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Abstract
In recent times, the high prevalence of breast cancer in women has increased significantly. Breast cancer diagnosis and detec-
tion employing computerized algorithms for feature extraction and segmentation can be aided by a physician’s expertise in 
the field. To separate breast lesions from other tissue types in Dynamic Contrast-Enhanced Magnetic Resonance Imaging 
(DCE-MRI) for segmentation and lesion detection in breast DCE-MRI, radiologists think that multi-level thresholding 
optimization is efficient. In this article, a lesion segmentation method for breast DCE-MRI using the opposition-based Sine 
Cosine Algorithm (SCA) is proposed. For breast DCE-MRI segmentation utilizing multilevel thresholding, this work pro-
vides an upgraded version of the SCA with Quasi Opposition-based Learning (QOBL). SCAQOBL is the name given to the 
suggested method in this paper. The Anisotropic Diffusion Filter (ADF) is used to de-noise MR images, and subsequently, 
Intensity Inhomogeneities (IIHs) are corrected in the preprocessing stage. The lesions are then retrieved from the segmented 
images and located in MR images. On 100 sagittal T2-weighted fat-suppressed DCE-MRI images, the proposed approach is 
examined. The proposed method is compared to Opposition-based SCA (OBSCA), SCA, Particle Swarm Optimizer (PSO), 
Slime Mould Algorithm (SMA), Hidden Markov Random Field (HMRF), and Improved Markov Random Field (IMRF) 
algorithms. The proposed technique achieves a high accuracy of 99.11 percent, sensitivity of 97.78 percent, and Dice Simi-
larity Coefficient (DSC) of 95.42 percent. The analysis of results is conducted using a one-way ANOVA test followed by a 
Tukey-HSD test, and Multi-Criteria Decision Analysis (MCDA). The proposed strategy surpasses other examined methods 
in both quantitative and qualitative findings.

Keywords  Breast DCE-MRI · Segmentation · Entropy · Multi-level thresholding · Sine Cosine Algorithm · Opposition-
based Learning

1  Introduction

In 2020, 2.3 million women were diagnosed with breast 
cancer and 685,000 deaths were caused due to breast can-
cer globally. “As of the end of 2020, there were 7.8 million Tapas Si,  Dipak Kumar Patra and  Sukumar Mondal have 
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women alive who were diagnosed with breast cancer in the 
past 5 years, making it the world’s most prevalent cancer” 
[1]. Biomedical imaging techniques are very useful in the 
diagnosis, treatment planning, and surgery of breast cancer. 
Breast cancer is rapidly becoming one of the most ordinary 
causes of mortality in women around the world. So far, 2.3 
million new cases of breast cancer have been discovered, 
accounting for around 1

5
 of all malignancies. Breast cancer, 

which accounted for 459410 cases by 2020, is also respon-
sible for 14% of cancer fatalities [2].

Many screening approaches have been utilized in the past 
for mammography. The most prevalent approach is MRI. 
The MRI creates an exceptional contrast between simi-
lar regions of the breasts’ soft tissue, resulting in a clear 
and crisp breast screen. Breast imaging uses MR images 
to examine fine details such as malignancies within breast 
tissues. DCE-MRI of the breast is now widely used to diag-
nose cancer in the breast. MRI is a major image process-
ing modality in medical diagnosis. MRI modality is used 
in conjunction with mammography as an appropriate view, 
especially for women at high risk. Although the sensitiv-
ity of MRI of the breast is usually very high, the unique-
ness, like all the images, depends on many factors such as 
the skill of the reader, the use of adequate techniques, and 
the combination of the patient. MRI is capable of detect-
ing cancers that are not visible in conventional imaging and 
can be applied to screen high-risk patients. Breast MRI is 
better today than other imaging methods used to monitor 
the response to chemotherapy. Some study has shown that 
when determining breast cancer tumors MRI is more ideal 
than X-ray, mammography, and sonography. Segmentation 
of the breast MRI is a major method of image processing 
in the medical diagnosis of tumors. The breast has three 
types of tissues : (a) glandular, (b) fibrous, and (c) fatty. 
Breast MRIs have a maximum of four classes or objects: (i) 
Background (BA), (ii) Muscle and Skin (MS), (iii) Adipose 
(AD), and (iv) Glandular (GL). Image processing techniques 
such as image binarization, image segmentation, and con-
trast enhancement are routinely employed by radiologists to 
improve image quality and detect tumor masses.

In this article, a lesion segmentation method for breast 
DCE-MRI using quasi opposition-based SCA is proposed. 
SCA [3] is the metaheuristic algorithm developed for func-
tion optimization. It’s a population-centered optimization 
strategy. For several situations, the SCA algorithm is an 
effective, robust, and easy optimization approach [4]. How-
ever, there are still significant flaws in how complex practi-
cal problems are handled, such as falling into local optima. 
To address this issue, opposition-based SCA is developed 
[5, 6]. In study [5], the opposition-based learning (OBL) 

strategy was used for better exploration in OBSCA and it 
was used for global optimization. This OBSCA was used for 
feed-forward neural network (FFNN) training in study [6]. 
Khrissi et al. [7] developed a SCA-based clustering method 
for image segmentation. Yan et  al. used SCA in multi-
level thresholding for underwater image segmentation [8]. 
Mahender et al. [9] used SCA in multi-level thresholding for 
lung Computed Tomography (CT) images.

