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A B S T R A C T   

In recent years, the high prevalence of breast cancer in women has risen dramatically. Therefore, segmentation of 
breast Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) is a necessary task to assist the 
radiologist inaccurate diagnosis and detection of breast cancer in breast DCE-MRI. For image segmentation, 
thresholding is a simple and effective method. In breast DCE-MRI analysis for lesion detection and segmentation, 
radiologists agree that optimization via multi-level thresholding technique is important to differentiate breast 
lesions from dynamic DCE-MRI. In this paper, multi-level thresholding using Student Psychology-Based Opti-
mizer (SPBO) is proposed to segment the breast DCE-MR images for lesion detection. First, MR images are 
denoised using the anisotropic diffusion filter and then, Intensity Inhomogeneities (IIHs) are corrected in the 
preprocessing step. The preprocessed MR images are segmented using the SPBO algorithm. Finally, the lesions 
are extracted from the segmented images and localized in the original MR images. The proposed method is 
applied on 300 Sagittal T2-Weighted DCE-MRI slices of 50 patients, histologically proven, and analyzed. The 
proposed method is compared with algorithms such as Particle Swarm Optimizer (PSO), Dragonfly Optimization 
(DA), Slime Mould Optimization (SMA), Multi-Verse Optimization (MVO), Grasshopper Optimization Algorithm 
(GOA), Hidden Markov Random Field (HMRF), Improved Markov Random Field (IMRF), and Conventional 
Markov Random Field (CMRF) methods. The high accuracy level of 99.44%, sensitivity 96.84%, and Dice 
Similarity Coefficient (DSC) 93.41% are achieved using the proposed automatic segmentation method. Both 
quantitative and qualitative results demonstrate that the proposed method performs better than the eight 
compared methods.   

1. Introduction 

According to statistics from the World Health Organisation (WHO), 
breast cancer is first cancer to occur internationally. Around 200,000 
women are affected by breast cancer in 2019–2020, according to the 
Indian Council of Medical Research (ICMR). The death rate is 55 
percent. According to the 1,762,450 new cases of breast cancer are 
anticipated in 2019–2020 figures, and 606,880 deaths from cancer in 
the United States (American Cancer Society, 2019). The changing life-
style of individuals in developed and developing countries raises the 
incidence of breast cancers among women mainly at ages 35–55, from 
conventional to modern. The incidence of breast cancers can be 
controlled by detecting breast cancers in their early phases [1]. In 

reducing the death rate, the need to detect breast masses and micro-
calcifications early and accurately play a very significant role. It is 
difficult to work with manual methods that radiologists fail to adopt 
because of the parallels between the presence of breast masses, micro-
calcifications, and the historical segmentation of such anomalies. The 
need for early detection calls for automated systems to be introduced to 
assist radiologists in the specific diagnosis of breast cancer, as well as for 
further follow-up of the treatments needed for patients. Screening pro-
cedures for breast cancer in MRI, self-examination, and clinical breast 
monitoring, ultrasound, and mammography [2]. For breast mass 
detection, mammography is an effective and reliable X-ray procedure. 
Digital mammography replaces film mammography, where patient 
breast images are obtained using special, high-quality computerized 
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systems and are used for further studies, such as identification and 
evaluation. Microcalcifications and mass abnormalities that cause breast 
cancer are the most common. A mammogram made of high-intensity 
background, breast area, fat tissue, and breast masses, and micro-
calcifications is called the image produced by mammography. Mam-
mary masses and microcalcifications occur in the epithelial and 
connective tissues of the breast region [3]. Radiologists can create errors 
that, due to fatigue, neglect important clues as the demand for 
mammogram processing increases [4]. Breast masses arise as a lump of 
various shapes and sizes in the breast region. Breast mass severity may 
be classified as benign and malignant. In a mammogram, micro-
calcifications are deposits of calcium that appear as small bright spots. 
Mammogram sensitivity depends on the density, age, and hormone 
levels of the patients, and 10–30% of breast cancers are not detected. 
The predictive value of this is less than 35% [5]. Therefore, other im-
aging modalities are required. 

Breast DCE-MRI [6] is now widely used for breast cancer diagnosis. 
MRI is a major modality of image processing in medical diagnosis. In the 
interpretation (diagnosis) of breast cancers, the DCE-MRI has demon-
strated extremely high sensitivity. In high-risk patients, MRI can identify 
cancers that are not evident in traditional imaging and can be added to 
the screen. Today, breast MRI is better than other types of imaging used 
to track the reaction to chemotherapy. Besides, its false-negative inci-
dence is lower compared to other imaging modalities. Physicians are 
looking for ways to mitigate patient pain associated with biopsy (or 
another overtreatment) and health care providers are searching for ways 
to eliminate process-related excessive costs. Since detecting and 
measuring breast masses is difficult. To determine exactly where breast 
masses are located, researchers have developed several techniques. The 
evaluation of these techniques can be carried out based on how the 
techniques segment the true and false breast masses that can be defined 
by comparing the results obtained with the radiologist’s ground truth 
markings [7]. 

As the benefits and challenges of early detection and classification of 
breast cancer are significant, introducing an integrated system to assist 
qualified radiologists would ensure that the process of interpretation is 
highly accurate. It is also widely used within medical image segmenta-
tion. But there are several disadvantages to this approach as well: the 
computational complexity and the results’ sensitivity to the model pa-
rameters. A new breast DCE-MRI segmentation method based on multi- 
level thresholding using SPBO [8] has been introduced in this paper to 
overcome these difficulties. The SPBO algorithm is very fruitful when 
finding a good enough solution to the global optimum of a complex 
optimization problem. The benefit of the SPBO algorithm, such as a low 
number of parameters and a lack of local optimal trapping, is agreed to 
solve the problem of multi-level thresholding. The main goal of this 
paper is to use the SPBO algorithm to segment breast lesions in DCE-MRI 
so that better results are obtained with simple solutions and a complete 
search is achieved compared to the current methods. Shannon entropy 
maximization using SPBO is used in the current work to segment breast 
lesions in DCE-MRI. The performance of the proposed method is 
compared with PSO [9], DA [10], SMA [11], MVO [12], GOA [13], 
IMRF [14], HMRF [15], and CMRF [16] methods. The experimental 
results demonstrate that the proposed method performs better than the 
eight compared methods. 

1.1. Contributions of this paper 

The contribution of this paper may be outlined as follows:  

1. An SPBO-based segmentation method is developed to segment the 
lesions in breast DCE-MRI.  

2. The proposed method is compared with PSO, DA, SMA, MVO, GOA, 
IMRF, HMRF, and CMRF. The proposed method performs better than 
the eight compared methods. 

1.2. Organization of the paper 

The remaining of the paper is organized as the following: Section 2 
discusses the related works. Materials and methodology are described in 
Section 3. This section includes the proposed segmentation method 
using the SPBO algorithm. Section 4 includes results and discussion. 
Finally, a conclusion with future works is given in Section 5. 

2. Related works 

Several methods for lesion identification and its characterization in 
breast DCE-MRI have been established in the recent past. Among them, 
Artificial Intelligence (AI), Machine Learning (ML), and Soft Computing 
(SC) based techniques are more common. There are also related works 
discussed here. 

