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Abstract. In this paper, bipolar fuzzy planar graph is defined and studied several properties. The bipolar fuzzy planar graph
is defined in a very interesting way. The parameter “degree of planarity” measures the planarity of a bipolar fuzzy graph.
The other relevant terms such as strong edges, bipolar fuzzy faces, strong bipolar fuzzy faces are defined here. A very close
association of bipolar fuzzy planar graph is bipolar fuzzy dual graph. This is also defined and several properties of it are
studied. Bipolar fuzzy planar graph and bipolar fuzzy dual graph have many applications in different fields including design
of social network, design of subway tunnel or routes, gas or oil pipelines, image segmentation, etc.
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1. Introduction

Graph theory is now become an important topic
in research area due to its application in real world.
There are many real world applications of graph
theory in which crossing between edges is compli-
cated such as computer networks, circuit designing,
subways, utility lines, flyovers, etc. After the devel-
opment of graph theory, Rosenfeld [26] introduced
fuzzy graph theory and then, the fuzzy graph theory
is growing rapidly with a large number of branches.
In 1998, the concept of bipolar fuzzy set is intro-
duced by Zhang [39] as a generalization of fuzzy set.
A bipolar fuzzy set is a generalization of Zadeh’s
fuzzy set. Authors may refer [2, 3, 5, 6, 8, 15–19,
25, 28–30] for more information on fuzzy sets as
well as on fuzzy graphs. Abdul-jabbar et al. [1] and
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Nirmala and Dhanabal [20] introduced the concept
of fuzzy planar graph. Recently, Samanta and Pal
[21, 34] introduced fuzzy planar graph in a differ-
ent way. In these papers, they also introduced fuzzy
faces, strong fuzzy planar graphs, fuzzy dual graphs,
etc. Pramanik et al. [22] have defined interval-valued
fuzzy planar graph and investigated several proper-
ties. Also, they have introduced fuzzy φ-tolerance
competition graph in [23] and interval-valued fuzzy
φ-tolerance competition graph in [24]. Ghorai and
Pal [10, 11] have recently worked on m-polar fuzzy
planar graphs. They have also discussed certain types
of product bipolar fuzzy graphs in [12]. Ghorai et al.
[13] have given new concepts of regularity in prod-
uct m-polar fuzzy graphs. Recently, Sahoo and Pal
[27] have discussed on product of intuitionistic fuzzy
graphs and degree.

Due to lack of space and huge population, the
necessity of flyovers, subway tunnels, metro-lines
increases. But crossing of routes can be accepted,
since the crossing of subway tunnels, metro-lines,
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etc. are very expensive in some cases. It is clear that,
crossing of one congested and a low congested route
is more safer than crossing of two congested route.
The term “congested”, “low congested” are vague
and hence can not be handled in crisp graph. These
vague terms can be dealt better in bipolar fuzzy graph
by assigning some positive membership and nega-
tive membership values. In general, one can try to
place the communication lines at different heights
when there is need to cross the lines. In case of elec-
trical wires it is not a big issue, but it causes huge
expenses for some type of lines such as, building
one flyover over another. Using planar graphs, these
type of problems can be modeled and inspected fur-
ther for reducing the cost and space of construction.
In crisp planar graphs, crossing of lines are strictly
not allowed. So, in such type of modeling the real
applications where crossing of lines are necessary,
can not be represented by crisp planar graphs. Using
decomposition of planar graphs, various computa-
tional challenges including image segmentation or
shape matching is solved.athematical sense, strong
route means highly congested route and weak route
means low congested route. Thus in city planning,
crossing between a strong route and a weak route is
more safer than crossing between two strong routes.

In this modern age, image analysing, image seg-
menting, image shrinking, etc. are growing and useful
research topic. Images are captured and stored in
terms of pixel with some parametric informations
such as intensity of colours, distance of pixels, size of
pixels, etc. Taking pixels as vertices and intensity and
non-intensity of pixels as positive and negative mem-
bership values respectively, an image information can
be represented as a bipolar fuzzy graph.