In this article, a new improved SCA by incorporating 
QOBL, named SCAQOBL, has been proposed for breast 
lesions segmentation in DCE-MRI. QOBL is the advanced 
version of the OBL strategy. Our main goal is to use the 
SCAQOBL to segment breast lesions in DCE-MRI so that 
we may achieve better results with simple solutions and con-
duct a more extensive search than existing approaches. In 
the current study, SCAQOBL is used in Shannon entropy 
maximization to segment lesions in breast DCE-MRI. The 
comparative study of results of the proposed method with 
OBSCA [5], SCA [3], PSO [51], SMA [10], IMRF [11], and 
HMRF [12] methods is conducted. The Sensitivity, Accu-
racy, Precision, F-measure, Specificity, Geometric Mean 
(G-mean), DSC, and False Positive Rate (FPR) are used 
to evaluate the performance. The statistical analysis [48] 
method, namely the one-way ANOVA [13] test followed by 
the posthoc Tukey Honestly Significant Difference (HSD) 
[14] test is used for statistical analysis of the results. Fur-
thermore, we use Multi-Criteria Decision Making [50] to 
evaluate overall performance based on the aforementioned 
criteria. In the experiments, the proposed methodology out-
performs the six compared methods.

1.1 � Contributions of this article

1.	 An improved SCA with Quasi Opposition-based Learn-
ing (SCAQOBL) is proposed for lesion segmentation in 
breast DCE-MRI.

2.	 Experiments are carried out using 100 breast DCE-MRI 
slices, and the results are investigated considering a set 
of relevant metrics: accuracy, sensitivity, specificity, pre-
cision, geometric-mean, F-measure, false-positive rate, 
DSC, and convergence graph.

3.	 The proposed method is compared with OBSCA, SCA, 
SMA, PSO, IMRF, and HMRF.

4.	 Discussion about the achieved results with both statisti-
cal and multi-criteria decision analysis.

5.	 The proposed method performs better than other meth-
ods.

The remainder of the paper has been organized as bel-
lows: The related works are discussed in Sect. 2. Section 3 
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describes the background which includes SCA algorithm 
and opposition-based learning theory. A description of 
breast MRI dataset is given in Sect. 4. Section 5 describes 
the proposed method. The proposed segmentation approach 
based on the SCAQOBL algorithm is presented in this Sec-
tion. Section 6 describes the experimental setting. Sections 7 
and 8 provide the results and discussion respectively. Finally, 
Sect. 9 provides a conclusion with recommendations for 
future work.

2 � Related works

Many optimization approaches and Evolutionary Algorithms 
(EA) have been developed for the segmentation of images so 
far. Segmentation of images using PSO is developed in [15]. 
The segmentation of Computed Tomography (CT) images is 
developed using the Genetic Algorithm (GA) in [16].

Adams et al. [17] proposed a high-performance approach, 
which is widely utilized in the state-of-the-art for medical 
images. In image segmentation, the Seeded Area Rising 
(SRG) technique has been proven to have excellent precision 
[18]. Azmi et al. [19] developed a self-training method for 
lesion detection in breast MRI. K-Closest of Support Vector 
Machine (SVM), Neighbors, and Bayesian are 3 supervised 
techniques that have been developed. Xi et al. [20] used 
a prior knowledge learning approach on 186 ultrasounds 
obtained with four distinct types of ultrasound devices. 186 
instances, 135 are benign and 51 are cancerous. Their find-
ings showed that the breast lesions segmentation process 
in experiential learning is both accurate and resilient. A 
Fuzzy C-Means (FCM) clustering for the segmentation of 
breast tumors was proposed by Feng et al. [21]. The infor-
mation extracted from every pixel, such as the strength of 
its neighbors, is extracted using an FCM approach based 
on Hausdorff distance in this study. The neighborhood area 
of each pixel changes and adapts based on shared knowl-
edge between the chosen pixel and neighbors. Euclid and 
Hausdorff distances are used to compute clustering costs. 
Patra et al. [22] devised lesion detection in breast DCE-MRI 
by thresholding and applying Student Psychological-based 
Optimization (SPBO). The proposed automatic segmenta-
tion method has an accuracy of 99.44 percent, a sensitiv-
ity of 96.84 percent, and a DSC of 93.41 percent. Si and 
Mukhopadhyay [23] developed a lesion detection method 
using Fireworks Algorithm (FWA)-based clustering in breast 
DCE-MRI. The segmentation approach based on modified 
hard-clustering with FWA has been developed. The lesions 
are retrieved from the segmented images. Kar and Si [24] 

developed a lesion detection method using a Multiverse 
Optimizer (MVO)-based clustering algorithm of breast 
DCE-MRI segmentation. A modified hard-clustering with 
MVO is developed for this purpose. Patra et al. [25] devel-
oped a Grammatical Fireworks Algorithm (GFWA)-based 
lesion segmentation method for breast DCE-MRI. On 25 
DCE-MRI slices from 5 patients, the proposed approach 
is being tested. Ha and Vahedi [26] developed MRI-based 
breast tumor diagnosis using Improved Deer Hunting Opti-
mization Algorithm based on a feature-based method and 
hybrid Convolution Neural Network (CNN). The purpose 
of this work is to use the preprocessing stage to simplify 
classification. It’s also a good idea to use a local binary pat-
tern and Haralick texture to extract features. The accuracy 
of this method is 98.89 percent as a result of the collected 
results, indicating its high potential and efficiency. Gihuijs 
et al. [27] developed a seeds-based region-growing algo-
rithm to segment the lesion from the Region of Interest 
(ROI) using thresholds. The user, however, needs to pick 
the seeds manually. Besides, the contrast agent can not act 
uniformly in the same tissue, which also reduces the preci-
sion of threshold-based approaches. As each of the kinetic 
enhancement curves is an N-D vector, attempts have been 
made to cluster such curves so that the ROI members of the 
divided sub-regions are the resulting clusters. Benjelloun 
et al. [28] introduced Deep Learning in DCE-MRI for auto-
mated breast tumor segmentation. They create a U-net fully 
CNN architecture. On each breast slice, the trained model 
can handle both detection and segmentation. They used 86 
DCE-MRI slices from 43 individuals with local breast can-
cer, obtained before and after chemotherapy, for a total of 
5452 slices. The model is trained and validated on 85 per-
cent and 15 percent of the data, respectively, and achieved 
a mean score of Intersection Over Union (IoU) of 76, 14 
percent. DCE-MRI of the breast utilizing the lesion segment 
approach proposed by Liang et al. [29]. Automated segmen-
tation is employed in computer-aided diagnosis tools, and 
this method automatically computes breast density in breast 
MRI. UNet breast segmentation for Fat-Sat MR slices intro-
duced by Zhang et al. [30] employing transfer learning based 
on the Non-Fat-Sat model. Deep learning segmentation is 
accomplished using U-net models with and without TL, with 
non-fat-sat model initialization of training data. To assess 
the segmentation results of both the U-net models, the DSC, 
and accuracy rate depending on all pixels are determined 
using the ground truth of each example. Wang et al. [31] 
developed a lesion segmentation method in breast DCE-MRI 
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using mixed 2D and 3D CNN with Multi-Scale Context 
(M2D3D-MC). M2D3D-MC achieved 76.4% DSC value.