The Watershed technique developed by Cui et al. [17] for lesion 
detection in DCE-MR images. Dissecting the lesion into 2-D slices that 
have the largest region of the lesion starts with this technique. The 
Gaussian Mixture Model (GMM) measures context markers or marginal 
lesions and severity. The adaptive region growing and edge-based 
deface mass segmentation area method is implemented by Kozegar 
et al. [18]. Mass segmentation is a challenging task in Automated Breast 
Ultrasound Systems (ABUS) imaging because speckle noise in ultrasound 
images degrades the image quality. Breast masses are very different in 
shape, size, texture, and implementing a robust method that is invariant 
to these changes is difficult. Going to a higher dimension makes the 
problem more complex since the segmentation algorithm should extract 
3-D objects. For this reason, despeckling is used, followed by area- 
creation pre-segmentation and fine 3 Dimension-deformable model 
segmentation. In this, the adaptive region increasing algorithm is used to 
provide a rough approximation of the mass boundary and the circu-
larity. Mass training-based GMM is used to determine the similarity 
threshold. 

Feng et al. [19] developed a cluster of Fuzzy C-Means (FCM) for 
breast lesion segmentation. In this analysis, information from each pixel, 
such as the intensity of its neighbors, is implemented by an FCM method 
based on Hausdorff distance. Depending on the mutual data in the space 
between the pixel and its neighbors, the surrounding area for each pixel 
is constant and not adaptive. Clustering costs are calculated using Euclid 
and Hausdorff distances. The segmentation assessment is done by 
balancing the results with those of 3 ground truth images segmented 
using a manual specialist. As a technique for breast lesion segmentation, 
Boss et al. [20] given the FCM clustering algorithm. The fourteen Har-
alick characteristics are taken out from the mammogram image applying 
the Gray Level Co-occurrence Matrix (GLCM) for dissimilar angles. By 
applying Mean Square Error (MSE) and Root Means Square Error 
(RMSE) tests, the achievement of the FCM segmentation is measured. 
For a section of the mammographic image, Valdes-Santiago et al. [21] 
used FCM and decision trees. In this, followed by segmentation of a 
Region of Interest (ROI) with FCM, contrast decrease, compactness, 
area, false positives using the filter, and contrast adaptive histogram 
equalization, the first original image is preprocessed. A binary decision 
tree categorization is used to extract the function that provides 
segmented mass. It utilizes image resizing and filtering, which shows the 
importance of fuzzy sets in the anomaly’s edge life recognition. For 
breast lesion detection and segmentation, the K-means using GMM and 
Convolution Neural Network (CNN) are developed by Shamy and 
Dheeba [22]. The first phase is the ROI sector. Then, ROI texture 
extraction and feature optimization algorithms are used. The third step 
is a classification of detected abnormality as benign or malignant using 
CNN. 

Hoffmann et al. [23] developed an automated segmentation of breast 
MRI lesions focused on the morphological, kinetic, Spatiotemporal, and 
joint segmentation-motion compensation process. Both morphological 
and kinetic features are derived and used as possible indicators for non- 
standard lesion detection. They used a novel term called Zernike 
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velocity moments as a special descriptor to describe the simultaneous 
action of these lesions’ Spatio-temporal behavior. To capture the tran-
sient upgrade, Zheng et al. [24] built up the spatiotemporal- 
improvement architecture highlights from a Discrete Fourier Trans-
formation (DFT), trailed by a proportion of the second invariants of Hu 
and the Gabor surface highlights to capture the spatial varieties of each 
of the DFT coefficient maps. By using a direct classifier for twenty-two 
malignant and fifteen benign lesions, they showed a distinct under the 
Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) of 
0.97. To capture the spatiotemporal changes in breast lesions, Shannon 
et al. [25] developed the advantage of the gradient, first-order, and 
second-order (Haralick) textural features. The kinetic curve of each 
feature is defined by measuring its mean value at any point in time in all 
the lesions. To combine the parameters taken from the probabilistic 
boosting-tree classifier, an adequate model of textural-kinetic curves is 
used. Based on the 41 DCE-MRI breast studies, the kinetic and lesion 
morphology features of signal strength are outperformed by reported 
textural-kinetic features. Accuracy 90 percent and 0.92 AUC (95% 
sensitivity, 82% specificity) are given by the classifier. Using the 
multichannel Gabor channel bank, Torrents-Barrena et al. [26] calcu-
lated the highlights of the tissue from the ideal regions and applied the 
multi estimation preparation windows in the tumor territory to measure 
the highlights. A Quadratic Discriminant Analysis (QDA) applied by 
Honda et al. [27] on features taken out from DCE-MR image of breast 
masses, namely dynamic commutes in signal strength, abnormal of 
form, and margin smoothness. The system reached 85.6% accuracy, 
87.1% sensitivity, and 82.1% specificity of classification. Lee et al. [28] 
established spatiotemporal enhancement patterns to allow for the 
distinct diagnosis of DCE-MRI breast lesions. The method used a 3- 
pronged approach to understand the various elements of the spatio-
temporal lesion-enhancement pattern relationship: characteristic ki-
netic pixel-wise plotting, take out of spatial relationship characteristics 
from the spatial feature level, pixel-wise kinetic characteristic maps, and 
take out the function of kinetic relation. They announced an AUC of 0.88 
using a Least-Squares Support Vector Machine (LSSVM) with configured 
second-and third-order function subgroups. To be stable and general-
izable in various protocols, their Computer-Aided Diagnosis (CAD) 
approach may have lost some efficacy. 

The feature extraction method based on curvelet transformation 
suggested by Francis et al. [29] to determine the anomalies in breast 
thermograms and they extracted the tissue features according to the 
curvelet region from the breast thermogram. Gupta and Tiwari [30] 
segmented image and binary erosion using the Otsu method. In the 
image, the histogram is updated for better understanding, classification, 
and visual study using the histogram softening feature, gray relational 
scanning for optimization, and histogram equalization. After normali-
zation is performed to render the mean brightness difference high. 
Segmentation is finally performed using the method of Otsu thresh-
olding, obeyed by a binary decrease for the foreground pixel area 
reducing maximum. It overcomes the problem of using local contrast 
enhancement methods to concentrate on methods of edge perception 
and upgrades the mammogram images’ global and local contrast. A 
pixel-driven approach based on the thresholding of an Otsu and 
morphological refinements after processing suggested by Vignati et al. 
[31]. The acquired breast mask is still over-segmented, but there is al-
ways secret whole breast parenchyma. Arora et al. [32] developed a 
statistical recursive method via multilevel thresholding for segmenta-
tion of the image. It begins from the 2 utmost ends of the histogram and 
recursively applies the method until the segmented image does not 
dramatically change. Although this method is quite basic, it takes the 
histogram of the image as a Gaussian distribution and only uses the even 
number of thresholds. 

