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ABSTRACT
Finding cliques and clique covers in graphs are one of the most needful tasks. In this paper, interval-valued fuzzy cliques (IVFQs)
and interval-valued fuzzy clique covers (IVFQCs) of an interval-valued fuzzy graph (IVFG) are introduced by introducing the
fuzziness because, the crisp graphs has some limitations in real world due to uncertainty of vagueness. Here, the concept of
cliques and clique covers are slightly modified so that every IVFQ is complete. Also, a clique cover of a crisp graph always covers
all the edges and vertices of the graph whereas, the IVFQCs obtained by fuzzify to the clique covers does not satisfy the property.
Hence, the definition is modified and studied some theorems on it. To better understand the useability of this work a model
application is stated in this paper.
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1. INTRODUCTION

In our real life situations, we see that some objects are related by
some relations. For example, in a city, places are connected by trum
ways. There may have a problem to construct the transportation
roads so that there is minimum number of ways to move from one
place to another place. These type of problems can easily be handled
by considering the objects as nodes (or, vertices) and trum ways are
the links (or, edges). This one-to-one representation is called the
graph. The concept of graph theory was first introduced by Euler in
his paper “Seven bridges of Königsberg” (1736). A suitable mathe-
matical model is needed when fuzziness arises in the kind of objects
or that in the relationship among the objects. Rosenfeld [1]first
developed the crisp graph to fuzzy graph by introducing fuzzy rela-
tion in fuzzy sets which was first introduced by Zadeh [2]. Since
then, researchers are delve into field of fuzzy graph theory and many
of the real phenomena has been expressed in terms of fuzzy model
(see [3]). Thus the field of fuzzy graph theory is flourishing it can
handle the vaguenesses in real-world. Several real-world problems
like human cardiac function, fuzzy neural network, routing prob-
lem, traffic light problem, time table scheduling, etc. can be nicely
expressed using fuzzy graph model.

After Rosenfeld, fuzzy graph theory developed with many varia-
tions in fuzziness. In 1971, Zadeh [4] introduced the concept of
interval-valued fuzzy sets (IVFSs) to generalize the fuzzy sets [2]
in which the membership function describes to return interval
numbers instead of classical numbers. It is more strong enough
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to consider the uncertainty cases than the traditional fuzzy sets as
interval numbers are considered instead of classical numbers. The
interval-valued fuzzy graph (IVFG) theory studies the generalized
class of fuzzy graphs with IVFSs with interval-valued fuzzy rela-
tions. Therefore, it has more area of applications such as fuzzy con-
trol, approximate reasoning, medical diagnosis, intelligent control,
multivated logic, etc. Talebi and Rashmanlou [5] studied isomor-
phism on IVFG. Several theorems and the properties of Complete
IVFGs are studied by Rashmanlou and Jun in their literature [6].
Pal and Rashmanlou [7] have studied another variation of IVFG
namely, irregular IVFG in which the adjacent vertices have distinct
degrees. Antipodal IVFG is an another classification of IVFG which
is introduced by Rashmanlou and Pal [8]. They also have defined
a new type of IVFG – Balanced IVFG in the literature [9]. Bipolar
fuzzy graphs are studied by Rashmanlou et al. [10]. Pramanik et al.
[11] have extended the fuzzy competition graph to a bipolar fuzzy
competition graph so that it can solve several real-world problems.
Samanta et al. [12] have represented and analyzed the competitions
among the participants in social networks. Pramanik et al. [13] have
introduced the fuzzy𝜙-tolerance competition graphs. In 2016, con-
cept of planarity is first introduced in IVFG by Pramanik et al. [14].
In this year, they also have extended the idea of fuzzy 𝜙-tolerance
competition graphs in IVFGs [15]. They also have considered cer-
tain threshold in each of fuzzy vertices and introduced interval-
valued fuzzy threshold graph [16]. Bipolar fuzzy planar graphs have
been extensively studied by Pramanik et al. [17] in 2018. They have
shown its uses in image shrinking with an arbitrary graph model.
In 2020, fuzzy competition graphs have been extended by Pra-
manik et al. [11] and given an idea of application to manufacturing
industries. In literature [18], a new type of measurements in IVFGs
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Figure 1 An example of communication network consisting of cliques.

are introduced by Pramanik et al. Several algorithmic approach to
find the fuzzy shortest path in an interval-valued fuzzy hypergraphs
is presented by Pramanik and Pal [19]. Also, the all-pairs shortest
path problem for general network is investigated in [20]. For further
definitions, terminologies and applications the reader may read the
newly published book by Pal et al. [21]. For more details of fuzzy
graphs, look in [1,22–29].

In today’s communication networks, one person has friends (or
buddies) and it is assumed that each friend in his friend list is known
to each other. This type of network in graph modelling is called
the clique (See Figure 1). The maximal clique is a clique with no
proper subset which is also a clique. The maximal clique with max-
imum number of nodes (vertices) is the maximum clique. In many
problems such as circuit design, transprotation, human brain anal-
ysis, artificial intelligence etc., it is an important task to find the set
of maximum number of nodes (vertices) each of which are related
to each other. Motivating from this idea, IVFQs and IVFQCs of
IVFGs are studied in this article. It is also known that, if all the
vertices of any subgraph of a graph forms a clique, then the sub-
graph is complete. But this conceptual phenomena is not intact in
fuzzy graph according to the definition of fuzzy cliques introduced
by Nair and Cheng [30]. In this paper, we have modified the defi-
nition of IVFQ and IVFQC given by Nair and Cheng and found a
new dimension of work. We have built a connection between crisp
concept and interval-valued fuzzy concept. The definition of fuzzy
clique is modified so that every complete fuzzy subgraph is a fuzzy
clique and then the fuzzy cliques and fuzzy clique covers are gener-
alized for IVFGs.

Definition of the problem

In this paper, IVFQs and IVFQCs of an IVFG are introduced here.
The concept of cliques and clique covers are modified to show that
every IVFQ is complete. Also, a clique cover of a crisp graph always

Table 1 Contribution of different authors towards generalized
fuzzy competition graphs.
Authors Year Contributions
Kauffman [31] 1973 Fuzzy graphs and its several

properties are introduced.
Rosenfeld [1] 1975 Notion of fuzzy graphs intro-

duced by Kauffman [31] are
modified. He added a con-
straint that edge membership
value is less than minimum
of vertex membership values.

Nair and Cheng [30] 2001 Defined fuzzy cliques.
Akram and Dudeket
al. [32]

2011 Introduction of IVFGs.

Anjali and Mathew
[22]

2015 Blocks in fuzzy graphs are
discussed.

This paper – Defined fuzzy cliques in an
IVFGs.

IVFG, interval-valued fuzzy graph.

covers all the edges and vertices of the graph whereas, the IVFQCs
obtained. Hence, the definition is modified and studied some the-
orems on it.