From the literature survey, it is observed that SCA is 
never used in MRI segmentation as well as breast DCE-MRI 
segmentation to date. The use of SCAQOBL for entropy 
maximization-based breast DCE-MRI segmentation is pro-
posed in this research. The proposed method is discussed in 
the next section.

3 � Background

This section presents basic concepts about SCA and OBL 
theory.

3.1 � Sine cosine algorithm

SCA is an optimization technique that is population-based 
with a collection of random solutions, seeks the optimiza-
tion process. Such solutions are determined iteratively by 
an objective function during iterations. The SCA is based 
on the Sine-Cosine equation, which can be expressed as in 
optimization problems for exploration and extraction phases 
as follows:

where Xi
t indicates the location of the current solution in the 

i-th dimension at t-th iteration, r1/r2/r3 are random numbers, 
Pi designates the location of the destination points located 
in the i-th dimension, and || is the absolute value.

These combined equations to be applied as follows:

The planned r1 parameter is used to direct the next location. 
To achieve equilibrium between the stage of discovery and 
exploitation, the During the search process, dynamic fine-
tuning of r1 is done using Eq. (4) as:

where t denotes the present iteration, T denotes the highest 
number of iterations, and a denotes a constant.

The r2 parameter is used to determine whether the 
motion should be toward or away from the goal. r3 is a ran-
dom parameter for weighting. The r4 parameter is a random 
number in the span [0, 1] . The r4 parameter is a switching 
parameter that changes the change between the components 
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(4)r1 = a − t(a∕T)

of the sine and cosine in Eq. (3). Equations (3) uses condi-
tions r4 < 0.5 and r4 ≥ 0.5 for exploration and exploitation 
processes, respectively. The results of Eqs. (1) and (2) are 
based on sine and cosine functions. It refers to the region 
between two solutions in the search space.

3.2 � Quasi opposition‑based learning

Opposition-based learning (OBL), originally developed 
by Tizhoosh [32], has proven to be an effective method 
for some optimization problems and it is incorporated in 
metaheuristic algorithms for performance improvement 
[33–35]. SCA begins with an initial population vector, like 
other metaheuristic algorithms, which is randomly generated 
when there is no preliminary information available about 
the solution area. When predefined conditions are met, the 
phase of evolution terminates. The gap between the ideal 
solution and the estimate determines the calculation time. 
By testing the opposite solution at the same time, we can 
increase the chances of starting with our nearest solution. So 
as a preliminary solution, the one closest to the solution can 
be chosen. Indeed, according to probability theory, in 50% 
of cases the guess is farther to a solution than the opposite 
guess; for these cases starting with the opposite guess can 
accelerate convergence. In the current population, the same 
approach can be extended to any solution, not just to primary 
solutions.

We need to identify opposite numbers before focusing 
on opposition-based learning. Let x be a real number in the 
range [m, n] (x ∈ [m, n]) ; the opposite number is calculated 
by

Let X(x1, x2,… , xD) be a point inside the D dimensional 
space,

where x1, x2,… , xD ∈ R and xi ∈ [mi, ni] ∀   i   ∈   
{1, 2,… , D} . The opposite of the X point is described by 
X̌(x̌1, x̌2,… , , x̌D) where

To boost the OBL, quasi opposite points are used instead 
of opposite points [36]. Let X(x1, x2, ..., xD) be a point in a 
D-dimensional space with xi ∈ [ai, bi] be a candidate solu-
tion ∀ i ∈ {1, 2, ..., D} X̌q(x

q

1
, x

q

2
, ..., x

q

D
) should be the quasi-

opposite point of p. Assume that f(x) is a fitness function for 
evaluating candidate optimality. X̌(x̌1, x̌2, ..., x̌D) is the polar 
opposite of X(x1, x2, ..., xD) , according to the opposite point 
description. If f (X̌q) < f (X) , then point X is replaced with 
X̌q if minimization is achieved; otherwise, continue with X. 
As a result, the point and its quasi-opposite point are both 
examined at the same time, with the fitter one being evalu-
ated first. In certain cases, the only way to create an initial 

(5)x̌ = m + n − x

(6)x̌i = mi + ni − xi
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population is to use random numbers. Even if there is no 
priority, the principle of quasi opposition-based learning 
will help us find more suitable starting candidate solutions.

To calculate the quasi opposition-based solutions, first, 
we have to calculate the opposite solutions X̌ using Eq. (6). 
Then midpoint is calculated using the following equation:

Then finally quasi opposition-based solution is calculated 
by following equations:

where j = 1, 2,…D , and rand(0, 1) are uniformly distrib-
uted random number, D is the number of variables, aj and bj 
are the interval boundaries of the jth variable (xj ∈ [aj, bj]).