Kom et al. [33] developed local adaptive thresholding to automated 
detection of masses in mammograms. To begin, the original image is 
enhanced using a method based on a linear transformation filter that 
modifies the local contrast of each pixel. Second, obtain an image with 

segmented masses by subtracting the augmented image from the orig-
inal image. Binarization of the latter using a local adaptive thresholding 
approach is the final stage. The sensitivity of this proposed approach 
reached up to 95.91 percent when it tested on a series of 61 mammo-
grams. Ribes et al. [34] proposed a Markov Random Field (MRF)-based 
statistical approach for the automatic segmentation of breast MR im-
ages. Due to the gradient value of the image, this technique is known as 
spatially anisotropic and offers a trade-off between sound reduction and 
better protection of the image’s edges. Singh et al. [35] developed a 
Conditional Generative Adversarial Network (CGAN) to break 
mammographic masses from an ROI. The generator model has learned to 
present lesions to create binary masks. Although evolutionary networks 
have learned features that distinguish the real public from the binary 
masks produced, their proposed CGAN’s primary advantage is that it can 
work well for small datasets. Their method’s results indicate higher 
coefficient values and coefficient correlations than those of the expected 
populations with ground realities. The method also classifies identified 
populations into 4 types (e.g., using CNN irregular, lobular, oval, and 
round). 

Multi-Stage Transfer Learning implemented by Samala et al. [36], 
using deep neural networks for Digital Breast Tomosynthesis (DBT). 
First, in a multi-stage shift process, the ImageNet information captured 
the mammogram image data and then configured it for DBT image data. 
Data secured for mammography and then DBT data. Subsequently, the 
structure of most CNN separates the first layer of refrigeration convec-
tion with two transmission networks. The method of neural networks 
manages the learning algorithm well with accuracy. Saha and Chakra-
borty [37] developed for the identification and segmentation of mem-
branes and nuclei in breast tumor estimation using Her2Net. Images of 
colored cytoplasm with Her2Net monoclonal antibodies are the most 
important phenomenon. In the case of research and training data sets, 
data cohort performance is closely related to output metrics, in which 
case data can be used. The proposed rate Her2Net indicates a very low 
False-Positive Rate (FPR). 

Agner et al. [38] developed an automatic segmentation of triple- 
negative breast cancers. Triple negative (TN) breast cancer is a molec-
ular subtype in which the estrogen, progesterone, and HER2 receptors 
are not expressed. Targeted treatments are unsuccessful due to a lack of 
receptor expression, so chemotherapy is currently the only option. They 
tested a CAD system’s ability to quantitatively differentiate triple- 
negative breast cancers from other molecular subtypes of breast can-
cer on DCE-MRI, as well as to distinguish benign from malignant lesions 
on DCE-MRI. They applied an Expectation–Maximization (EM) driven 
active scheme for the segmentation of breast lesions in DCE-MRI. The 
morphological, textural, and kinetic characteristics are then taken out 
and categorized by employing the Support Vector Machine (SVM). The 
system achieved 83% accuracy, 79% sensitivity, and 88% specificity. 

Aghaei et al. [39] developed a computer-aided identification system 
to separate breast areas and tumors on breast MR images and computed 
a total of 39 kinetic image characteristics from both tumor and back-
ground parenchymal enhancement regions. The authors next used two 
ways to differentiate between complete response and nonresponse sit-
uations, which they tested. The first looked at each feature and com-
bined the classification results from numerous features using a basic 
feature fusion algorithm. The second method used a leave-one-case-out 
validation method to optimize an attribute chosen classifier that com-
bines an Artificial Neural Network (ANN) with a wrapper subset 
evaluator. 

Reddi et al. [40] developed a criterion function that is obtained by 
concluding that an image’s gray level histogram is a continual proba-
bility function. Even though these techniques bring down the cost of 
computing to some degree, completion time is stock-still a problem. The 
breast model developed by Tuncay and Akduman [41] using the realistic 
microwave through T1-weighted 3-D MRI data. For functional numeri-
cal three-dimensional microwave breast styles, this technique is used to 
create discrete shapes, sizes, and tissue compactness. Retter et al. [42] 
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applied a CAD scheme to identify non-mass gain and concentrated tu-
mors. Motion recompense has been achieved through an optical flow 
mechanism. Subsequently, the lesions of the region-growing method 
used in the section. As a new component, different dynamic and 
morphological characteristics, like the Minkowski function, are extrac-
ted from split lesions with radial Krawchuk moments. Visual assessment 
of morphologic properties is a highly inter-observer variable, while 
automated computation of features leads to more reproducible indices 
and thus to a more standardized and objective diagnosis. In this context, 
experts explore innovative mathematical descriptors for both 
morphology and dynamics and also compare their effectiveness related 
tiny lesion classification based on innovative feature selection 
techniques. 

In this paper, the entropy maximization-based segmentation of 
breast DCE-MRI using the metaheuristics algorithm SPBO is proposed. In 
the next section, the proposed method is described. 

3. Materials & methodology 

3.1. DCE-MRI dataset 

Total 300 Sagittal T2-Weighted DCE-MRI 2D slices of 50 patients 
have been taken from Cancer Genome Atlas Breast Invasive Carcinoma 
(TCGA-BRCA) [43,44]. All MRI slices having a size greater than 256 ×
256 are resized to 256 × 256. The ground truths are generated by 
manual segmentation by the expert radiologist and it is considered as the 
gold standard [45]. In the ground truth images, the pixels that belong to 
the lesions are assigned the true value and all other pixels are assigned 
false. 

3.2. Proposed method 

In this paper, a new breast DCE-MRI segmentation method for lesion 
detection is developed using SPBO. SPBO algorithm is a recently 
developed metaheuristic algorithm that has shown its better-searching 
ability than its competitive algorithms for solving benchmark function 
optimization problems. SPBO algorithm is never used before in image 
segmentation as well as in breast DCE-MRI segmentation. On the other 
hand, till multi-level thresholding technique is not used in breast DCE- 
MRI segmentation for lesion detection. Therefore, the SPBO algorithm 
is applied in the multi-level thresholding technique to search suitable 
threshold values through entropy maximization for breast DCE-MRI 
segmentation. The proposed method has three steps as the following:  

1. Preprocessing  
2. Segmentation  
3. Postprocessing 

The outline of the proposed SPBO-based segmentation method is 
given in Fig. 1. 

3.3. Preprocessing 

Both the clinical diagnostic functions and the segmentation process 
are affected by the noise in MRI [46]. The segmentation process also 
faces difficulties because of the presence of IIHs in MR images. IIHs are 
the smooth intensity change inside the originally homogeneous region 
in the MRI [14]. In this work, the MR images are denoised using 
Anisotropic Diffusion Filter (ADF) [46], and IIHs are corrected using 
Max filter-based method [47]. In MR images, noise is observed inde-
pendent of inhomogeneity. The inhomogeneous image (I h) is modeled 
as defined by: 

I h = I × B +N (1)  

where I is the homogeneous image, B is inhomogeneity bias field and 
N is noise. Denoising using ADF is discussed in the subsection. 

3.3.1. Denoising using Anisotropic Diffusion Filter 
An ADF is a technique that focuses on removing image noise without 

changing notable segments of the content of the image. In [48], ADF 
bears a resemblance to an action that generates a scale area, where an 
image based on a diffusion process creates a parameterized family of 
successively more obscure images. Each image obtained as a result of 
this process is stated as a transition between the image and a 2-D 
isotropic Gaussian filter, the widths of the filters increase with the pa-
rameters. This evolutionary action is a linear and spatial transmutation 
of the initial image. ADF is a generalization of this isolated action: it 
generates a family of parameterized images, but every result image turns 
on the localized content of the initial image, which is a combination of 
the initial image and filter image. 

