shows that the O()?) calculation provides better
approximation as expected. In figure (b), the analytical solution for mode a in non resonant region is shown by continuous line which
is well supported with the numerical solutions given by circular dots. The dotted line represents the analytical solution for the mode b.
Here, the periodic conservation of the average particle number is apparent. The parameters used are same as (a) except w; = 3.0,

w, = 1.0.(c) Non conservation of the average particle numbers in near resonant region with the parameters used in (a).

We first consider the mean particle number for the first oscillator mode. The average particle number for the
first one is given by

(a'a) =1a|? + 114612 + | L1281 + 1]
+ LA ARG 2+ ) as*
+ (ISR HL 5+ f)eB
+ ol + fifFe? + £, 37+ ccl (15)

The O(\?) calculation for the above mean particle number is

(afay=|a|® + 114817 + 1120817 + 1]
+ LA aB* + fiffaB + fi flal
+ffFa? + £ 18+ el (16)

The similar expression for mode b is as follows

(b'b) = |81 + || 2| x|® + |hs]? [lx|? + 1]
+ [mhia* 3 + mhiap + hhi |6
+ mhEB + hyhfa? + c.c] (17)

The solution (15) is a better approximation as expected. This is evident from figure 1(a). But both the O()\)
and the O(X?) solutions agree well with the numerical simulation in the region of dimensionless time A\r < 0.1.
The simulations are done by the quantum optical toolbox QuTip 3.1.0 [43]. To investigate the unitary time
evolution of closed system (4), the toolbox function qutip.essolve is used. Here the exponential-series technique
is considered for the time evolution of the initial state of the system. Figure 1(c)) shows that the average particle
number is not conserved throughout the time evolution.

5. Nonclassicalities

As amatter of fact, all the states of light are nonclassical or quantum states. Among all, the single photon state is
the most nonclassical one. For coherent states, the Glauber -Sudarshan P function is a § function, and for all
other pure nonclassical states, P function becomes negative for some regions in phase space [44]. Among
different nonclassical states, this study considers quadrature squeezing, sub-Poissonian quantum statistics with
antibunching and quantum entanglement. Various experimentally realizable criteria for different types of
nonclassicality are used in the present study as described below.

5.1. Quadrature squeezing

The non vanishing commutator [a, a'] = 1is responsible for the vacuum fluctuation for the electromagnetic
field. The fluctuation over one quadrature can be lower than the vacuum fluctuation at the cost of the other one.
This phenomenon is known as squeezing. The quadrature defined for squeezing is as follows
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x107°+2.4997x107" x1075+2.4994x10°" x107"
[

(AX,)*&(AY})?

Figure 2. (a) Squeezing is found in both quadratures for mode a in a perodic manner. (b) Variances in quadratures for mode b go in
phase and antiphase periodically exhibiting squeezing. (c) Only one of the quadratures show squeezing all through the time evolution.
Numerical solutions are represented by circular dots and squares. The parameters are taken asw; = 3.0,w, = 1.0, A = 0.0l, @ = 1.0
and 3 = 1.0.

Xa(1) = %[a(r) +at(0)] (18)
Y,(1) = %[a(t) — a0 (19)

Squeezing occurs if fluctuation in any of the quadrature in equations (18) and (19) assumes the value lower
than the vacuum fluctuation, i.e., (AX,)? < i or (AY,)? < i. Using (7), (18) and (19), the simplified formula
for the quadrature fluctuations in the first mode is given by

AX,)?
[((A); ))2] = i[lle2 H AP + L5 + ) + o)l 20)

where the upper ‘4’ sign is for (AX,,)? and lower ‘—’is for (AY,)?. The complex conjugate terms are abbreviated
byc.c.
Similarly for the second mode

AXp)?
[((AYb))Z] = Ll I+ (k= ubs + hah) + c.)) @D
b

The quadrature for the coupled mode squeezing are written as

Xap(t) = 2\1/5 [a(t) + a’(t) + b(t) + b' ()] (22)
__1 4t _pt
Yop (1) = Wt [a(t) — a'(t) + b() — b'(1)] (23)

The coupled mode squeezing is given by the following expression

AX )
ﬁAY;]:%DO+Uw+ﬂmﬁ+ﬁﬁ+ﬁg+ﬁw

+ mhi + fifs + fo f; + 2fihs + hhs + hyhs]. (24)

The Time evolution of quadrature variances are shown in figure 2.

