Total Pages-03

RNLKWC/P.G.-CBCS/IS/MTM/106/21

2021

Applied Mathematics with Oceanology and

Computer Programming

[P.G.]

(CBCS)

(M.Sc. First Semester EndExaminations-2021)

MTM – 106

(GRAPH THEORY)

Full Marks: 25

Time: 01 Hr

The figures in the right hand margin indicate marks Candidates are required to give their answers in their own words as far as practicable Illustrate the answers wherever necessary

1. Answer any TWO questions 2x2=4

- a) Show that a graph G with degree sequence (2, 3, 4, 4, 5) is connected. Give a pictorial representation of this graph along with spanning tree. Find also the number of branches and number of chords of the spanning tree.
- b) Find thenumber of vertices of a 4-regular graphG with 10 edges.
- c) Define fundamental cut-set of a graph G.

(2)

- d) Draw the digraph G corresponding to adjacency matrix.
 - $\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$

2. Answer any TWO questions

4x2=8

a) Define walk, path and circuit with example. Consider the graph shown in figure, find the number of walks of length three from V_2 to V_4 and also check the connectedness of the graph.

b) Write the properties of dual graph. Find the geometrical dual of the graph given below.

1+3

- c) Define spanning tree of a graph G. A tree has two vertices of degree 2, one vertices of degree 3 and three vertices of degree 4. How many vertices of degree 1 does it have ?
- d) Define centre of a graph G. Show that every tree has either one or two centre.
- 3. Answer any ONE question 8x1=8
 - a) i) Write down the statement of four-colour problem in graph theory.
 - ii) Define chromatic polynomial. Prove that every tree with two or more vertices is 2-chromatic.
 - iii) Prove that the chromatic polynomial of any cycle C_n of length *n* is $p_n(\lambda) = (\lambda - 1)^n + (-1)^n (\lambda - 1)$ 1 + (1+2) + 4
 - b) i) Define planar graph. State and prove Euler's theorem for a connected planar graph.
 - ii) If G is connected planar graph with $n(\ge 3)$ vertices and e edges, then prove that $e \le 3n-6$. Also, show that a simple connected planar graph with 6 vertices and 12 edges, each of the face is bounded by 3 edges. 4+4

[Internal Marks - 05]