Let Ω⊂R2 indicates a subset of the plane and a family of gray scale 
image indicates I(., t) : Ω→R, then ADF is designated as follows 

∂I
∂t

= div (c(u, v, t)▽I) = ▽c.▽I + c(u, v, t)△I (2)  

where △ indicates the Laplacian, the slope indicated by ▽, the diver-
gence operator indicated by div and c(u, v, t) indicates the diffusion 

Fig. 1. Outline of the proposed method.  
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coefficient. The rate of diffusion denotes c(u, v, t), (u, v) denotes spatial 
position, and t is the time parameter of process ordering. This is usually 
taken as a task of the image slope so that the edges of the image can be 
saved. 

3.3.2. Max filter-based Intensity Inhomogeneity correction 
After denoising, the image model in Eq. (1) is become as follows: 

I h = I × B (3)  

The steps of max filter-based Intensity Inhomogeneity (IIH) correction 
method [4] are as follows:  

1. The max filter is applied to inhomogeneous image (I h) and the 
result is considered as the filtered image (I b): 

I b = Max(I h) (4)    

2. Log of the filtered image (log(I b)) is subtracted from that of the 
inhomogeneous image (log(I h)) and result is considered as cor-
rected image (log(I c)): 

log(I c) = log(I h) − log(I b) (5)    

3. The corrected image (I c) is achieved as follows: 

I c = exp(log(I c)) (6)    

4. Intensity is adjusted to preserve initial dynamics as follows: 

I norm =
I c − min(I c)

max(I c) − min(I c)
× max(I h) (7)  

where I norm is the normalized image. 

3.4. Segmentation 

Segmentation is the method of separating lesions by breaking DCE- 
MRI into non-overlapping sections from the background portions. This 
segmentation method of searching the breast lesions is carried out by 
several algorithms, such as classical methods, global thresholding, and 
local thresholding based on image histograms. This paper proposes area 
growth that comes under pixel-based techniques where thresholds for 
seed points and homogeneity criteria are created using the SPBO 
method, which is a metaheuristic optimization algorithm. 

3.4.1. Entropy maximization 
After the de-noised image is collected, entropy maximization is 

performed to determine segmentation threshold values. The explanation 
for maximizing entropy is to maximize the various number of homo-
geneous locations between. The image histogram is determined to make 
the pixel frequency available in the image. Then pixel frequencies from 
histograms are used to measure the entropy value. Here entropy func-
tion H is the objective function to be maximized by applying the algo-
rithm SPBO. The expected solutions here are integer values in the range 
[0, 255] since the image has gray values from 0 to 255. 

Shannon’s entropy theory [49] is a key theory in the domain “in-
formation theory and coding”. This theory is used to probabilistically 
determine the amount of information transmitted by any data. Let us 
assume that an image has (k+1) homogeneous areas and k threshold 
gray levels at t1, t2, t3,⋯, tk. 

h(i) =
fi

N
i = 0, 1, 2,⋯, 255.

where fi denotes the frequency of ith gray level, N denotes the total 

number of gray levels present in the image, and h(i) denotes normalized 
frequency. 

Shannon Entropy function is outlined as 

H = −
∑t1

i=0
P1iln(P1i) −

∑t2

i=t1+1
P2iln(P2i) − ⋯ −

∑255

i=tk

Pkiln(Pki) (8)  

where, 

P1i =
h(i)

∑t1
i=0h(i)

for 0⩽i⩽t1,

P2i =
h(i)

∑t2
i=t1+1h(i)

for t1 + 1⩽i⩽t2,

Pki =
h(i)

∑255
i=tk+1h(i)

for tk + 1⩽i⩽255.

Shannon entropy function H in Eq. (8) is applied as an objective 
function to be maximized using SPBO for getting optimum threshold 
values. 

3.4.2. Student psychology based optimization 
In [8], the authors defined and studied a Student psychology-based 

optimization algorithm for solving student overall performance in the 
classroom based on the student’s psychology. Throughout this study, 
authors characterized students by four categories i.e., best student, good 
student, average student, and students who try to improve randomly. 

Best student: The student who has the most elevated generally test 
marks/grades are supposed to be the best student in the class. Psycho-
logical tendency of best student will consistently try to hold her/his 
place. It is possible to convey the progress of the best student with the 
help of Eq. (9). 

Xbestnew = Xbest +(− 1)k
× rand × (Xbest − Xj) (9)  

where, respectively, Xbest and Xj are the marks obtained by the best 
student in a given subject and a randomly selected jth student. rand is a 
random number in span 0 and 1, and the parameter k is selected as either 
1 or 2. Xbestnew denotes the progress of the best student. The best student’s 
primary aim is to maximize her/his performance in each subject to in-
crease her/ his overall marks and to retain her/his best place. 

Good student: If a student is interested in some subject, then he or 
she will try to enhance his or her overall performance more and more. 
Because different student psychologies are different, the selection of this 
student category is a random activity. This category of the student may 
be represented with the help of Eq. (10). At the same time, certain 
students try to make more effort in their studies than the average stu-
dent’s efforts. As well as trying to pursue the effort offered by the best 
student. With the assistance of Eq. (11), this type of student can be 
expressed. 

Xnewi = Xbest + [rand × (Xbest − Xi)] (10)  

Xnewi = Xi + [rand × (Xbest − Xi)]+ [rand × (Xi − Xmean)] (11)  

where, Xi is the ith student’s marks/grade obtained in that subject, Xmean 
is the class’s average output in that specific subject. 

Average student: The students will attempt to invest more energy 
into different points to improve their general scores, despite the fact that 
they put forth a normal attempt towards this subject. As the normal 
subject-savvy understudy, this class of students can be recognized. 
Performance of this category of the student may be represented by using 
Eq. (12) 

Xnewi = Xi + [rand × (Xmean − Xi)] (12)  

where, Xi and Xmean are, in order, the marks achieved by the ith particular 
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subject. 
Students who try to improve randomly: A few students expect to 

improve their presentation all alone, except for those three gatherings of 
students referenced previously. Somewhat, they attempt to haphazardly 
offer exertion to the point, contingent upon the subject. This sort of 
student attempts to arbitrarily offer exertion to the subject with the goal 
that the general presentation increments in the investigation. Perfor-
mance of this category of the student may be represented with the use of 
Eq. (13) 

Xnewi = Xmin + [rand × (Xmax − Xmin)] (13)  

where Xmin is the minimum marks of the subject and Xmax is the 
maximum of marks of the subject. 

Algorithm 1 presents the pseudo-code of this algorithm.  
Algorithm 1. SPBO 

1: Initialize the population and converging criteria 
2: Evaluate the initial performance of the class 
3: while P <= Maximum iteration do 
4: for m = 1 to number of subject offered do  
5: for each student check the category of the student do 
6: if the student is the best student then 
7: Modify performance using Eq. (9) 
8: end if 
9: if the student is a good student then 
10: for each student check whether the student is following the best student 

only do 
11: if Yes then 
12: Modify performance using Eq. (10) 
13: else 
14: Modify performance using Eq. (11) 
15: end if 
16: end for 
17: end if 
18: if the student is the average student then 
19: Modify performance using Eq. (12) 
20: else 
21: Modify performance using Eq. (13) 
22: end if 
23: end for 
24: Check the boundary 
25: Evaluate the performance of the class 
26: if the new performance is better then 
27: Replace the old performance with the new one 
28: else 
29: Keep the old performance 
30: end if 
31: m = m + 1  
32: end for 
33: P = P + 1  
34: end while 
35: Display the performance of the best optimum solution  

3.5. Postprocessing 

After obtaining the segmented image from the segmentation process 
of DCE-MRI, the lesions are extracted. In DCE-MRI, the pixels belong to 
the regions of lesions having hyper-intensities. Therefore, the segment 
labels of the regions of lesions having the highest values, and segment 
images are thresholded using the highest segment labels. Lesions are 
extracted from the original MR images using the thresholded binary 
images and localized in the original MR images. 