2. PRELIMINARIES

A graph Z = (U,T) includes a set denoted by U, or by U(Z) and a
collection T, or T(Z), of un-ordered pair (u, v) of elements from the
set U. Each element of U is called a vertex, and each element of T is
called an edge.

An edge that connects vertices vi and vj in U is denoted by
(vi, vj). Two vertices vi and vj in U are adjacent if (vi, vj) ∈ T.
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A walk in Z is a sequence of vertices and edges of the
form v1, (v1, v2), v2, (v2, v3), … , (vn−1, vn), vn which is denoted by
v1v2v3 ⋯ vn. A path is a walk where none of the vertices is repeated.
The walk where v1 = vn(n ≥ 3) and vi ≠ vj for any i, j ∈ n − 1 is
called cycle. The length of a path or a cycle is the number of its edges.

In a crisp graph J, a set of pairwise adjacent vertices is a clique. A
clique is said to be a maximal clique if the set consisting of the clique
is not a subset of any other clique set.

A clique cover of a graph J is a clique induced by all the vertices of
the graph J. The minimum number of cliques in a graph J required
to cover the graph J is called the clique cover number and is denoted
by cc(J).

The union of two graphs Z = (UZ,TZ) and H = (UH,TH) is the
graph Z ∪H = (UZ ∪ UH,TZ ∪ TH).

A fuzzy set P on a set L is defined by a function P ∶ L → [0, 1]
and the function is called membership function. The mapping R ∶
L×M → [0, 1] is said to be fuzzy relation. For any two fuzzy sets Q
and R on L, Q is said to be the fuzzy subset of R i.e., Q is included
in R, denoted by Q ⊆ R, if and only if Q(p) ≤ R(p) for all p ∈ P.

A family of fuzzy sets is denoted by  (L) defined on L and  (L×M)
be the family of fuzzy relations defined on L ×M.

Let us consider a fuzzy set 𝜎 and a fuzzy relation 𝜇 be such that
𝜇 ≤ 𝜎(u) ∧ 𝜎(v) for all u, v ∈ U. Then the tuple J = (U, 𝜎, 𝜇) is
called the fuzzy graph. The fuzzy set 𝜎 is called the fuzzy vertex set
of J and the fuzzy relation 𝜇 is called the fuzzy edge set of J.

When the fuzzy relation 𝜇 is symmetric then the fuzzy graph is said
to be undirected fuzzy graph otherwise the fuzzy graph is said to be
directed.

Throughout this paper, undirected fuzzy graphs are considered and
also there is no loops i.e., 𝜇(u, u) = 0 for all u ∈ U.

The crisp graph J∗ = (U, 𝜎∗, 𝜇∗), where 𝜎∗ = {u ∈ U ∶ 𝜎(u) > 0}
and 𝜇∗ = {(u, v) ∈ U × U ∶ 𝜇(u, v) > 0}.

Let us consider a mapping 𝜇𝒬 ∶ L → [0, 1] × [0, 1] then the fuzzy
set 𝜇𝒬 on L is said to be the IVFS if and only if 𝜇−

𝒬(u) ≤ 𝜇+
𝒬(u)where

𝜇𝒬(u) = [𝜇−
𝒬(u), 𝜇

+
𝒬(u)] for all u ∈ L.

Let  =
{
𝒬1,𝒬2,⋯ ,𝒬n

}
be a finite family of interval-valued fuzzy

subsets on a set L. The fuzzy intersection of two IVFSs 𝒬1 and 𝒬2 is
an IVFS defined by

𝒬1 ∩ 𝒬2 =
{(

u,
[

min
{
𝜇−
𝒬1
(u), 𝜇−

𝒬2
(u)

}
,

min
{
𝜇+
𝒬1
(u), 𝜇+

𝒬2
(u)

}])
∶ u ∈ L

}
.

Let  =
{
𝒬1,𝒬2,⋯ ,𝒬n

}
be the finite collection of IVFSs on a set

L. The fuzzy intersection of two IVFSs𝒬1 and𝒬2 is an IVFS defined
by

𝒬1 ∩ 𝒬2 =
{(

u,
[

max
{
𝜇−
𝒬1
(u), 𝜇−

𝒬2
(u)

}
,

max
{
𝜇+
𝒬1
(u), 𝜇+

𝒬2
(u)

}])
∶ u ∈ L

}
.

Let 𝒬 =
{
[𝜇−

𝒬(u), 𝜇
+
𝒬(u)] ∶ u ∈ U

}
be a fuzzy set and  ={

[𝜇−(u, v), 𝜇+(u, v)] ∶ (u, v) ∈ U × U
}

defined on U together

forms an IVGF. Here the fuzzy set 𝒬 is said to be the interval-
valued fuzzy vertex set (IVFVS) and the fuzzy set  is said to be
the interval-valued fuzzy edge set (IVFES) of the IVFG. An edge
(u, v), u, v ∈ U in an IVFG is said to be interval-valued strong if
I−(u,v) = 𝜇−(u,v)

min{𝜇−
𝒬 (u),𝜇

−
𝒬 (v)}

≥ 0.5 and I+(u,v) = 𝜇+(u,v)
min{𝜇+

𝒬 (u),𝜇
+
𝒬 (v)}

≥ 0.5
otherwise the edge is called interval-valued weak. The strength of
an edge (u, v) is assumed by I(u,v) = [I−(u,v), I

+
(u,v)]. An edge is said

to be nontrivial if I−(u,v) > 0. An IVFG 𝒵 = (U,𝒬,) is said
to be an interval-valued fuzzy strong graph if and only if I−(u,v) =

𝜇−(u,v)
min{𝜇−

𝒬 (u),𝜇
−
𝒬 (v)}

≥ 0.5 and I+(u,v) =
𝜇+(u,v)

min{𝜇+
𝒬 (u),𝜇

+
𝒬 (v)}

≥ 0.5, ∀ (u, v) ∈
U × U.

The underlying graph of the IVFG 𝒵 = (U,𝒬,) is the crisp graph
𝒵 ∗ = (U,𝒬∗,∗), where 𝒬∗ =

{
u ∈ U ∶ 𝜇−

𝒬(u) > 0
}

and ∗ ={
(u, v) ∈ U × U ∶ 𝜇−(u, v) > 0

}
. An interval-valued fuzzy digraph

(IVFDG) ⃖⃖⃖⃗𝒵 = (U,𝒬, ⃖⃖⃗) is an IVFG where the fuzzy relation ⃖⃖⃗ is
antisymmetric.

An IVFG Z = (U,𝒬,) is said to be complete IVFG if 𝜇−(u, v) =
min

{
𝜇−
𝒬(u), 𝜇

−
𝒬(v)

}
and 𝜇+(u, v) = min

{
𝜇+
𝒬(u), 𝜇

+
𝒬(v)

}
, ∀u, v ∈

U. An IVFG is said to be bipartite if the vertex set U can be parti-
tioned into two sets U1 and U2 such that 𝜇+(u, v) = 0 if u, v ∈ U1
or u, v ∈ U2 and 𝜇+(v1, v2) > 0 if v1 ∈ U1 (or U2) and v2 ∈ U2 (or
U1).