5.2. Quantum statistics
The second order correlation function for the first mode corresponding to no time delay is given by

(a"(t)a*(t)) 25)
(a'(Ma®) (' (Ha())

The condition 0 < ¢ (0) < 1implies the sub-Poissonian distribution of oscillator-mode number and is
associated with the nonclassical effect, quantum antibunching [25, 45, 46]. As is well-known, the distribution

g¥(0) =
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Figure 3. (a) Nonclassicality such as sub-Poissonian counting statistics is absent in mode a for the set of parameters w; = 3.0,
wy; = 1.0, A = 0.01,« = 1.0and B = 1.0. (b) Signature of nonclassicality is found in mode b for the same set of parameters as in (a).
(c) Signature of nonclassicality in coupled mode with the same set of parameters except § = —i.

becomes super-Poissonian if ¢ (0) = 1and particles are in coherent state if g'» (0) = 0. The equation (25) is
rewritten as

<(ANu)2> - <Na>

g(2)(0) =1 + <Na>2

(26)

Writing the numerator that appeared in R.H.S of equation (26) as D,,, the condition of the mode a exhibiting
sub-Poissonian distribution which may accompany antibunching, becomes

Dy = ((AN) = (No) < 0 27)
Similarly, the condition for b mode is as follows,
Dy = ((ANp)?) = (Ny) < 0 (28)
From equations (7), (8) and (27), the expression for D,, is,
D,=(fP + 1Plal?
+fFlal? + (AR D + ec) (29)
and for the mode b,
Dy = (Iha* + 151817
+ (R B1? + (b + hPhH) B + cc.) (30)
The coupled mode antibunching is given by
Dy =1£PUBI? + 1) — |hsP?
+ A (W haa? + hfhslal) + £ £ 5% + e} (31)
Figure 3 exhibits the presence of antibunching in some modes. The nonclassical effect is present in b mode,

whereas it is absent in a mode for the same set of parameters. In figure 3(c), the coupled mode shows
antibunching for different phase of the eigenvalue (.

5.3. Entanglement
Intermodal entanglement is investigated in this study by the criteria conceived by Hillary and Zubairy [47-49].
The first sufficient criterion Hillary-Zubairy criterion 1 (HZ-1) is given as

(afab’b) — |{ab")|> < 0 (32)
whereas the second sufficient criterion HZ-2 is
(a'a) (b'b) — |(ab) > < 0. (33)
Using equations (7), (8), (32) and (33), we have the expression for HZ1 criterion
Egp =mslGlal + 1) + 3|f;
+ {AfF b + £, 3% + e} (34)
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Figure 4. (a) Observation of quantum entanglement in accordance with HZ1 criterion forw; = 3.0,w, = 1.0, A = 0.01,a = —iand
[ = 1.0.(b) Entanglement according to HZ2 criterion for v = 1.0. Rest of the parameters are same as in (a). (¢) Duan inseparability
criterion is not showing any quantum entanglement with the set of papameters as used in (a) or in (b).

and for HZ2 criterion
En =1£P18P — sl (lal? + 1)
— (b (P67 + AP + hhfa? + ce). (35)

The Duan inseparability criterion [40] is another criterion from which entanglement between two modes is
investidgated. This criterion is given by

((Aw)?) + ((Av)?) —2 < 0. (36)
Using (7), (8) and (36) we have the following expression of the Duan’s inseparability criterion,

day = 20151 + 1P + (f+Ah5 + LB + hhf + cc). (37)

The equations (34), (35) and (37) are plotted in figure 4. The exhibits entanglement which is apparent from
the plots 4(a) and (b). This is noteworthy that Duan’s criterion (equations (36) and (37)) can assume negative
values for different phases of o or (3.

6. Conclusion

We have derived the approximate analytical solution for the system of two linear oscillators bound with
position-position coupling. The analytical solutions are then used to investigate the particle number dynamics
and various nonclassicalities. We have chosen a region away from the resonance whre the nonclassicalities
namely squeezing, sub-Poissonian quantum statistics and quantum entanglement are found in individual
modes as well as in coupled mode. The mean particle number shows a periodic kind of particle number
conservation. The present findings would have potential applications in different fields of the likes of quantum
information or optical simulations. This study can be extended to investigate higher order nonclassicalities such
as higher order quantum entanglement.
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