4. Results & discussion 

In this paper, the lesion segmentation method for breast DCE-MRI is 
proposed. The MR images contain noise and IIHs due to which the 
segmentation process faces difficulties. Therefore, the noise is removed 
from MR images using an anisotropic diffusion filter, and IIHs are cor-
rected in the preprocessing step. The parameters of compared algo-
rithms are adopted from their original papers. The parameter settings 
are given in Table 1. The PC configuration is given in Table 2. 

The performance assessment parameters [50,51] for SPBO are esti-
mated based on the method of breast lesion segmentation. Parameters 
are used such as Accuracy, Sensitivity, Specificity, Precision, FPR, F- 
measure, Geometric Mean (G-mean), and DSC. Let TP be the True Pos-
itive rate, FP be the False Positive rate, TN be the True Negative rate, and 
FN be the False Negative rate. The different performance measures are 
defined as follows: 

Accuracy = (TP+TN)/(TP+FN +TN +FP) (14)  

Sensitivity(recall) = TP/(TP+FN) (15)  

Specificity = TN/(TN +FP) (16)  

Precision = TP/(TP+FP) (17)  

FPR = 1 − Specificity (18)  

F − measure =
2 × recall × precision

recall + precision
(19)  

G − mean =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sensitivity × Specificity

√
(20)  

DSC is used to evaluate the performance quantitatively. DSC is calcu-
lated as follows: 

DSC(A,B) =
2|A ∩ B|
|A| ∪ |B|

(21) 

Table 1 
The parameter settings of algorithms.  

Algorithm Parameter Value 

SPBO Number of search agents 30 
Maximum number of iterations 100  

PSO Swarm size (N) 30 
Inertia weight (W) 0.72984 
Personal cognizance (C1)  1.49618 
Social cognizance (C2)  1.49618 
Maximum number of iterations 100  

DA Number of search agents 30 
Maximum number of generations 100  

SMA Number of search agents 30 
Maximum number of iterations 100  

MVO Number of search agents 30 
WEPmax  1 
WEPmin  0.2 
Maximum number of iterations 100  

GOA Number of search agents 30 
cMax 1 
cMin 0.00004 
Maximum number of iterations 100  

IMRF Maximum number of iterations 100  

HMRF EM iterations 5 
MAP iterations 5  

CMRF Potential 0.5 
Maximum number of iterations 100  

Table 2 
PC configuration.  

Name Configuration 

CPU Intel® CoreTM i3-8130U @ 2.20 GHz.  
RAM 4 GB 
Operating System Windows 7 Ultimate (64-bit) 
Software MATLAB 2017b  
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where A and B are binary masks for the segmented lesion and ground 
truth, respectively. The overlapping ratio of the observed lesion to the 
ground truth in the MRI is indicated by DSC. The higher DSC values 
indicate improved performance. 

As the SPBO method starts with the randomly initialized population, 
the same experiments repeated 10 times for a single image. The quan-
titative results in terms of the mean and standard deviation of perfor-
mance evaluation metrics over 10 × 300 results are considered for 
analysis. The proposed method is evaluated and analyzed, together with 
the existing PSO, DA, SMA, MVO, GOA, HMRF, IMRF, and CMRF 
methods. 

4.1. Quantitative results 

The quantitative results (i.e., performance evaluations) of the pro-
posed method compared to other methods are illustrated in Table 3. The 
box plot (methods versus different performance measures) of compre-
hensive performance of different methods over 300 MR images is given 
in Figs. 2–9. 

It is observed from the quantitative results in Table 3, the mean 
classification accuracy obtained from the proposed method is higher 
than that obtained from PSO, DA, SMA, MVO, GOA, HMRF, IMRF, and 
CMRF. The accuracy of SPBO is 99.44% which is higher than all 
methods. The mean sensitivity is 96.84% and the mean specificity is 
99.56% obtained from the proposed method is also higher than those 
obtained from PSO, DA, SMA, MVO, GOA, HMRF, IMRF, and CMRF 
methods. Precision is another key measure of lesion detection. The mean 
precision value of SPBO is 93.87% whereas the mean precision values of 
PSO, DA, SMA, MVO, GOA, HMRF, IMRF, and CMRF are respectively 
82.79%,77.83%,84.88%,87.72%,84.87%,80.21%,82.82%, and 76.18% 
which are very low. 

The mean G-mean scores of the proposed method is 96.94% which is 
also higher than that of PSO, DA, SMA, MVO, GOA, HMRF, IMRF, and 
CMRF. A higher mean G-mean score specifies that the classifier will 
solve the high-class imbalance problem, where the number of lesions in 
the breast MR images is very small compared to the healthy tissues. 

The F-measure is applied to measure the trade-off between sensi-
tivity and precision. The mean F-measure is 93.15% which is much 
higher for the proposed method than for PSO, DA, SMA, MVO, GOA, 
HMRF, IMRF, and CMRF. The F-measure is the accuracy of the classi-
fication for lesion tissues detected in the breast. The higher value of this 
indicator suggests that the lesions in breast MRI can be identified with 
greater accuracy by the SPBO classification. 

FPR is also known as the false alarm rate, and it determines the ratio 
of the wrongly labeled negative samples to the overall negative sample 
count. Therefore, the specificity complements it. FPR is not responsive to 
data distribution changes and therefore both metrics can be imple-
mented with imbalanced data. The mean FPR of the proposed method 
(SPBO) is 0.44% which is much lower than PSO, DA, SMA, MVO, GOA, 
HMRF, IMRF, and CMRF. The lower value of this measure indicates that 
negative samples are minimum in images. 

The mean DSC value of the proposed method is 93.41% which is also 
higher than that of the methods of PSO, DA, SMA, MVO, GOA, HMRF, 
IMRF, and CMRF. The higher DSC value demonstrates a greater overlap 
with the ground truths of the segmented lesions. It is observed that the 
proposed SPBO-based segmentation methodology outperforms the PSO, 
DA, SMA, MVO, GOA, HMRF, IMRF, and CMRF from the study of the 
above quantitative data. 

Robustness is another essential aspect of the methods of segmenta-
tion for lesion detection. It is measured in terms of the standard devia-
tion of performance measurements over many runs, and a lower 
standard deviation indicates greater robustness. The standard deviation 
results in Table 3 are small compared to eight existing methods, so the 
proposed segmentation technique is robust for breast MRI lesion 
detection. 