4 � Breast MRI dataset

Total 100 sagittal T2-weighted fat-suppressed DCE-
MRI images of 20 patients are collected from The Can-
cer Genome Atlas Breast Invasive Carcinoma Collection 
(TCGA-BRCA) [37, 38] in The Cancer Imaging Archive 
(TCIA)1. Every MRI slice that is larger than 256 × 256 is 
shrunk to 256 × 256 . Manual segmentation by a skilled radi-
ologist generates the ground truths, which are regarded as 
the gold standard [39]. The true value is assigned to the 
pixels that belong to the lesions in the ground truth images, 
while the false value is assigned to all other pixels.

(7)Cj = (aj + bj)∕2

(8)X̌
q

j
=

{
Cj + (X̌j − Cj) × rand(0, 1) if Xj < Cj

X̌j + (Cj − X̌j) × rand(0, 1) otherwise

5 � Proposed method

The following are the three steps of the proposed breast 
DCE-MRI segmentation method: 

1.	 Preprocessing
2.	 Segmentation
3.	 Postprocessing

The proposed method’s flowchart is shown in Fig. 1, and 
each step is described in the following.

5.1 � Preprocessing

The visual quality of MRI plays a critical role in appropri-
ately diagnosing treatment, which can be harmed by noise 
present throughout the acquisition process. The noise in 
MRI affects both clinical diagnostic functions and the seg-
mentation process [40]. The Anisotropic Diffusion Filter 
(ADF) [40] is used to de-noise the MR images. An ADF is a 
technique for eliminating noise without affecting significant 
portions of the image’s content. In [41], ADF is similar to an 
operation that creates a scale area, in which an image created 
by a diffusion process develops a parameterized family of 
increasingly obscure images. In this evolutionary operation, 
the beginning image is linearly and spatially transmuted. 
ADF is a generalization of this single action: it generates a 
spate of parameterized images, but each output image acti-
vates the localized content of the starting image, which is 
a mix of the initial and filter images. The presence of IIHs 
in MR images also complicates the segmentation process. 
In an MRI, IIHs are the smooth intensity changes within a 
previously homogeneous region [42]. The IIHs are corrected 
using a Max filter-based method [42].

Fig. 1   Outline of the proposed 
method

1  https://​wiki.​cance​rimag​ingar​chive.​net/​displ​ay/​Public/​TCGA-​
BRCA.

https://wiki.cancerimagingarchive.net/display/Public/TCGA-BRCA
https://wiki.cancerimagingarchive.net/display/Public/TCGA-BRCA
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5.2 � Segmentation

The goal of Entropy Maximization is to increase the number 
of homogeneous positions between them. To avail the pixel 
frequency in the image, the image histogram is determined. 
The entropy value is then calculated using pixel frequencies 
from histograms. The intended solutions are integer num-
bers in the [0, 255] span, because the image has grey values 
between 0 and 255.

Shannon entropy [43] is used in this work. This princi-
ple is applied to decide the amount of knowledge shown by 
any data in a probabilistic manner. Let’s say an image has 
homogeneous (k + 1) regions and k grey threshold measures 
at t1, t2, t3,⋯ , tk.

where h(i) indicates normalized frequency, fi indicates the 
frequency of ith gray level, and N is the total number of pix-
els in the image.

The Shannon Entropy Function is calculated as follows:

where, P1i =
h(i)

∑t1
i=0

h(i)
for 0 ≤ i ≤ t1,

P2i =
h(i)

∑t2
i=t1+1 h(i)

for t1 + 1 ≤ i ≤ t2
,

Pki =
h(i)

∑255

i=tk+1
h(i)

for tk + 1 ≤ i ≤ 255.

Entropy function H in Eq. (9) is utilized as an objective 
function and it is maximized using SCAQOBL for optimal 
threshold values for segmentation.

Proposed SCAQOBL algorithm The SCA algorithm 
has been used to resolve a wide range of issues and has 
proven to be a reliable, simple, and effective optimization 
procedure. However, there are still some flaws in how it 
addresses complex functional problems like falling into the 
local optima. An improved SCA algorithm (SCAQOBL) is 

h(i) =
fi

N
i = 0, 1, 2,⋯ , 255

(9)

H = −

t1∑

i=0

P1i
ln(P1i

) −

t2∑

i=t1+1

P2i
ln(P2i

)

−⋯ −

255∑

i=t
k

P
ki

ln(P
ki
)

suggested here to solve these issues. The definition of quasi 
opposition learning is embedded in the SCA in this section 
to increase convergence speed and also to boost its ability 
to handle optimization issues. Initialization and generation 
jumping based on the opposition are two goal phases that are 
expanded by the idea of the opposition foundation.

(i) Opposition-based initialization First, individuals of 
population Y are initialized using the following equation:

where yij is the jth element of ith search agent, [ymin, ymax] is 
the search space range and rand(0, 1) is the uniformly dis-
tributed random number.

The opposite population Y̌q is calculated using the QOBL 
scheme after the population Y of size n is initialized with 
D dimensional vectors at generation zero. Unlike an OBL 
scheme that generates an opposition point Y̌ , QOBL can gen-
erate opposite points within the search space. This instance 
is avoided by randomly initializing the opposite point in 
between the quasi point Q, and the boundary point that lies 
in the same direction as the opposite point. By using the 
scheme of opposition-based optimization, n fittest parameter 
vectors are selected from {Y ∪ Y̌q} to go through the evolu-
tion process.