Motivated from these ideas, bipolar fuzzy planar
graph is introduced, which is itself a bipolar fuzzy
graph with some degree of planarity. Two procedu-
ral applications namely “image shrinking” and “city
planning” are discussed in Section 5.

Recently, the bipolar fuzzy graphs have been dis-
cussed in [2, 4, 9]. In these articles, the concepts
of neighbourly irregular bipolar fuzzy graphs, neigh-
bourly totally irregular bipolar fuzzy graphs, highly
irregular bipolar fuzzy graphs and highly totally
irregular bipolar fuzzy graphs have been introduced.
Samanta and Pal [32] have also worked on bipolar
fuzzy hypergraphs. There are so many related works
found in [31, 33, 35–37].

In this paper, we defined bipolar fuzzy planar graph
and bipolar fuzzy dual graph and presented several
properties.

2. Preliminaries

A graph G = (V, E) is a representation of a set V

of objects (vertices) where some pairs of objects are
connected by links (edges), where the set E of such
pairs is defined to be a subset of V × V . G is finite
when V and E are finites. An infinite graph is one with
an infinite set of vertices or edges or both. Most com-
monly in graph theory, it is implied that the graphs
discussed are finite. A multigraph is a graph contain-
ing multiple edges and without self loops. There is
no unique geometric representation of a graph.

Embedding is a geometrical representation of a
graph in any surface so that no edges intersect. A
graph G is planar if it can be embedded in the plane.
So the graph is non-planar if it is not planar that is,
it can not be drawn without crossing. A planar graph
splits the plane into a set of regions, called faces.
The length of a face in a planar graph G is the total
length of the closed walk in G bounding the face. The
portion of the plane lying outside is infinite region.

In graph theory, the dual graph of a given planar
graph G is a graph which has a vertex corresponding
to each faces of G, and the graph has an edge joining
two neighboring faces for each edge in G, for a certain
embedding of G.

A fuzzy set A on an universal set X is meant
by a mapping m : X → [0, 1], which is called the
membership function. A fuzzy set is denoted by A =
(X, m).

A fuzzy graph [26] ξ = (V, σ, μ) is a non-empty set
V with the pair of functions σ : V → [0, 1] and μ :
V × V → [0, 1] such that for all x, y ∈ V , μ(x, y) ≤
min{σ(x), σ(y)}, where σ(x) and μ(x, y) represent the
membership values of the vertex x and of the edge
(x, y) in ξ respectively. A loop at a vertex x ∈ V in ξ

is represented by μ(x, x) /= 0. An edge is non-trivial
if μ(x, y) /= 0. A fuzzy graph ξ = (V, σ, μ) is com-
plete if μ(u, v) = min{σ(u), σ(v)} for all u, v ∈ V ,
where (u, v) denotes the edge between the vertices u

and v.
Several definitions of strong edge are available

in literature. Among them the definition of [7] is
more suitable for our purpose. The definition is given
below:

For the fuzzy graph ξ = (V, σ, μ), an edge (x, y) is
called strong [7] if 1

2 min{σ(x), σ(y)} ≤ μ(x, y) and
weak otherwise. The strength of the fuzzy edge (x, y)
is characterized by the value μ(x,y)

min{σ(x),σ(y)} .
Let V be not an empty set. A bipolar fuzzy set

(BFS) [14, 39] B in V is characterized by B =
{(V, μP

B(v), μN
B (v))|v ∈ V }, where μP

B : V → [0, 1]
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and μN
B : V → [−1, 0] are positive membership

function and negative membership function respec-
tively. The positive membership value μP

B(v) is used
to denote the amount which the element v satisfies
the property corresponding to a bipolar fuzzy set B,
and the negative membership value μN

B (x) to denote
the amount which the element v satisfies the implicit
counter-property to some extent corresponding to a
bipolar fuzzy set B. If μP

B(v) /= 0 and μN
B (v) = 0,

then v is considered that it has only positive satis-
faction for B. If μP

B(v) = 0 and μN
B /= 0, then v is

considered that it does not satisfy the property ofB but
it satisfies the counter-property of B to some extent.
When the membership function of the property over-
laps that of its counter property over some portion of
V , μP

B(v) /= 0 and μN
B (v) /= 0.