A boxplot is a graph that provides a good indication of how the 
values are spread out in the details. But, compared to a histogram or 
density plot, boxplots can seem primitive. It is observed from Fig. 2 that 
the proposed SPBO has a higher median accuracy of classification than 
the other methods. Since accuracy outcomes are compacted, the mini-
mum difference and the maximum value are very low. It is also found 
from Fig. 3 that SPBO has a higher median sensitivity score than other 
techniques. It is observed from Fig. 4 that the suggested SPBO has a 
higher median specificity of classification than the other methods. It is 
also observed from Fig. 5 that SPBO has a higher median precision score 
than other methods. SPBO has a higher median G-mean, F-measure, 
FPR, and DSC score than other methods and that can be observed from 
Figs. 6–9. From the above results, it can be determined that SPBO has 
superior performance compared to PSO, DA, SMA, MVO, GOA, HMRF, 
IMRF, and CMRF. Likewise, the proposed method based on SPBO obtains 
the best values in terms of accuracy, sensitivity, specificity, precision, G- 
mean, F-measure, FPR, and DSC. These outcomes reflect the better 
segmentation of breast DCE-MRI for lesion detection. 

4.1.1. Statistical analysis using ANOVA followed by Tukey HSD 
For validation of the segmentation performance, the DSC parameter 

Table 3 
Mean and standard deviation (in parenthesis) of performance measure values (in %) for proposed method SPBO, existing methods PSO, DA, SMA, MVO, GOA, HMRF, 
IMRF and CMRF.  

Performance Matrix SPBO PSO DA SMA MVO GOA HMRF IMRF CMRF 

Accuracy 99.44 99.02 98.31 98.76 98.37 98.10 98.46 98.83 97.99 
(0.0248) (0.0260) (0.0411) (0.0387) (0.0489) (0.0376) (0.0301) (0.0310) (0.0463)  

Sensitivity 96.84 91.28 89.58 90.73 89.93 83.35 90.51 90.61 89.89 
(0.0552) (0.1007) (0.1357) (0.1190) (0.1171) (0.1627) (0.1373) (0.1197) (0.1501)  

Specificity 99.56 99.09 98.46 98.88 98.51 98.29 98.55 98.99 98.14 
(0.0227) (0.0259) (0.0330) (0.0353) (0.0411) (0.0494) (0.0327) (0.0433) (0.0480)  

Precision 93.87 82.79 77.83 84.88 87.72 84.87 80.21 82.82 76.18 
(0.0628) (0.1752) (0.1546) (0.1159) (0.1536) (0.2250) (0.1687) (0.2521) (0.2702)  

G-mean 96.94 95.36 94.44 94.35 94.15 92.52 95.99 95.38 95.79 
(0.0620) (0.0676) (0.0503) (0.0623) (0.0686) (0.0861) (0.0607) (0.0657) (0.0684)  

F-measure 93.15 84.99 81.14 85.62 87.17 88.23 84.11 83.07 78.87 
(0.0681) (0.1027) (0.0862) (0.0691) (0.1056) (0.1440) (0.1062) (0.2118) (0.2176)  

FPR 0.44 0.91 1.54 1.12 1.49 1.71 1.45 1.01 1.86 
(0.0010) (0.0106) (0.0112) (0.0051) (0.0060) (0.0048) (0.0075) (0.0037) (0.0073)  

DSC 93.41 84.99 82.49 85.14 85.83 81.06 81.38 83.07 81.60 
(0.0668) (0.1027) (0.0998) (0.1112) (0.0994) (0.1779) (0.1617) (0.2118) (0.1839)  
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is used for statistical analysis using one-way ANOVA [52] followed by 
Tukey Honestly Significant Difference (HSD) [53]. The overlapping ratio 
of the segmented lesions to the ground truths in the MRI is indicated by 
DSC. The higher DSC values indicate better performance. The null hy-
pothesis in the ANOVA test is: 

H0: all the methods are equivalent. 
against the alternative hypothesis: 

H1: all the methods are not equivalent. 

The ANOVA test result on the DSC is provided in Table 4. It is 
observed from Table 4 that the p-value of one way ANOVA test is 
4.149E − 32 which is less than the significant level at α = 0.05. There-
fore, the performance of all the methods is not equivalent. After the 
ANOVA test, Tukey HSD statistical test is conducted for pair-wise 
comparison of the proposed SPBO-based method with the other 
methods and test results are provided in Table 5. From Table 5, it is 
observed that SPBO statistically outperforms other methods with a sig-
nificance level α = 0.05. 

Fig. 2. The box plot (methods versus accuracy) of comprehensive classification performance of different methods over 300 MR Images.  

Fig. 3. The box plot (methods versus sensitivity) of comprehensive classification performance of different methods over 300 MR Images.  

Fig. 4. The box plot (methods versus specificity) of comprehensive classification performance of different methods over 300 MR Images.  
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4.1.2. Statistical analysis using Wilcoxon Signed Rank Test 
A non-parametric test is conducted to analyze the performance of the 

algorithms. For a pair-wise comparison of the proposed SPBO algorithm 
with the other algorithms, the Wilcoxon Signed Rank Test [54] is per-
formed. The statistical test results on the accuracy, sensitivity, speci-
ficity, precision, G-mean, F-measure, FPR, and DSC are described in 
Tables 6–13, respectively. Here, it is considered that the pair-wise null 
hypothesis is. 

H0: The pair of methods are equivalent. 
against the alternative hypothesis: 

H1 : The pair of methods are not equivalent. 

The significant level of the test α is 0.01. The α value is adjusted using 
Bonferroni correction method [55]. The adjusted α value is ̃α = α/No. of 
comparison = 0.01/8 = 0.00125. It has been observed from Table 6, 7, 8 
and 13 that SPBO statistically outperforms PSO, DA, SMA, MVO, GOA, 
HMRF, IMRF, and CMRF. Also from Tables 9,10 and 12, it has been 

Fig. 5. The box plot (methods versus precision) of comprehensive classification performance of different methods over 300 MR Images.  

Fig. 6. The box plot (methods versus g-mean) of comprehensive classification performance of different methods over 300 MR Images.  

Fig. 7. The box plot (methods versus f-measure) of comprehensive classification performance of different methods over 300 MR Images.  
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observed that Precision, G-mean, F-measure, and FPR of SPBO are sta-
tistically higher significant than PSO, DA, SMA, IMRF, and CMRF. But 
there is no statistically significant difference in the Precision perfor-
mance between SPBO and GOA. There is no statistically significant 
difference in the G-mean performance between SPBO and HMRF. There 
is no statistically significant difference in the G-mean performance 

between SPBO and GOA. There is also no statistically significant dif-
ference in the FPR performance between SPBO and MVO. 

4.1.3. Multi-Criteria Decision Analysis 
Multi-Criteria Decision Analysis (MCDA) [56] has become one of the 

Fig. 8. The box plot (methods versus fpr) of comprehensive classification performance of different methods over 300 MR Images.  

Fig. 9. The box plot (methods versus dsc) of comprehensive classification performance of different methods over 300 MR Images.  

Table 4 
ANOVA Test.  

Source of Variance SS df MS F p-value F-crit. 

Between Groups 35275.5697 8 4409.445497 21.58854223 4.149E− 32 1.9418407 
Within Groups 549634.9734 2691 204.2493398    
Total 584910.5373 2699      

Table 5 
Tukey HSD Test Statistics based on DSC.  