(ii) Generation jumping In the opposition-based genera-
tion jumping phase, the opposite solutions of the original 
solutions are computed using the QOBL scheme with gen-
eration jumping probability Pgj . In this phase, an uniformly 
distributed random number r is generated in the span [0, 1]. 
If the random number r is less than generation jumping 
probability Pgj then quasi opposition-based solutions are 
computed and the n best solutions are chosen from origi-
nal solutions Y and quasi opposition-based solutions Y̌  . If 
the random number is greater than or equal to generation 
jumping probability then the basic operations of SCA are 
performed. So, n fittest individuals selected from {Y ∪ Y̌q} 
go to the next generation;

The pseudo-code of the proposed algorithm is presented 
in Algorithm 1. Opposition-based initialization phase has 
been implemented in steps 1-5 of Algorithm 1. Generation 
jumping phase has been implemented in steps 9-11 with an 
if condition in step 8. If this condition becomes fail, then 
operations of SCA have been performed in steps 13–16.

(10)yij = ymin + (ymax − ymin) × rand(0, 1)
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5.3 � Postprocessing

In this step, the lesions are eventually retrieved from the 
segmented MR images using the SCAQOBL technique. In 
DCE-MRI, the pixels belong to the regions of lesions hav-
ing hyper-intensities. Therefore, the segment labels of the 
regions of lesions having the highest values, and segmented 
images are thresholded using the highest segment labels. We 
have used region filling [44] to improve the lesion segmenta-
tion results for all the algorithms. Finally, utilizing the pixel 
position of the discovered lesions, the lesions are overlaid 
with the original MR images for localization.

Table 1   The parameter settings of algorithms

Algorithm Parameter Value

SCAQOBL Swarm size 30
Pgj 0.3

OBSCA [5] Swarm size 30
SCA [3] Swarm size 30
PSO [10, 51] Swarm size (N) 30

W 0.72984
C

1
1.49618

C
2

1.49618
SMA [10] Swarm size 30
IMRF [11] Maximum number of iterations 100
HMRF [12] Maximum iterations in EM 5

Maximum iterations in MAP 5

Algorithm 1 SCAQOBL
1: Randomly initiate the population of size n
2: Compute the fitness of the individuals
3: Compute the opposite solutions using QOBL
4: Evaluate the fitness of opposite solutions
5: Select the best n solutions from original and opposite solutions
6: t = 0
7: while (t < Tmax) do � Tmax is the maximum number of iterations
8: if rand(0, 1) < Pgj then
9: Generate opposite solutions using QOBL

10: Calculate the fitness of opposite solutions
11: Select the best n solutions from original and opposite solutions
12: else
13: Improve the location of search agents using Eq. 4
14: Calculate each of the search agents by the objective function
15: Improve the best solution calculated so far
16: Improve r1, r2, r3, and r4
17: end if
18: t = t + 1
19: end while
20: Return the best result calculated so far as the global optimum

Time and Space Complexity Analysis In Algorithm 1, 
step 1 takes time O(n.D) . Step 2 takes time O(n) for fit-
ness calculation. Step 3 takes time O(n.D) . Step 4 takes time 
O(n) . Step 5 takes time O(n2) . Step 6 takes time O(1) . Steps 
8 - 17 take time O(n2) . Steps 7 - 19 take time O(Tmax.n2) , 
where Tmax is the maximum number of iterations. Putting all 
together, the time complexity of the proposed SCAQOBL 
algorithm is O(Tmax.n2) . Space complexity of the proposed 
algorithm SCAQOBL is O(n.D).

6 � Experimental setup

The parameters of its comparative algorithms are taken from 
the articles in which they were developed. The parameter 
settings are given in Table 1. A maximum number of itera-
tions for all the metaheuristic algorithms is set to 100.

The segmentation method was implemented on an envi-
ronment with IntelⓇ CoreTM i3-8130U @ 2.20GHz CPU, 
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Windows 7 Ultimate (64-bit) operating system, RAM 4 GB, 
and MATLAB 2017b software.

6.1 � Performance measurement

It is a difficult task to design or choose an appropriate 
effectiveness measure of image segmentation. Information 
relevant to the task, whether diagnostic or interventional, 
should be provided by the performance assessment. Sensitiv-
ity, accuracy, precision, specificity, FPR, G-mean, DSC, and 
F-measure are some of the parameters used and details of 
these measures can be obtained from [22, 49]. The definition 
of each metric is provided in Table 2.

7 � Results

Lesion segmentation techniques for breast DCE-MRI are 
proposed in this study. The noise and IIHs in the MR images 
make segmentation more difficult. As a result, an ADF is 

used to remove noise from MR images, and IIHs correction 
is done during the preprocessing stage. The identical experi-
ments are performed 10 times for a single image because 
the SCAQOBL technique starts with a randomly initialized 
population.

7.1 � Quantitative results

Over 10 × 100 findings, the quantitative outcomes of the 
mean value and standard deviation value of performance 
evaluation indicators are examined. The novel approaches 
are evaluated and compared to the traditional OBSCA, SCA, 
PSO, SMA, IMRF, and HMRF procedures.

The quantitative results of the proposed method compared 
to six methods are provided in Table 3 and bold-faced results 
indicate better.

It is observed from Table 3 that the mean accuracy of 
the proposed method is higher than that of OBSCA, SCA, 
SMA, PSO, IMRF, and HMRF. SCAQOBL has an accuracy 
of 99.11% , which is higher than all other approaches. The 

Table 3   Mean and standard 
deviation (in parenthesis) of 
performance evaluation scores 
(in %)

Performance Metrics SCAQOBL OBSCA SCA PSO SMA IMRF HMRF

Accuracy 99.11 98.60 98.07 97.36 96.80 96.13 96.60
(0.0262) (0.0361) (0.0465) (0.0582) (0.0841) (0.0741) (0.0703)

Sensitivity 97.78 96.99 95.69 92.78 88.06 87.51 92.69
(0.0233) (0.0473) (0.0829) (0.0933) (0.1342) (0.1458) (0.1179)