An IVFG  = (U′,𝒬′,′) is called an interval-valued fuzzy sub-
graph (IVFSG) of the IVFG𝒵 = (U,𝒬,) induced byU′ ifU′ ⊆ U,
𝜇−
𝒬′ (u) = 𝜇−

𝒬(u) and 𝜇+
𝒬′ (u) = 𝜇+

𝒬(u) for all u ∈ U′ and 𝜇−′ (u, v) =
𝜇−(u, v) and 𝜇+′ (u, v) = 𝜇+(u, v) for all u, v ∈ U′.

An IVFSG  = (U′,𝒬′,′) induced by 𝒬′ is the maximal IVFSG
of 𝒵 = (U,𝒬,) which has the IVFVS 𝒬′ and the IVFES ′ be
such that 𝜇−′ (u, v) = 𝜇−

𝒬′ (u) ∧ 𝜇−
𝒬′ (v) ∧ 𝜇−(u, v) and 𝜇+′ (u, v) =

𝜇+
𝒬′ (u) ∧ 𝜇+

𝒬′ (v) ∧ 𝜇+(u, v) for all u, v ∈ U.

An IVFG is called an interval-valued fuzzy cycle (IVFC) if and only
if it contains more than one weakest edge (i.e., there is no unique
(u, v) ∈ ∗ such that 𝜇−(u, v) = ∧

{
𝜇−(u, v) | (u, v) ∈ ∗}) and is

a cycle.

An IVFSG IVFSG  =
(
U′,𝒬′,′) is 𝒵 = (U,𝒬,) is an

IVFQ if ∗ is a clique and each cycle in  is an IVFC.

2.1. Some Definitions

Definition 1. (Interval-valued c-strong edge) Let c be a real num-
ber. An edge (u, v), u, v ∈ U in an IVFG is said to be interval-valued
c-strong if

I−(u,v) =
𝜇−(u, v)

min
{
𝜇−
𝒬(u), 𝜇

−
𝒬(v)

} ≥ c and I+(u,v) =
𝜇+(u, v)

min
{
𝜇+
𝒬(u), 𝜇

+
𝒬(v)

} ≥ c.

Since, in an IVFG, 𝜇−(u, v) ≤ min
{
𝜇−
𝒬(u), 𝜇

−
𝒬(v)

}
and 𝜇+(u, v) ≤

min
{
𝜇+
𝒬(u), 𝜇

+
𝒬(v)

}
then, 𝜇−(u,v)

min{𝜇−
𝒬 (u),𝜇

−
𝒬 (v)}

≤ 1 and 𝜇+(u,v)
min{𝜇+

𝒬 (u),𝜇
+
𝒬 (v)}

≤
1. Therefore, c can take at most the value 1.

Definition 2. (Perfect interval-valued fuzzy strong graph) If in an
IVFG every edge is interval-valued 1-strong then the graph is called
the perfect interval-valued fuzzy strong graph.
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Table 2 Membership values for the fuzzy edges of the graph 𝒵 = (U,𝒬,) of Example 1.

e ∈ U × U (v1, v2) (v1, v3) (v1, v4) (v1, v5) (v2, v3) (v2, v4) (v2, v5)
𝜇(e) [0.5, 0.6] [0.5, 0.6] [0.6, 0.7] [0.5, 0.6] [0.8, 0.9] [0.6, 0.7] [0.5, 0.6]

e ∈ U × U (v3, v4) (v3, v5) (v4, v5)
𝜇(e) [0.7, 0.8] [0.5, 0.6] [0.5, 0.6]

Figure 2 An example of a fuzzy graph 𝒵 = (U,𝒬,).

Definition 3. (t-cut graph of an IVFG) Let 𝒵 = (U,𝒬,) be an
IVFG. Then for any threshold t ∈ [0, 1], the t-cut graph of the IVFG
𝒵 is a crisp graph 𝒵t = (𝒬t,t) where 𝒬t =

{
u ∈ U ∶ 𝜇−

𝒬(u) ≥ t
}

is the vertex set and t =
{
(u, v) ∈ U × U ∶ 𝜇−(u, v) ≥ t

}
is the

edge set of 𝒵t.

2.2. IVFQs in IVFGs

In graph theory, a clique induces a complete subgraph. However,
the IVFSG induced by an IVFQ may not be complete.

Example 1.

Consider the IVFG𝒵 = (U,𝒬,)whereU =
{
v1, v2, v3, v4, v5

}
be

the vertex set and 𝒬 being the IVFS on U with 𝜇𝒬(v1) = 𝜇𝒬(v2) =
𝜇𝒬(v3) = 𝜇𝒬(v4) = 𝜇𝒬(v5) = [1, 1] and  being the interval-valued
fuzzy relation on the set U × U whose definition is given in the
Table 2:

The diagrammatical representation of this graph is shown in
Figure 2. The IVFSG induced by an interval-valued fuzzy subset
𝒬′ =

{
v1[0.7, 0.8], v2[1, 1], v3[0.7, 0.8], v4[0.8, 0.9], v5[0.6, 0.7]

}
.

The diagrammatical representation of this graph is shown in
Figure 3. Obviously, this is not a complete IVFSG.

Now, definition of IVFQ should be so modified that the IVFSG
induced by each fuzzy clique is complete. This complete IVFQ is
known as complete IVFQ.

Definition 4. (Complete IVFQ) In an IVFG 𝒵 = (U,𝒬,), a
subset 𝒬′ of 𝒬 is called a complete IVFQ if the fuzzy subgraph
induced by 𝒬′is a complete IVFG.

Now, we see an example of a complete IVFQ as a subgraph of the
graph shown in Figure 2.

Example 2.

Consider an IVFSG of the graph in Example 1 induced by 𝒬′

=
{
v1[0.7, 0.8] , v2[0.8, 0.9], v3[0.5, 0.6], v4[0.6, 0.7], v5[0.5, 0.6]

}
which is shown in Figure 4. This graph is a complete IVFG and
hence the interval-valued fuzzy subset 𝒬′ of 𝒬 is a complete IVFQ.

Theorem 1. Each complete IVFSG is an IVFQ.

Proof. Let  = (U,𝒬′,′) be a complete IVFSG of the
graph 𝒵 = (U,𝒬,). Since  is complete then, 𝜇−(u, v) =
min

{
𝜇−
𝒬(u), 𝜇

−
𝒬(v)

}
and 𝜇+(u, v) = min

{
𝜇+
𝒬(u), 𝜇

+
𝒬(v)

}
, ∀u, v ∈

U. This shows that if 𝜇−
𝒬(u), 𝜇

−
𝒬(v), 𝜇

+
𝒬(u), 𝜇

+
𝒬(v) > 0 then

𝜇−(u, v), 𝜇+(u, v) > 0. Then the crisp graph ∗ is complete and
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Figure 3 An interval-valued fuzzy subgraph (IVFSG) which is fuzzy clique but not
complete.