For the sake of simplicity, we shall use the sym-
bol B = (μP

B, μN
B ) for the bipolar fuzzy set B =

{(v, μP
B(v), μN

B (v))|v ∈ V }.
Let V be a nonempty set. Then we call the map-

ping B = (μP
B, μN

B ) : V × V → [0, 1] × [−1, 0] a
bipolar fuzzy relation [2] on V such that μP

B(u, v) ∈
[0, 1] and μN

B (u, v) ∈ [−1, 0].
A bipolar fuzzy graph [2] (BFG) ξ of a (crisp)

graph G = (V, E) is a pair ξ = (A, B, V, E) where
A = (μP

A, μN
A ) is a bipolar fuzzy set on V and

B = (μP
B, μN

B ) is a bipolar fuzzy relation on E =
V × V such that μP

B(u, v) ≤ min{μP
A(u), μP

A(v)} and
μN

B (u, v) ≥ max{μN
A (u), μN

A (v)} for all (u, v) ∈ E.
The underlying crisp graph of a BFG ξ =

(A, B, V, E) is the crisp graph G = (V, E) where
E = {(u, v) | μP

B(u, v) > 0 or μN
B (u, v) < 0}.

A BFG ξ = (V, E, A, B) is said to be complete
if μP

B(u, v) = min{ μP
A(u), μP

A(v)} and μN
B (u, v) =

max{ μN
A (u), μN

A (v)} for all u, v ∈ V .
A BFG is called strong BFG if μP

B(u, v) =
min{μP

A( u), μP
A(v)} and μN

B (u, v) = max{μN
A (u),

μN
A (v)} for all edges (u, v) in the bipolar fuzzy graph.
If the vertex set V of a BFG (V, E, A, B) can be

partitioned into two non-empty subsets V1 and V2
such that μP

B(u, v) = 0 and μN
B (u, v) = 0 if u, v ∈

V1 or u, v ∈ V2. μP
B(u, v) > 0 and μN

B (u, v) < 0 or
μP

B(u, v) = 0 and μN
B (u, v) < 0 or μP

B(u, v) > 0 and
μN

B (u, v) = 0 if u ∈ V1(or u ∈ V2) and v ∈ V2( or v ∈
V1), the bipolar fuzzy graph is said to be a bipolar
bipartite fuzzy graph. A bipolar bipartite fuzzy graph
is said to complete if μP

B(u, v) = min{μP
A(u), μP

A(v)}
and μN

B (u, v) = max{μN
A (u), μN

A (v)}.
Now, we define bipolar fuzzy multi-set. A mul-

tiset over a non-empty set V is simply a function
d : V → N, where N is the set of natural numbers.
Yager [38] first discussed fuzzy multisets, although

he used the term “fuzzy bag”. An element of a non-
empty set V may come more than once with the same
or different membership values. A natural general-
ization of this elucidation of multiset heads to the
notion of fuzzy multiset, or fuzzy bag, over a non-
empty set V as a mapping C̃ : V × [0, 1] → N. The
membership values of v ∈ V are denoted by vμj , j =
1, 2, . . . , p where p = max{j : vμj /= 0}. So the
fuzzy multiset can be denoted as M = {(v, vμj ), j =
1, 2, . . . , p|v ∈ V }. Bipolar fuzzy multiset (BFMS)
is another generalisation of multi-set. The definition
is given below.

Definition 1. Let V be not an empty set.
Also let, μP

i : V → [0, 1] and μN
i : V → [−1, 0]

be mappings defined for all v ∈ V and i =
1, 2, . . . , p where μP

p (x) /= 0 or μN
p (x) /= 0. The

BFMS on V is denoted as {(V, μP
i , μN

i ), i = 1, 2,

. . . , p where μP
p (x) /= 0 or μN

p (x) /= 0}.