Specificity 99.15 98.76 98.22 97.64 96.98 96.40 96.73
(0.0292) (0.0445) (0.0419) (0.0535) (0.0681) (0.0697) (0.0685)

Precision 93.32 92.60 91.86 82.57 80.20 82.64 79.85
(0.0775) (0.0759) (0.0891) (0.1772) (0.1276) (0.2528) (0.1734)

G-mean 98.54 98.16 96.98 94.38 93.55 93.46 92.70
(0.0412) (0.0239) (0.0478) (0.0708) (0.0707) (0.0597) (0.0931)

F-measure 94.28 92.92 91.89 84.45 81.56 82.48 83.68
(0.0434) (0.0629) (0.0742) (0.1012) (0.0728) (0.2128) (0.1113)

FPR 0.85 1.24 1.78 2.36 3.02 3.60 3.27
(0.0142) (0.0193) (0.0185) (0.0182) (0.0143) (0.0128) (0.0136)

DSC 95.42 91.36 88.98 84.24 84.06 83.59 81.84
(0.0374) (0.0798) (0.0763) (0.0985) (0.1206) (0.2125) (0.2132)

Table 2   Performance metrics Metric name equation

Accuracy [22, 49] (TP + TN)/(TP + FN + TN + FP), TP: True Positive Rate, FP: 
False Positive Rate, TN: True Negative Rate, FN: False Negative 
Rate

Sensitivity (recall) [22, 49] TP/(TP + FN)
Specificity [22, 49] TN/(TN + FP)
Precision [22, 49] TP/(TP + FP)
G-Mean [22, 49]

√
Sensitivity × Specificity

F-Measure [22,49] 2×recall×precision

recall+precision

FPR [22, 49] 1- Specificity
DSC [22, 49] DSC(A,B)=2|A∩B|

|A|∪|B| , A: segmented image, B: ground truth
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suggested method’s mean sensitivity score is 97.78 percent, 
and its mean specificity score is 99.15 percent, higher than 
that of the OBSCA, SCA, SMA, PSO, IMRF, and HMRF 
approaches. The mean precision value for SCAQOBL 
is 93.32 percent, whereas the mean precision scores for 
OBSCA, PSO, SCA, SMA, IMRF, and HMRF are 92.60 
percent, 91.86 percent, 82.57 percent, 80.20 percent, 82.64 
percent, and 79.85 percent, respectively.

The proposed technique outperforms OBSCA, SCA, 
PSO, SMA, IMRF, and HMRF with a mean G-mean score 
of 98.54 percent.

The F-measure is used to determine the sensitivity-to-
precision trade-off. The proposed technique has a mean 
F-measure of 94.28 percent, which is significantly higher 
than OBSCA, SCA, SMA, PSO, IMRF, and HMRF. The 

Fig. 2   Boxplot (methods versus 
Accuracy) of comprehensive 
classification performance

Fig. 3   Boxplot (methods versus 
Sensitivity) of comprehensive 
classification performance

Fig. 4   Boxplot (methods versus 
Specificity) of comprehensive 
classification performance
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F-measure refers to the precision with which lesion tissues 
in the breast are classified. The higher this indicator’s value, 
the more likely it is that the SCAQOBL classification can 
accurately identify lesions in breast MRI.

The false alarm rate is another form of FPR, it determines 
the proportion of incorrectly labeled negative samples to the 
total number of negative samples. Because FPR is unaffected 

by changes in data distribution, both metrics can be used 
with unbalanced data. The proposed approach (SCAQOBL) 
has a mean FPR of 0.85 percent, which is significantly lower 
than OBSCA, SCA, PSO, SMA, IMRF, and HMRF.

The proposed method’s mean DSC value is 95.42 per-
cent, which is greater than the methods of OBSCA, SCA, 
PSO, SMA, IMRF, and HMRF. The higher the DSC value, 

Fig. 5   The boxplot (methods 
versus Precision) of comprehen-
sive classification performance

Fig. 6   Boxplot (methods versus 
G-mean) of comprehensive 
classification performance

Fig. 7   Boxplot (methods versus 
F-measure) of comprehensive 
classification performance
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the larger the overlap with the segmentation lesions’ ground 
truths. The suggested SCAQOBL-based method outper-
forms the OBSCA, SCA, PSO, SMA, IMRF, and HMRF in 
the examination of the given quantitative data.

It’s also important to consider the robustness or stability 
of lesion detection segmentation approaches as the proposed 
SCAQOBL has random behaviors due to which results are 
different in different runs. It is calculated over numerous 
runs in terms of the standard deviation of output variables, 
with a lower standard deviation indicating higher resilience. 
Because the standard deviations in Table 3 are less than that 
of six other approaches, the suggested segmentation proce-
dure is robust for breast lesion detection in DCE-MRI.

A boxplot is a type of chart often used in explanatory data 
analysis. Box plots visually show the distribution of numeri-
cal data and skewness by displaying the data quartiles and 
averages. Boxplots show the five-number summary of a set 
of data: minimum score, first quartile, median, third quartile, 
and maximum score. A boxplot is a graph that shows how 
the values are distributed in the details. Boxplots, on the 
other hand, can appear rudimentary when contrasted with a 
density plot. Figure 2 shows that the proposed SCAQOBL 
has a greater median classification accuracy result than the 

other six existing approaches. Because the accuracy results 
are compacted, the lowest difference and maximum value 
are quite small. SCAQOBL also has a higher median sensi-
tivity value than the other approaches shown in Fig. 3. The 
recommended SCAQOBL has a greater median specificity 
of categorization than the other approaches, as shown in 
Fig. 4. SCAQOBL also has a higher median precision value 
than the other approaches shown in Fig. 5. SCAQOBL has 
a higher median G-mean, F-measure, FPR, and DSC value 
than competitive methods as observed in Figs. 6,7, 8, and 9, 
respectively. Furthermore, it is also observed that the median 
of all performance measured from SCAQOBL is statistically 
better than others with significance level 0.05.