Figure 4 An example of a complete interval-valued fuzzy cliques (IVFQ) of the
graph of Figure 2.

therefore, for any cycle v1v2v3v1 (v1, v2, v3 ∈ 𝒬∗) of length 3 in ,

𝜇−(v1, v2) = min
{
𝜇−
𝒬(v1), 𝜇−

𝒬(v2)
}

(1)

𝜇−(v2, v3) = min
{
𝜇−
𝒬(v2), 𝜇−

𝒬(v3)
}

(2)

𝜇−(v3, v1) = min
{
𝜇−
𝒬(v3), 𝜇−

𝒬(v1)
}

(3)

Now, without any loss of generality, suppose that 𝜇−
𝒬(v1) =

min
{
𝜇−
𝒬(v1), 𝜇−

𝒬(v2), 𝜇−
𝒬(v3)

}
Then from (1), (3) we have, 𝜇−(v1, v2) = 𝜇−

𝒬(v1) =
min

{
𝜇−
𝒬(v3), 𝜇−

𝒬(v1)
}

. This shows that the graph  has more than
one weakest edges. Therefore, every cycle of length 3 is an IVFC.
Hence,  is an IVFQ. ■

Corollary 1. The IVFSG induced by a complete IVFQ is an IVFQ.



6 N. Patra et al. / International Journal of Computational Intelligence Systems, in press

Proof. By the definition of complete IVFQ we have the IVFSG
induced by a complete IVFQ is complete. Then by Theorem 1, it is
an IVFQ. ■

Theorem 2. If IVFQ is a perfect interval-valued fuzzy strong then
it is complete.

Proof. Let  = (U,𝒬,) be an IVFQ as well as perfect interval-
valued fuzzy strong graph. Since,  is an IVFQ then, ∗ is a
clique. Then for any u, v ∈ 𝒬∗, (u, v) ∈ ∗. Again  is per-
fect interval-valued fuzzy strong then it follows that 𝜇−(u, v) =
min

{
𝜇−
𝒬(u), 𝜇

−
𝒬(v)

}
, ∀ (u, v) ∈ ∗. Therefore, 𝜇−(u, v) =

min
{
𝜇−
𝒬(u), 𝜇

−
𝒬(v)

}
, ∀ u, v ∈ 𝒬∗. Hence, the IVFQ is complete. ■

Theorem 3. In an IVFG 𝒵 = (U,𝒬,), a subset 𝒬′ of 𝒬 is a
complete IVFQ if and only if 𝜇−(u, v) ≥ min

{
𝜇−
𝒬′ (u), 𝜇−

𝒬′ (v)
}

and
𝜇+(u, v) ≥ min

{
𝜇+
𝒬′ (u), 𝜇+

𝒬′ (v)
}
∀ u, v ∈ 𝒬∗ and u ≠ v.

Proof. First consider that𝒬′ is a complete IVFQ in𝒵 = (U,𝒬,)
and  = (U,𝒬′,′) is the IVFSG induced by 𝒬′. By Corollary
1,  is a complete IVFSG. Then, we have min

{
𝜇−
𝒬′ (u), 𝜇−

𝒬′ (v)
}
=

𝜇−′ (u, v) = min
{
𝜇−
𝒬′ (u), 𝜇−

𝒬′ (v), 𝜇−(u, v)
} ≤ 𝜇− (u, v) for

all u, v ∈ 𝒬∗ and min
{
𝜇+
𝒬′ (u), 𝜇+

𝒬′ (v)
}

= 𝜇+′ (u, v) =
min

{
𝜇+
𝒬′ (u), 𝜇+

𝒬′ (v), 𝜇+(u, v)
} ≤ 𝜇+ (u, v) for all u, v ∈ 𝒬∗ and

u ≠ v.

Conversely, consider that 𝒬′ is a subset of 𝒬 such
that 𝜇−(u, v) ≥ min

{
𝜇−
𝒬′ (u), 𝜇−

𝒬′ (v)
}

and 𝜇+(u, v) ≥
min

{
𝜇+
𝒬′ (u), 𝜇+

𝒬′ (v)
}

∀ u, v ∈ 𝒬∗ and u ≠ v. Since = (U,𝒬′,′) is the IVFSG induced by 𝒬′, we have 𝜇−′ (u, v) =
min

{
𝜇−
𝒬′ (u), 𝜇−

𝒬′ (v), 𝜇−(u, v)
}

= min
{
𝜇−
𝒬′ (u),

}
𝜇−
𝒬′ (v)

and 𝜇+′ (u, v) = min
{
𝜇+
𝒬′ (u), 𝜇+

𝒬′ (v), 𝜇+(u, v)
}

=
min

{
𝜇+
𝒬′ (u), 𝜇+

𝒬′ (v)
}
∀u, v ∈ 𝒬∗ and u ≠ v. Hence,  is complete

IVFSG of the graph 𝒵 . ■

The following corollaries are two consequences of Theorem 3.

Corollary 2. 𝒬′ be a complete IVFQ in 𝒵 = (U,𝒬,). Then for
each t ∈ (0, 1], 𝒬′

t is a clique in 𝒵t.

Proof. Since, 𝒬′ is a complete IVFQ in 𝒵 , then from Theorem 3,
we have 𝜇−(u, v) ≥ min

{
𝜇−
𝒬′ (u), 𝜇−

𝒬′ (v)
}

and 𝜇+(u, v) ≥
min

{
𝜇+
𝒬′ (u), 𝜇+

𝒬′ (v)
}

∀ u, v ∈ 𝒬∗ and u ≠ v. For each t ∈
(0, 1], 𝒬′

t =
{
u ∈ U ∶ 𝜇−

𝒬′ (u) ≥ t
}

which implies that 𝜇−(u, v) ≥
min

{
𝜇−
𝒬′ (u), 𝜇−

𝒬′ (v)
} ≥ t. Therefore (u, v) ∈ t. Hence 𝒬′

t is a
clique in 𝒵t. ■

Corollary 3. Let 𝒬′ be a complete IVFQ in 𝒵 = (U,𝒬,). Then
each nonempty subset 𝒬′′ of 𝒬′ is a complete IVFQ in 𝒵 .