Sl. No. Comparison Comparison with T Result 

1 SPBO vs PSO 8.49 > 0.2089  Significant at α = 0.05  
2 SPBO vs DA 10.49 > 0.2089  Significant at α = 0.05  
3 SPBO vs SMA 8.27 > 0.2089  Significant at α = 0.05  
4 SPBO vs MVO 7.58 > 0.2089  Significant at α = 0.05  
5 SPBO vs GOA 12.35 > 0.2089  Significant at α = 0.05  
6 SPBO vs HMRF 12.03 > 0.2089  Significant at α = 0.05  
7 SPBO vs IMRF 10.34 > 0.2089  Significant at α = 0.05  
8 SPBO vs CMRF 11.81 > 0.2089  Significant at α = 0.05   

Table 6 
Wilcoxon Signed Ranks Test Statistics on accuracy.  

Sl. No. Comparison p(2 − tailed)

1 SPBO vs PSO 0.0000001  
2 SPBO vs DA 0.0000001  
3 SPBO vs SMA 0.0000001  
4 SPBO vs MVO 0.0000001  
5 SPBO vs GOA 0.0000001  
6 SPBO vs HMRF 0.0000001  
7 SPBO vs IMRF 0.0000001  
8 SPBO vs CMRF 0.0000001   
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most significant and fastest-growing subfields of operations 
research/management science. MCDA means the process of evaluating 
the best feasible solution based on given requirements and issues that 
are common occurrences in daily life. Practical problems are also 
characterized by many non-commensurable and conflicting (competing) 
criteria, and all criteria may not be met simultaneously by any solution. 
In this work, the performance is analyzed using a well-known MCDA 
method namely Technique for Order of Preference by Similarity to Ideal 
Solution (TOPSIS). Here, multiple criteria are accuracy, sensitivity, 
specificity, precision, G-mean. F-measure, FPR, and DSC. FPR conflicts 

with other criteria because low FPR values indicate better whereas 
higher values of other criteria indicate better. Table 14 described the 
MCDA ranked based on TOPSIS technique. From Table 14, it is observed 
that the SPBO method has the highest rank. After that PSO method 
follows the SPBO method. It is also observed that CMRF has the lowest 
rank. 

4.2. Visual results 

A total of 300 images of 50 patients have been used for the validation 

Table 7 
Wilcoxon Signed Ranks Test Statistics on sensitivity.  

Sl. No. Comparison p(2 − tailed)

1 SPBO vs PSO 0.0000001  
2 SPBO vs DA 0.0000001  
3 SPBO vs SMA 0.0000001  
4 SPBO vs MVO 0.0000001  
5 SPBO vs GOA 0.0000001  
6 SPBO vs HMRF 0.000003  
7 SPBO vs IMRF 0.0000001  
8 SPBO vs CMRF 0.001029   

Table 8 
Wilcoxon Signed Ranks Test Statistics on specificity.  

Sl. No. Comparison p(2 − tailed)

1 SPBO vs PSO 0.0000001  
2 SPBO vs DA 0.0000001  
3 SPBO vs SMA 0.000001  
4 SPBO vs MVO 0.000549  
5 SPBO vs GOA 0.0000001  
6 SPBO vs HMRF 0.0000001  
7 SPBO vs IMRF 0.0000001  
8 SPBO vs CMRF 0.0000001   

Table 9 
Wilcoxon Signed Ranks Test Statistics on precision.  

Sl. No. Comparison p(2 − tailed)

1 SPBO vs PSO 0.0000001  
2 SPBO vs DA 0.0000001  
3 SPBO vs SMA 0.0000001  
4 SPBO vs MVO 0.000055  
5 SPBO vs GOA 0.003425  
6 SPBO vs HMRF 0.0000001  
7 SPBO vs IMRF 0.000003  
8 SPBO vs CMRF 0.0000001   

Table 10 
Wilcoxon Signed Ranks Test Statistics on G-Mean.  

Sl. No. Comparison p(2 − tailed)

1 SPBO vs PSO 0.0000001  
2 SPBO vs DA 0.0000001  
3 SPBO vs SMA 0.0000001  
4 SPBO vs MVO 0.0000001  
5 SPBO vs GOA 0.0000001  
6 SPBO vs HMRF 0.124219  
7 SPBO vs IMRF 0.0000001  
8 SPBO vs CMRF 0.000005   

Table 11 
Wilcoxon Signed Ranks Test Statistics on F-Measure.  

Sl. No. Comparison p(2 − tailed)

1 SPBO vs PSO 0.0000001  
2 SPBO vs DA 0.0000001  
3 SPBO vs SMA 0.0000001  
4 SPBO vs MVO 0.0000001  
5 SPBO vs GOA 0.003534  
6 SPBO vs HMRF 0.0000001  
7 SPBO vs IMRF 0.0000001  
8 SPBO vs CMRF 0.0000001   

Table 12 
Wilcoxon Signed Ranks Test Statistics on FPR.  

Sl. No. Comparison p(2 − tailed)

1 SPBO vs PSO 0.0000001  
2 SPBO vs DA 0.0000001  
3 SPBO vs SMA 0.0000001  
4 SPBO vs MVO 0.024339  
5 SPBO vs GOA 0.000018  
6 SPBO vs HMRF 0.0000001  
7 SPBO vs IMRF 0.000002  
8 SPBO vs CMRF 0.0000001   

Table 13 
Wilcoxon Signed Ranks Test Statistics on DSC.  

Sl. No. Comparison p(2 − tailed)

1 SPBO vs PSO 0.0000001  
2 SPBO vs DA 0.0000001  
3 SPBO vs SMA 0.0000001  
4 SPBO vs MVO 0.0000001  
5 SPBO vs GOA 0.0000001  
6 SPBO vs HMRF 0.0000001  
7 SPBO vs IMRF 0.0000001  
8 SPBO vs CMRF 0.0000001   

Table 14 
Multi-Criteria Decision Analysis rank based 
on TOPSIS technique  

Methods Rank 

SPBO 1 
PSO 2 
IMRF 3 
SMA 4 
HMRF 5 
MVO 6 
DA 7 
GOA 8 
CMRF 9  
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of this method. Because of space limitations, 2 images of 2 different 
patients are displayed out of 300 test results. The segmented breast le-
sions using different methods are given in Fig. 10 for patient-1 and 
Fig. 11 for patient-2. The localized lesion images are given in Figs. 12 
and 13 for patients 1 & 2 respectively. 

From the qualitative results in Fig. 10 for patient-1, by comparing the 
SPBO segmented image in Fig. 10(c) with the ground truth image in 
Fig. 10(b), it can be easily observed that lesion regions are almost fully 
segmented by SPBO. The proposed SPBO-based method performs well in 
detecting lesions for the image. From the PSO segmented image in 
Fig. 10(d), it is observed that some lesions are not segmented by PSO. 
The PSO-based method does not perform well in the detection of lesions 
in the image as compared with the ground truth image. From DA 
segmented image in Fig. 10(e), it can be easily observed that some 
healthy tissues surrounding the lesion regions are detected as lesions by 
DA. This method does not perform well in the detection of the image as 
compared with the ground truth image. From SMA segmented image in 
Fig. 10(f), it is observed that SMA fails to segment the maximum of 
lesion regions in the image. From MVO and GOA segmented images in 
Fig. 10(g) and (h), it is observed that some lesions are not segmented by 
MVO and GOA. The two methods do not perform well in the detection of 
lesions in the image as compared with the ground truth image. From 
HMRF segmented image in Fig. 10(i), it is also observed that some 
healthy tissues are detected as lesions by HMRF like IMRF. This method 
also does not perform well in the detection of lesions in the image as 
compared with the ground truth image. From the CMRF segmented 
image in Fig. 10(k), it is observed that CMRF fails to segment the 
maximum of lesion regions in the image. 