Fig. 8   Boxplot (methods versus 
FPR) of comprehensive clas-
sification performance

Fig. 9   Boxplot (methods versus 
DSC) of comprehensive clas-
sification performance

(a) MRI slice (b) Ground truth

Fig. 10   For Patient-1 a MR slice, b Ground truth
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7.2 � Qualitative results

For the validation of this strategy, a total of 100 images of 
20 patients are employed. Due to space constraints, only 
the results for the 1 image of 1 patient is shown from a 
total of 100 test results. The original MR slice and ground 
truth image are given in Fig. 10. Figure 11 for patient-1 
shows segmented breast lesions using various approaches. 
The localized lesional images are provided in Figs. 12 for 
patient 1.

By comparing the ground truth image in Fig. 10b with the 
SCAQOBL segmented image in Fig. 11a for MRI images of 

patient-1, it is clear that SCAQOBL has virtually completely 
segmented the lesion regions. When compared to the ground 
truth image, the suggested SCAQOBL-based technique per-
forms well in detecting lesions in the image.

It may clearly be shown in Fig. 11b that OBSCA detects 
some healthy tissues as lesions. When compared to the 
ground truth image, the OBSCA-based technique does not 
perform well in detecting lesions in the image.

It may clearly be shown in Fig. 11c that SCA detects 
certain healthy tissues as lesions. When compared to the 
ground truth image, the SCA technique does not perform 
well in detecting lesions in the image.

Fig. 11   For Patient-1 a–g 
SCAQOBL, OBSCA, SCA, 
PSO, SMA, IMRF, and HMRF 
respectively

(a) SCAQOBL (b) OBSCA (c) SCA (d) PSO

(e) SMA (f) IMRF (g) HMRF

Fig. 12   Localized lesions 
(bright colored spot) in MR 
images for patient-1 a – g 
SCAQOBL, OBSCA, SCA, 
PSO, SMA, IMRF, and HMRF, 
respectively

(a) SCAQOBL (b) OBSCA (c) SCA (d) PSO

(e) SMA (f) IMRF (g) HMRF

Table 4   ANOVA Test Statistics 
based on DSC

Source of Variance SS df MS F p-value F-crit.

Between Groups 15319.86 6 2553.309 13.9037 5.76E-15 2.1116
Within Groups 127264.1 693 183.6423
Total 142584 699
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It may clearly be shown in Fig. 11d for MRI slice of 
patient-1 that PSO detects certain healthy tissues as lesions. 
When compared to the ground truth image, the PSO-based 
technique does not perform well in detecting lesions in 
the image. It may be seen in the SMA segmented image 
in Fig. 11d that some lesions are not segmented by SMA. 
When compared to the ground truth image, the SMA-based 
technique does not perform well in detecting lesions in the 
image. IMRF detects certain healthy tissues as lesions. In 
comparison to the ground truth image, this approach does 
not do well in detecting lesions in the image. Some healthy 

tissues are segmented by HMRF, as shown in Fig. 11g. 
These approaches do not perform well in detecting lesions 
for the images.

7.3 � Statistical analysis

Statistical analysis has been conducted based on DSC using 
one-way ANOVA [13] followed by posthoc test Tukey Hon-
estly Significant Difference (HSD) [14] to validate the seg-
mentation performance. DSC indicates the overlapping ratio 
of the segmented lesions to the ground truths. The better 
the performance, the higher the DSC rating. The ANOVA 
test result is given in Table 4. It is observed from this table 
that the p-value of the ANOVA test is 5.76E − 15 which is 
less than the significant level at � = 0.05 . After the ANOVA 
test, the suggested SCAQOBL method is compared to the 
other methods using the Tukey HSD statistical test, and the 
result is presented in Table 5. With a significance threshold 
of � = 0.05 , Table 5 shows that SCAQOBL statistically out-
performs the other methods.

7.4 � Multi‑criteria decision analysis

Multi-Criteria Decision Analysis (MCDA) [45] has been 
conducted using the well-known TOPSIS method and this 
philosophy is adopted from the study [22, 46]. Multiple cri-
teria are used here, including sensitivity, accuracy, specific-
ity, precision, G-mean, FPR, DSC, and F-measure are all 
terms for the same thing. Because low FPR numbers imply 
better, yet greater values of other criteria indicate better, 
FPR clashes with other criteria. Table 6 describes the ranks 
obtained from a TOPSIS technique. The SCAQOBL method 
has the greatest ranking, according to Table 6. The OBSCA 
approach is then followed by the SCAQOBL method. It’s 
also worth noting that IMRF is near the bottom of the list.

Table 5   Tukey HSD Test Statistics based on DSC

Sl. No. Comparison Comparison with T Result 
(Significant 
at �=0.05)

1 SCAQOBL vs OBSCA 4.06 > 3.9895 yes
2 SCAQOBL vs SCA 6.44 > 3.9895 yes
3 SCAQOBL vs PSO 11.18 > 3.9895 yes
4 SCAQOBL vs SMA 11.36 > 3.9895 yes
5 SCAQOBL vs HMRF 11.83 > 3.9895 yes
6 SCAQOBL vs IMRF 13.58 > 3.9895 yes

Table 6   MCDA rank Methods Rank

SCAQOBL 1
OBSCA 2
SCA 3
PSO 4
SMA 5
HMRF 6
IMRF 7

Fig. 13   Convergence graph for 
MRI slice in Figure 10a 
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7.5 � Computational time cost analysis

According to our findings, SCAQOBL’s average CPU execu-
tion time is 6.3959 seconds. OBSCA takes an average of 
5.9114 seconds to execute. SCA takes an average of 2.9114 
seconds to execute. The average execution time of PSO and 
SMA is 2.8809 seconds and 2.9905 seconds, respectively. 
IMRF takes an average execution time of 2.9245 seconds, 
while HMRF’s average execution time is 2.5954 seconds. 
When compared to all existing approaches, the proposed 
method takes a few more times to execute on the CPU, but 
it performs better in segmentation.