Proof. This is immediate from Theorem 3 since, 𝜇−
𝒬′′ (u) ≤ 𝜇−

𝒬′ (u)
and 𝜇+

𝒬′′ (u) ≤ 𝜇+
𝒬′ (u) ∀u ∈ U. ■

In the following, we shall give another characterization of a com-
plete IVFQ. For an IVFG 𝒵 = (U,𝒬,), define an n × n interval-
valued fuzzy matrix M𝒵 by

(M𝒵 )ij =

{[
𝜇−
𝒬(vi), 𝜇

+
𝒬(vi)

]
, i = j[

𝜇−(vi, vj), 𝜇+(vi, vj)
]
, i ≠ j.

For a subset 𝒬′ of 𝒬 of the IVFG 𝒵 = (U,𝒬,), define an n × 1
interval-valued fuzzy vector U𝒬 by

(
U𝒬

)
=

{
[𝜇−

𝒬′ (vi), 𝜇+
𝒬′ (vi)], vi ∈ (𝒬′)∗,

[0, 0] , vi ∉ (𝒬′)∗

Let 𝜒𝒵 =

⎧⎪⎪⎨⎪⎪⎩
 =

⎛⎜⎜⎜⎜⎝

[
u1, v1

][
u2, v2

]
⋮[

un, vn
]
⎞⎟⎟⎟⎟⎠
∶ ui, vi ∈ [0, 1](i = 1, 2,… , n)

and⊙ T ≤ M𝒵

⎫⎪⎪⎬⎪⎪⎭
.

Then we have the follwing theorem.

Theorem 4. If 𝒬′ be a complete IVFQ of an IVFG 𝒵 = (U,𝒬,),

then U𝒬′ ∈ 𝜒𝒵 . Conversely, for any  =

⎛⎜⎜⎜⎜⎝

[
u1, v1

][
u2, v2

]
⋮[

un, vn
]
⎞⎟⎟⎟⎟⎠
∈ 𝜒𝒵 , the

IVFS 𝒬′ with 𝜇−
𝒬′ (vi) = ui and 𝜇+

𝒬′ (vi) = vi for all i ∈ n is a
complete IVFQ.

Proof. Let 𝒬′ be a complete IVFQ in 𝒵 . Then from
Theorem 3 it follows that (U𝒬′ ⊙ UT

𝒬′ )ij = min
{
(U𝒬′ )i, (U𝒬′ )j

}
= [min

{
𝜇−
𝒬′ (vi), 𝜇−

𝒬′ (vj)
}

, min
{
𝜇+
𝒬′ (vi), 𝜇+

𝒬′ (vj)
}
] ≤ [𝜇−(vi, vj),

𝜇+(vi, vj)] (M𝒵 )ij for any i, j ∈ n with i ≠ j and (U𝒬′⊙
UT

𝒬′ )ii = min
{
(U𝒬′ )i , (U𝒬′ )i

}
= [min

{
𝜇−
𝒬′ (vi), 𝜇−

𝒬′ (vi)
}

,
min

{
𝜇+
𝒬′ (vi), 𝜇+

𝒬′ (vi)
}
] ≤ [𝜇−(vi, vi), 𝜇+(vi, vi)] = (M𝒵 )ii for any

i ∈ n. Therefore, U𝒬′ ∈ 𝜒𝒵 .

Conversely, let  =

⎛⎜⎜⎜⎜⎝

[
u1, v1

][
u2, v2

]
⋮[

un, vn
]
⎞⎟⎟⎟⎟⎠
∈ 𝜒𝒵 and an IVFS 𝒬′ be such that

𝜇−
𝒬′ (vi) = ui and 𝜇+

𝒬′ (vi) = vi ∀i ∈ n. Since, 𝜇𝒬′ (vi) = [ui, vi] ≤
(M𝒵 )ii = 𝜇𝒬(vi) for all i ∈ n, we have 𝒬′ ⊆ 𝒬. Then from
Theorem 3,𝒬′ is a complete IVFQ. Hence the result follows. ■

The following example illustrates Theorem 4.

Example 3.

Let us consider the IVFG 𝒵 = (U,𝒬,) and the complete IVFQ
𝒬′ in Example 2. Then we have

M𝒵 =

⎛⎜⎜⎜⎜⎝
[1, 1] [0.8, 0.9] [0.5, 0.6] [0.6, 0.7] [0.5, 0.6]
[0.8, 0.9] [1, 1] [0.8, 0.9] [0.6, 0.7] [0.5, 0.6]
[0.5, 0.6] [0.8, 0.9] [1, 1] [0.7, 0.8] [0.5, 0.6]
[0.6, 0.7] [0.6, 0.7] [0.7, 0.8] [1, 1] [0.5, 0.6]
[0.5, 0.6] [0.5, 0.6] [0.5, 0.6] [0.5, 0.6] [1, 1]

⎞⎟⎟⎟⎟⎠

and U𝒬′ =

⎛⎜⎜⎜⎜⎝
[0.7, 0.8]
[0.8, 0.9]
[0.5, 0.6]
[0.6, 0.7]
[0.5, 0.6]

⎞⎟⎟⎟⎟⎠
. Then it can be easily verified that
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U𝒬′ ⊙ (U𝒬′ )T =

⎛⎜⎜⎜⎜⎝
[0.7, 0.8] [0.7, 0.8] [0.5, 0.6] [0.6, 0.7] [0.5, 0.6]
[0.7, 0.8] [0.8, 0.9] [0.5, 0.6] [0.6, 0.7] [0.5, 0.6]
[0.5, 0.6] [0.5, 0.6] [0.5, 0.6] [0.5, 0.6] [0.5, 0.6]
[0.6, 0.7] [0.6, 0.7] [0.5, 0.6] [0.6, 0.7] [0.5, 0.6]
[0.5, 0.6] [0.5, 0.6] [0.5, 0.6] [0.5, 0.6] [0.5, 0.6]

⎞⎟⎟⎟⎟⎠
≤M𝒵 .

This shows that U𝒬′ ∈ 𝜒𝒵 .

Corollary 3 states that every nonempty subset of a complete IVFQ
is complete IVFQ. This gives a clue of having maximal and maxi-
mum complete IVFQ. Now, we give the definitions of maximal and
maximum complete IVFQ.

Definition 5. (Maximal and maximum complete IVFQ) A com-
plete IVFQ 𝒬′′ in an IVFG 𝒵 = (U,𝒬,) is said to be maximal
if there is no complete IVFQ 𝒬′ in 𝒵 such that 𝒬′′ ⊂ 𝒬′. A maxi-
mal complete IVFQ 𝒬′′ is maximum if it posses the largest possible
cardinality of the crisp set (𝒬′′)∗.

Using Theorem 4, we can characterize the maximal complete
IVFQs.

Theorem 5. In an IVFG 𝒵 = (U,𝒬,), an interval-valued fuzzy
subset 𝒬′′ of 𝒬 is a maximal complete IVFQ if and only if U𝒬′′ is
a maximal element in 𝜒𝒵 .