From the qualitative results in Fig. 11 for patient-2, by comparing the 
ground truth image in Fig. 11(b) and SPBO segmented image in Fig. 11 
(c) for the MRI slice of patient-2, it can be easily observed that lesion 
regions are almost fully segmented by SPBO. The proposed SPBO-based 
method performs well in the detection of lesions in the image as 
compared with the ground truth image. 

From Fig. 11(d) for MRI slice of patient-2, it can be easily observed 

that some healthy tissues are detected as lesions by PSO. The PSO-based 
method does not perform well in the detection of lesions in the image as 
compared with the ground truth image. 

Fig. 11(e) and (f) depict that lesions are not segmented by DA and 
SMA at all. These methods become a failure in the detection of lesions in 
the image as compared with the ground truth image. From Fig. 11(g) for 
the MRI slice of patient-2, it can be easily observed that some healthy 
tissues are detected as lesions by MVO. The MVO-based method does not 
perform well in the detection of lesions in the image as compared with 
the ground truth image. From the CMRF segmented image in Fig. 11(h), 
it is observed that GOA fails to segment the maximum of lesion regions 
in the image. Fig. 11(i) and (j) depict that some healthy tissues are 
segmented by HMRF and IMRF. These methods do not perform well in 
the detection of lesions for the images as compared with the ground 
truth image. 

Fig. 11(k) depicts that lesions are not segmented by CMRF at all. This 
method becomes a failure in the detection of lesions in the image as 
compared with the ground truth image. 

Convergence graphs for the image patient-1 & 2 are given in Figs. 14 
and 15 respectively. In the convergence graphs, the best objective 
function values i.e., entropy values against the function evaluations 
(FEs) are plotted. The convergence graph shows the progress of the 
search process towards the best solution. From the convergence graphs, 
it can be observed that the convergence behavior of SPBO is better than 
other metaheuristic algorithms. From the convergence graph in Fig. 14, 
it is observed that SPBO converges with a very close to the best result 
after about 500 FEs whereas PSO converges with a very close to its best 
result after about 1900 FEs. SPBO has a faster convergence rate than PSO 
after 300 FEs. SPBO has always better values than DA, MVO, SMA, and 
GOA. It is also observed that DA, MVO, SMA, and GOA are easily falling 
in the local optima (premature convergence). A similar observation can 
be made for the convergence graph in Fig. 15. Both convergence graphs 
show the better searching ability of the SPBO algorithm for entropy 
maximization. 

Fig. 10. For Patient-1 (a) Original MR image, (b) ground truth of MR image, (c) segmented image using SPBO, (d) segmented image using PSO, (e) segmented image 
using DA, (f) segmented image using SMA, (g) segmented image using MVO, (h) segmented image using GOA, (i) segmented image using HMRF, (j) segmented image 
using IMRF, and (k) segmented image using CMRF. 
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4.3. Computational complexity 

Table 15 shows the average CPU execution time for proposed and 
existing methods. The computational time for denoising and intensity 
inhomogeneities correction of each MR image is 0.26 s and 1.58 s, 
respectively. 

From Table 15, it is observed that the average CPU execution time for 
SPBO is 2.4959 s. PSO takes an average execution time of 2.6114 s. DA 
takes an average execution time of 2.5809 s. SMA takes an average 
execution time of 2.6823 s. MVO takes an average execution time of 
2.6153 s, GOA takes an average execution time of 2.6823 s, HMRF takes 
an average execution time of 2.6954 s, IMRF takes an average execution 
time of 2.7125 s and CMRF takes 2.8564 s. The SPBO is faster than all 
existing methods. From the above analysis of both quantitative and 

qualitative results, it is observed that SPBO performs better segmenta-
tion of breast lesion in DCE-MRI than PSO, DA, SMA, MVO, GOA, HMRF, 
IMRF, and CMRF. The experimental results demonstrate that SPBO is 
efficient and effective in lesion segmentation in breast DCE-MRI. 

From the above discussion of quantitative and qualitative results, it 
may be concluded that the proposed method based on SPBO performs 
better than other compared methods in the segmentation of breast DCE- 
MRI for lesion detection. SPBO is efficient to find out the suitable 
threshold values for segmentation because SPBO has good searching 
ability and convergence characteristics. 

5. Conclusion and future works 

The goal of this study is to investigate and establish an effective 

Fig. 11. For Patient-2 (a) Original MR image, (b) ground truth of MR image, (c) segmented image using SPBO, (d) segmented image using PSO, (e) segmented image 
using DA, (f) segmented image using SMA, (g) segmented image using MVO, (h) segmented image using GOA, (i) segmented image using HMRF, (j) segmented image 
using IMRF, and (k) segmented image using CMRF. 

Fig. 12. Localized lesions (bright colored spot) in MR images for patient-1 (a) SPBO, (b) PSO, (c) DA, (d) SMA, (e) MVO, (f) GOA, (g) HMRF, (h) IMRF, and (i) CMRF.  
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Fig. 13. Localized lesions (bright colored spot) in MR images for patient-2 (a) SPBO, (b) PSO, (c) DA, (d) SMA, (e) MVO, (f) GOA, (g) HMRF, (h) IMRF, and (i) CMRF.  

Fig. 14. Convergence graph for the DCE-MRI slice (Fig. 10(a)) of patient-1.  

Fig. 15. Convergence graph for the DCE-MRI slice (Fig. 11(a)) of patient-2.  

Table 15 
The average CPU execution time for proposed method SPBO, existing methods PSO, DA, SMA, MVO, GOA, HMRF, IMRF, and CMRF.  

Methods SPBO PSO DA SMA MVO GOA HMRF IMRF CMRF 

Execution time (seconds) 2.4959 2.6114 2.5809 2.6823 2.6153 2.6823 2.6954 2.7125 2.8564  
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method for breast DCE-MRI segmentation to assist the radiologist in 
diagnosis, treatment planning, and disease planning. SPBO-based 
method of segmentation is proposed in this paper. In this method, the 
SPBO algorithm is used to search for the optimal multilevel threshold 
values by maximizing entropy. Compared to the existing PSO, DA, SMA, 
MVO, GOA, HMRF, IMRF, and CMRF methods, the experimental results 
show the effectiveness of the proposed method that has achieved high 
performance in terms of accuracy, sensitivity, specificity, precision, F- 
measure, G-mean, and DSC. Compared with all existing methods, the 
experimental results indicate the efficiency of the proposed method. In 
the future, to dynamically evaluate the optimal number of thresholds, 
the Shannon entropy maximization using the SPBO algorithm will also 
be expanded. An improved version of the SPBO algorithm will be used to 
implement the MRI breast lesion segmentation method. The future 
works also include the development of breast MRI segmentation 
methods with feature selection techniques [57,58]. 
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