7.6 � Convergence analysis

Fig. 13 shows the convergence graphs for the image in 
Fig. 10a. The entropy values, i.e., best objective function val-
ues are displayed against the Function Evaluations (FEs) in 
graphs. The graph depicts how far the search has progressed 
in finding the optimum solution. The convergence behavior 
of SCAQOBL is better than that of other metaheuristic algo-
rithms, as shown by the convergence graphs. After roughly 
100 FEs, the convergence graph in Fig.  13 shows that 
SCAQOBL converges very close to the optimal outcome. 
SCAQOBL consistently outperforms OBSCA, SCA, SMA, 
and PSO. SCAQOBL converges with a very close to the best 
result after around 500 FEs, but OBSCA converges with a 
very close to the best result after about 1200 FEs, according 
to the convergence graph demonstrates the SCAQOBL algo-
rithm’s superior searching ability for entropy maximization.

Better segmentation performance in breast fat-suppressed 
DCE-MRI is achieved by SCAQOBL compared to OBSCA, 
SCA, SMA, PSO, IMRF, and HMRF, according to the 
above examination of both quantitative and qualitative data. 
According to the results of the trials, SCAQOBL is efficient 
and successful in breast lesion segmentation in DCE-MRI.

As evidenced by the foregoing both quantitative and 
qualitative analysis, the suggested technique based on 
SCAQOBL outperforms other compared methods in the 
lesion detection in breast DCE-MRI. Because SCAQOBL 
has high searching ability and convergence properties, it is 
effective at determining appropriate threshold values for 
segmentation.

8 � Discussion

In this work, we have proposed an algorithm for breast 
tumor segmentation. The proposed algorithm uses sagittal 
T2-weighted fat-suppressed DCE-MRI data and relies on 
Shannon entropy maximization features. The algorithm is 
applied to the DCE-MRI dataset, and it gives better results 

(performance evaluation) than the state-of-the-art methods 
as shown in Table 3. In the preprocessing step, we applied 
denoising using ADF, and calculated IIHs using max fil-
ter based method. In SCAQOBL, the QOBL scheme is 
employed in the initialization phase, and the generation 
jumping phase results in better exploration in the search 
space than SCA. We have found that basic SCA suffers 
from premature convergence in local optima due to a lack 
of diversity in the search space. Hence, we need to improve 
the SCA to achieve a better quality of solutions. Therefore, 
we have developed quasi opposition-based SCA namely 
SCAQOBL in this article. After the denoised image has 
been obtained, entropy maximization is utilized to deter-
mine the suitable threshold values for segmentation. The 
purpose of increasing the number of homogeneous sites 
between them is to maximize entropy. The entropy value 
is then calculated using pixel frequencies from histograms. 
The objective function, i.e., entropy function is maximized 
by using the SCAQOBL algorithm. In the postprocessing 
step, the lesions are eventually retrieved from the segmented 
MR images using the SCAQOBL technique. We have used 
region filling to improve the segmentation results for all 
the algorithms. The statistical analysis method namely, the 
one-way ANOVA test followed by the post-hoc Tukey Hon-
estly Significant Difference (HSD) test is used for statistical 
analysis of the results. A boxplot is a graph that shows how 
the values are distributed in the details. Boxplots, on the 
other hand, can appear rudimentary when contrasted with 
a density plot. Figures 2, 3, 4, 5, 6, 7, 8 and 9 show that 
the proposed SCAQOBL has a greater median classification 
result than the other six existing approaches.

Furthermore, we use Multi-Criteria Decision-Making to 
evaluate overall performance based on the aforementioned 
criteria. In the experiments, the proposed methodology out-
performs the six compared methods. The convergence graph 
demonstrates the SCAQOBL algorithm’s superior searching 
ability for entropy maximization. The quantitative results 
with both statistical analysis and multi-criteria decision anal-
ysis, and qualitative results establish that the proposed lesion 
segmentation method outperforms other compared methods.

9 � Conclusion with potential future works

The goal of this research is to look into and build an effi-
cient method for breast DCE-MRI segmentation to help 
radiologists diagnose, and treatment. This work describes 
a SCAQOBL method for multi-level thresholding of breast 
DCE-MRI to detect lesions. The SCAQOBL algorithm 
is used to identify the best threshold values by maximiz-
ing entropy. On 100 T2-weighted sagittal MR images, the 
suggested method SCAQOBL is used. The experimental 
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findings reveal the effectiveness of the suggested technique, 
which has obtained greater performance in terms of sen-
sitivity, accuracy, f-measure, precision, specificity, DSC, 
and G-mean when compared to the existing OBSCA, SCA, 
PSO, SMA, IMRF, and HMRF methods. The average perfor-
mance of the suggested technique evaluated by the MCDM 
method is likewise greater based on the given parameters. 
The proposed approach is effective at detecting lesions in 
breast DCE-MRI.

In the future, we intend to apply the SCAQOBL-based 
segmentation method for lesion detection in the MRI of 
the brain, liver, kidney, soft tissue sarcoma, etc. We also 
intend to develop enhanced SCAs by incorporating other 
OBL schemes and applying them in the segmentation of bio-
medical images. In this work, we have used Shannon entropy 
for multi-level thresholding. We intend to investigate other 
entropy like Tsallis entropy, Rényi entropy, Kapur entropy, 
etc. in the proposed method. Multi-objective SCA (MO-
SCA) [47] can be applied to segment the breast DCE-MRI 
as a future work of this study.
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