Proof. By Theorem 4, 𝒬′′ is a complete IVFQ if and only if U𝒬′′ ∈
𝜒𝒵 . Furthermore, if𝒬′′ is maximal, thenU𝒬′′ is maximal in𝜒𝒵 and
vice-versa. Hence, the result follows. ■

Theorem 6. Let 𝒬′ be a maximal complete IVFQ in 𝒵 =
(U,𝒬,). Then

⋀
u∈(𝒬′)∗

𝜇−
𝒬′ (u) =

⋀
v,z∈(𝒬′)∗

𝜇−(v, z).

Proof. Let us consider that the set 𝒬′ is a complete IVFQ in the
IVFG 𝒵 = (U,𝒬,). Then by Theorem 3, we have 𝜇−(u, v) ≥
min

{
𝜇−
𝒬′ (u), 𝜇−

𝒬′ (v)
}

and 𝜇+(u, v) ≥ min
{
𝜇+
𝒬′ (u), 𝜇+

𝒬′ (v)
}

for any
u, v ∈ (𝒬′)∗. Therefore,

⋀
u∈(𝒬′)∗

𝜇−
𝒬′ (u) ≤ ⋀

v,z∈(𝒬′)∗
𝜇−(v, z). Let

𝜇−
𝒬′

(
vk
)

=
⋀

u∈(𝒬′)∗
𝜇−
𝒬′ (u) and 𝜇−

(
vi, vj

)
=

⋀
v,z∈(𝒬′)∗

𝜇−(v, z) and

𝜇+
𝒬′

(
vk
)
=

⋀
u∈(𝒬′)∗

𝜇+
𝒬′ (u) and 𝜇+

(
vi, vj

)
=

⋀
v,z∈(𝒬′)∗

𝜇+(v, z). Now,

we prove that 𝜇−
𝒬′ (vk) = 𝜇−(vi, vj) and the similar proof can be

shown for 𝜇+
𝒬′ (vk) = 𝜇+(vi, vj). If possible let 𝜇−

𝒬′ (vk) ≠ 𝜇−(vi, vj).
Then, 𝜇−

𝒬′ (vk) < 𝜇−(vi, vj) as the other case 𝜇−
𝒬′ (vk) > 𝜇−(vi, vj)

does not hold in the fuzzy graph. Now, define an IVFS 𝒬′′ such
that 𝜇−

𝒬′′ (u) = 𝜇−
𝒬′ (u), ∀u(≠ vk) ∈ U and 𝜇−

𝒬′′ (vk) = 𝜇−(vi, vj).
Then it is obvious that 𝒬′ ⊂ 𝒬′′ ⊆ 𝒬, since, 𝜇−

𝒬′′ (vk) = 𝜇(vi, vj)⋀
v,z∈(𝒬′)∗

𝜇−(v, z) ≤ 𝜇−(vk, z) ≤ 𝜇−
𝒬(vk) ∧𝜇

−
𝒬(z) ≤ 𝜇−

𝒬(vk) for any

z ∈ (𝒬′)∗. Now, it is to be shown that 𝒬′′ is a complete IVFQ,
i.e., 𝜇−

𝒬′′ (v) ∧ 𝜇−
𝒬′′ (z) ≤ 𝜇−(v, z) for any v, z ∈ (𝒬′)∗. For all

v, z ∈ U with v ≠ vk, z ≠ vk, 𝜇−
𝒬′′ (v) ∧ 𝜇−

𝒬′′ (z) = 𝜇−
𝒬′ (v) ∧

𝜇−
𝒬′ (z) ≤ 𝜇−(v, z). Otherwise, without any loss of generality, let,

vk = v, then 𝜇−
𝒬′′ (v)∧ 𝜇−

𝒬′′ (z) = 𝜇−
𝒬′ (vk)∧ 𝜇−

𝒬′ (z) 𝜇−(vi, vj)∧ 𝜇−
𝒬′ (z)

≤ 𝜇−(vi, vj)
⋀

u,v∈(𝒬′)∗
𝜇−(u, v) ≤ 𝜇−(v, z). Therefore, 𝒬′′ is a com-

plete IVFQ, which contradicts the assumption that 𝒬′ is maxi-
mal. Thus

⋀
u∈(𝒬′)∗

𝜇−
𝒬′ (u) =

⋀
v,z∈(𝒬′)∗

𝜇−(v, z) and hence the result

follows. ■

Corollary 4. Let 𝒬′ be a maximal complete IVFQ in the IVFG
𝒵 = (U,𝒬,) and  = (U,𝒬′,′) be the IVFSG induced by 𝒬′

and
⋀

u,v∈(𝒬′)∗
𝜇(u, v) = 𝜇

(
vi, vj

)
. Then 𝜇′ (vi, vj) = 𝜇(vi, vj).

Proof. Since,  is an IVFSG then it is obvious that,
𝜇−′ (vi, vj) ≤ 𝜇−(vi, vj) and 𝜇+′ (vi, vj) ≤ 𝜇+(vi, vj). We show
that, 𝜇−′ (vi, vj) ≮ 𝜇−(vi, vj) and 𝜇+′ (vi, vj) ≮ 𝜇+(vi, vj).
If possible let, 𝜇−′ (vi, vj) < 𝜇−(vi, vj), then 𝜇−′ (vi, vj)
= 𝜇−

𝒬′ (vi) ∧ 𝜇−
𝒬′ (vj) < 𝜇−(vi, vj). Therefore,

⋀
u∈(𝒬′)∗

𝜇−
𝒬′ (u) ≤

𝜇−
𝒬′

(
vi
)
∧ 𝜇−

𝒬′

(
vj
)

< 𝜇
(
vi, vj

)
=

⋀
u,v∈(𝒬′)∗

𝜇−(u, v), which

contradicts Theorem 6. Therefore, 𝜇−′ (vi, vj) = 𝜇−(vi, vj) and
similarly it can be shown that 𝜇+′ (vi, vj) = 𝜇+(vi, vj). Hence
𝜇′ (vi, vj) = 𝜇(vi, vj). ■

Theorem 7. Let 𝒬′ be a maximal complete IVFQ in 𝒵 =
(U,𝒬,). Then there is at least one u ∈ (𝒬′)∗ such that 𝜇𝒬′ (u) =
𝜇𝒬(u). ■

Proof. Let 𝒬′ be a maximal complete IVFQ in 𝒵 = (U,𝒬,).
Obviously, 𝜇−

𝒬′ (u) ≤ 𝜇−
𝒬(u) and 𝜇+

𝒬′ (u) ≤ 𝜇+
𝒬(u) for all u ∈ (𝒬′)∗. It

is to prove that, ∃u ∈ (𝒬′)∗ such that 𝜇−
𝒬′ (u) = 𝜇−

𝒬(u) and 𝜇+
𝒬′ (u) =

𝜇+
𝒬(u). If possible let, 𝜇−

𝒬′ (u) < 𝜇−
𝒬(u) for all u ∈ (𝒬′)∗. Define two

crisp sets U1 and U2 be such that U1 = {u ∈
(
𝒬′)∗ ∶ 𝜇−

𝒬′ (u) ≤⋀
v∈(𝒬′)∗

𝜇−(u, v)} and U2 = {u ∈
(
𝒬′)∗ ∶ 𝜇−

𝒬′ (u) >
⋀

v∈(𝒬′)∗
𝜇−(u, v)}.

Then (𝒬′)∗ = U1 ∪ U2. Then consider the following two cases:

Case-I. In this case, let us consider,U1 = (𝒬′)∗ and take an arbitrary
element u0 ∈ U1 and construct an IVFS 𝒬′′ such that 𝜇−

𝒬′′ (u) =
𝜇−
𝒬′ (u) and 𝜇+

𝒬′′ (u) = 𝜇+
𝒬′ (u), whenever u ≠ u0 and for u = u0,

𝜇−
𝒬′′ (u0) = 𝜇−

𝒬(u0) and 𝜇+
𝒬′′ (u0) = 𝜇+

𝒬(u0), then 𝒬′ ⊂ 𝒬′′. Now,

𝜇−
𝒬′′ (u) ∧ 𝜇−

𝒬′′

(
u0
)
= 𝜇−

𝒬′ (u) ∧ 𝜇−
𝒬′′

(
u0
) ≤ ⋀

v∈(𝒬′)∗
𝜇−(u, v) ∧ 𝜇−

𝒬

(
u0
)

≤ 𝜇
(
u, u0

)
∧ 𝜇−

𝒬

(
u0
)

≤ 𝜇−
(
u, u0

)
for any u ∈ U1 −

{
u0
}
.

and 𝜇−
𝒬′′ (u) ∧ 𝜇−

𝒬′ (v) = 𝜇−
𝒬′′ (u) ∧ 𝜇−

𝒬′ (v) ≤ 𝜇−(u, v) for any u, v ∈
U1 −

{
u0
}

. Therefore, by Theorem 3, 𝒬′′ is a complete IVFQ and
which contradicts the maximality of 𝒬′ since, 𝒬′ ⊂ 𝒬′′.

Case-II. Let us consider U1 ≠ (𝒬′)∗, i.e., U2 ≠ 𝜙. Then take an
arbitrary u0 of U2 be such that 𝜇−

𝒬′ (u0) = max
{
𝜇−
𝒬′ (u) ∶ u ∈ U2

}
and define an IVFS 𝒬′′ by

𝜇−
𝒬′′ (u) =

{
𝜇−
𝒬′ (u), u ≠ u0

𝜇−
𝒬(u), u = u0

𝜇+
𝒬′′ (u) =

{
𝜇+
𝒬′ (u), u ≠ u0

𝜇+
𝒬(u), u = u0

Then 𝒬′ ⊂ 𝒬′′. Now,

𝜇−
𝒬′′ (u) ∧ 𝜇−

𝒬′′

(
u0
)
= 𝜇−

𝒬′ (u) ∧ 𝜇−
𝒬

(
u0
) ≤ ⋀

v∈(𝒬′)∗
𝜇−(u, v) ∧ 𝜇−

𝒬

(
u0
)

≤ 𝜇−
(
u, u0

)
∧ 𝜇−

𝒬

(
u0
)

≤ 𝜇−
(
u, u0

)
for any u ∈ U1.
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Figure 5 An interval-valued fuzzy graph ( IVFG) 𝒵 = (U,𝒬,).

and 𝜇−
𝒬′′ (u) ∧ 𝜇−

𝒬′ (u0) = 𝜇−
𝒬′ (u) ∧ 𝜇−

𝒬(u0) ≤ 𝜇−
𝒬′ (u) ∧ 𝜇−

𝒬′ (u0) ≤
𝜇−(u, u0) when u ∈ U2 and 𝜇−

𝒬′′ (u) ∧ 𝜇−
𝒬′′ (v) = 𝜇−

𝒬′ (u) ∧ 𝜇−
𝒬′ (v) ≤

𝜇−(u, v) for any u, v ∈ (𝒬′)∗−
{
u0
}

. Therefore, by Theorem 3,𝒬′′ is
a complete IVFQ and which contradicts the maximality of 𝒬′ since,
𝒬′ ⊂ 𝒬′′.

Therefore, considering the Cases I and II, it can be concluded that
there is at least one u ∈ (𝒬′)∗ such that 𝜇−

𝒬′ (u) = 𝜇−
𝒬(u). Making

similar arguments, it can be also shown that there is at least one u ∈
(𝒬′)∗ such that 𝜇+

𝒬′ (u) = 𝜇+
𝒬(u). Hence, for at least one u ∈ (𝒬′)∗,

𝜇𝒬′ (u) = 𝜇𝒬(u). ■

3. IVFQCs IN IVFGs

In this section, complete IVFQCs and minimum complete IVFQCs
are discussed, and an algorithm to find a minimum complete
IVFQC of a given IVFG is provided.

Definition 6. (Complete IVFQ edge cover) A complete IVFQ
edge cover for an IVFG 𝒵 = (U,𝒬,) is an IVFS 𝒞 of complete
IVFQs that includes all of the interval-valued fuzzy edges in 𝒵 .

In crisp graphs, if all the edges of the crisp graph J is adjacent to at
least one of the vertices of the clique set then the clique is said to
be the clique cover of the crisp graph. However, according to Def-
inition 6, an IVFQ edge cover for an IVFG 𝒵 may not cover some
interval-valued fuzzy vertices in 𝒵 . We can verify this through the
following example.

Example 4.

Consider an IVFG 𝒵 = (U,𝒬,) which is shown in Figure 5.

Now, 𝒬′ =
{
v1[0.7, 0.8], v2[0.7, 0.8], v5[0.5, 0.6]

}
and 𝒬′′ ={

v3[0.5, 0.6] , v4[0.6, 0.7], v5[0.5, 0.6]} are two complete IVFQs

shown in Figures 6(a) and 6(b). Here we see that the interval-valued
fuzzy vertex v2[0.8, 0.9] is not covered by the complete IVFQ set{
𝒬′,𝒬′′}.

Motivating from this criticism, we define the IVFQC for an IVFG
which covers all of the interval-valued fuzzy edges and interval-
valued fuzzy vertices.

Definition 7. (IVFQC) An IVFQC for an IVFG 𝒵 = (U,𝒬,) is
a set 𝒞 of complete IVFQs such that 𝒵 can be decomposed as the
union of all IVFSGs induced by the IVFQs in 𝒞 . The fuzzy clique
cover number of𝒵 is denoted by cc(𝒵 ) is the minimum cardinality
of an IVFQC of 𝒵 . A minimium IVFQC is a complete IVFQC 𝒞
such that |𝒞 | = cc(𝒵 ).

Before going to characterize the minimum IVFQC, we first give the
following lemma.

Lemma 8. For a complete IVFQ 𝒬′ in an IVFG 𝒵 = (U,𝒬,),
the composition U𝒬′ ⊙ (U𝒬′ )T represents the IVFSG induced by 𝒬′.

Proof. Let 𝒬′ be a complete IVFQ in an IVFG 𝒵 and  =
(U,𝒬′,′) be the IVFSG induced by 𝒬′. Define n × n interval-
valued fuzzy matrix M as (M)ij = 𝜇′ (vi, vj) whenever i ≠ j, and
(M)ii = 𝜇𝒬′ (vi). Then, for any i, j ∈ n, we have (U𝒬′ ⊙ (U𝒬′ )T)ij
= min

{
(U𝒬′ )i, (U𝒬′ )j

}
= min

{
𝜇𝒬′ (vi) , 𝜇𝒬′ (vj)

}
= 𝜇′(vi,vj) =

(M)ij with i ≠ j, and (U𝒬′ ⊙ (U𝒬′ )T)ii = min
{
(U𝒬′ )i, (U𝒬′ )i

= min
{
𝜇𝒬′ (vi) , 𝜇𝒬′ (vi)

}
= 𝜇′(vi,vi) = (M)ii. Therefore, U𝒬′ ⊙

(U𝒬′ )T represents . ■

Theorem 9. For an IVFG𝒵 , if
{
𝒬′,𝒬′′,… ,𝒬(k)} where k ∈ m is

an IVFQC of𝒵 , then the n×mmatrix Mr
𝒵 with (Mr

𝒵 )ik = 𝜇𝒬(k) (vi)
for all k ∈ m and vi ∈ U, i ∈ n is a realizing interval-valued fuzzy
matrix of M𝒵 .

Proof. For an IVFQC
{
𝒬′,𝒬′′,… ,𝒬(k)} where k ∈ m an n × m

matrix Mr
𝒵 with (Mr

𝒵 )ik = 𝜇𝒬(k) (vi) for all k ∈ m and vi ∈ U, i ∈ n
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Figure 6 Example of complete interval-valued fuzzy clique (IVFQ) edge cover of 𝒵 shown in Figure 5.

is given. Then by 8, Mr
𝒵 ⊙ (Mr

𝒵 )T represents the IVFG 𝒵 . Hence,
the interval-valued fuzzy matrix Mr

𝒵 is a realizing fuzzy matrix of
M𝒵 . ■

Theorem 10. For an IVFG𝒵 , if Mr
𝒵 is an n×m realizing interval-

valued fuzzy matrix of Mr
𝒵 , then

{
𝒬′,𝒬′′,… ,𝒬(k)} for each k ∈ m

with (Mr
𝒵 )ik = 𝜇𝒬(k) (vi) for all k ∈ m and vi ∈ U, i ∈ n is an IVFQC

of𝒵 .

Proof. From the definition ofM𝒵 and inerval-valued fuzzy graph,
we have (M𝒵 )ii ≥ (M𝒵 )ij = (M𝒵 )ji for all i, j ∈ n. Then it is obvious
thatM𝒵 is a realizable. LetMr

𝒵 be an n×m realizing interval-valued
fuzzy matrix of M𝒵 . Construct a set

{
𝒬′,𝒬′′,… ,𝒬(k)} where k ∈

m of IVFSs such that (Mr
𝒵 )ik = 𝜇𝒬(k) (vi) for all k ∈ m and vi ∈ U,

i ∈ n. Then by Theorem 4, 𝒬(k) is an IVFQ for any k ∈ m. Then
from Lemma 8 it follows that union of all IVFSGs induced by 𝒬(k),
k ∈ m is 𝒵 . Therefore,

{
𝒬′,𝒬′′,… ,𝒬(k)} for each k ∈ m is an

IVFQC of 𝒵 . ■

Theorem 11. For an IVFG 𝒵 ,
{
𝒬′,𝒬′′,… ,𝒬(k)} for each k ∈

cc(𝒵 ) is a minimum IVFQC of𝒵 if and only if Mr
𝒵 is a n × c(M𝒵 )

realizing fuzzy matrix of M𝒵 , where (Mr
𝒵 )ik = 𝜇𝒬(k) (vi) for all k ∈

cc(𝒵 ) = c(M𝒵 ), vi ∈ U, i ∈ n.

Proof. It follows from Theorems 9 and 10. ■

4. APPLICATION OF IVFQC IN MOBILE
NETWORKING COMMUNICATION

Today’s world advances with wireless technology as much as pos-
sible. One of the great uses of wireless technology is in mobile
networking. In mobile networking, the communications are done
through some cell towers which receives the signals from the base
station and send the signals to the mobile devices. These cell towers
have some specific range within which it can serve better to reach
the signals to the right receiver. Now, the wireless communication
companies wants to set up minimum number of cell towers with
maximum strength to cover all the region of consideration. This

problem can be solved by setting up a model for IVFG where, each
cell towers are taken as vertices and with the strength as the fuzzy
values and edges are the connection between them and assigning
the fuzzy values are their connection strength.

Suppose there are six cell towers with their strength and connec-
tions are given as shown in Figure 7. Obvioulsy, this is an IVFG.
Now, to cover all the receiving devices by minimum number of
cell towers is same as minimizing the number of cell towers which
can cover all the towers and the connections between them. And
this is equivalently, finding the minimum IVFQC of the IVFG. It is
easy to find that, the minimum IVFQC the graph shown in Figure
is
{
𝒬′,𝒬′′} where, 𝒬′ =

{
v1[0.7, 0.8], v2[0.6, 0.8], v6[0.5, 0.7]

}
and 𝒬′′ =

{
v3[0.6, 0.7], v4[0.5, 0.6], v5[0.7, 0.8]

}
. This shows that

only two cell towers are required to send the signals to all receiving
devices within the specified region.

5. CONCLUSION

Fuzzy cliques are the most important mathematical model to
describe and analyze the relationship networks where one has to
deal with the inter-relationships among some objects, like—human,
stars, countries, etc. IFVQs are better capable over fuzzy cliques
to deal such problems. The definition of IVFQ given by Nair and
Cheng does not confront with the classical graph theory in the sense
that “each subgraph induces by a clique is complete.” For this rea-
son, we have modified the definition of IVFQ so that each IVFSG
induces by an IVFQ is complete. Since, the communication is an
important criterion for modern civilization, the study of IVFQs
and IVFQCs is more demanding among researchers. The theorems
developed in this paper can be applied in several network models
such as—setting up wireless cell towers considering several param-
eters, installation of satellites, development of data searching algo-
rithm, development of social networking sites, etc. Farther studies
of this concept can be developed in future so that the theory can also
be applied in the real-world situation where the parameters related
to objects are self-contradictory or has negative implications.
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Figure 7 An interval-valued fuzzy graph ( IVFG) model of a mobile communication.
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