Example 1. Let V = {a, b, c, d}. A BFMS on V

is {(a, 0.5, −0.3), (a, 0.4, −0.6), (b, 0.6, −0.2),
(c, 0.6, −0.3), (d, 0.2, −0.4), (d, 0.4, −0.3), (d, 0.3,

−0.5)}. Here μP
1 (a) = 0.5, μP

2 (a) = 0.4 and
μN

1 (a) = −0.3, μN
2 (a) = −0.6, etc.

2.1. Bipolar fuzzy multigraph

In this section, bipolar fuzzy multigraph (BFMG)
is introduced. Let V be a non-empty set. Also, let σP

i :
V → [0, 1], σN

i : V → [−1, 0] be the mappings
such that A = {(V, σP

i , σN
i ), i = 1, 2, . . . , p where

σP
p (x) /= 0 or σN

p (x) /= 0, x ∈ V } be the BFMS on

V . Let B = {(V × V, μP
j , μN

j ), j = 1, 2, . . . , q

where μP
q (x, y) /= 0 or μN

q (x, y) /= 0, x, y ∈ V × V }
be a bipolar fuzzy multi-set on V × V . (A, B, V, E)
is said to be BFMG if μP

j (x, y) ≤ min{σP
i (x), σP

i (y)}
and μN

j ≥ max{σN
i (x), σN

i (y)}, i = 1, 2, . . . , p, j =
1, 2, . . . , q for all x, y ∈ V . An example of bipolar
fuzzy multigraph is given below.

Example 2. Let V = {a, b, c} be a set of ver-
tices. Let σP (a) = 0.7, σN (a) = −0.1, σP (b) =
0.8, σN (b) = −0.3, σP (c) = 0.5, σN (c) = −0.4 and
μP

1 (a, b) = 0.5, μN
1 (a, b) = −0.2, μP

2 (a, b) = 0.6,
μN

2 (a, b) = −0.2, μP
3 (a, b) = 0.7, μN

3 = −0.1,
μP

4 (b, c) = 0.3, μN
4 (b, c) = −0.2, μP

5 (b, c) = 0.2,
μN

5 (b, c) = −0.1, μP
6 (b, c) = 0.4, μN

6 (b, c) = −0.3,
μP

7 (c, a) = 0.4, μN
7 (c, a) = −0.1, μP

8 (c, a) = 0.3,
μN

8 (c, a) = −0.2, μP
9 (c, a) = 0.1, μN

9 (c, a) = −0.1.
Then A = {(a, 0.7, −0.2), (b, 0.4, −0.5), (c, 0.5,

−0.4)} and B = {((a, b), 0.5, −0.2), ((a, b), 0.6,
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Fig. 1. An example of bipolar fuzzy multigraph.

−0.2), ((a, b), 0.7, −0.1), ((b, c), 0.3, −0.2), ((b, c),
0.2, −0.1), ((b, c), 0.4, −0.3), ((c, a), 0.4, −0.1),
((c, a), 0.3, −0.2), ((c, a), 0.1, −0.1)}. Thus, (A, B,

V, E) is a BFMG (see Fig. 1).

3. Bipolar fuzzy planar graphs

Planarity is foremost problem in connecting the
water lines, wire lines, printed circuit design, gas
lines, etc. But, some times little crossing may be
accepted to these design of such lines or circuits. So
bipolar fuzzy planar graph (BFPG) is an important
topic for these connections.

If there is atleast one intersection of edges in all
possible geometrical representation of a crisp graph,
the graph is called non-planar graph. Let a crisp
graph G has an intersection between two edges (a, b)
and (c, d) for a certain geometrical representation.
In fuzzy concept, we say that these two edges have
membership value 1. If we remove the edge (c, d),
the graph becomes planar. In fuzzy sense, the mem-
bership values of the edges (a, b) and (c, d) are 1 and
0 respectively.

Let ξ = (A, B, V, E) be a BFG and the graph
has only one crossing between two edges ((w, x),
μP

B(w, x), μN
B (w, x)) and ((y, z), μP

B(y, z), μN
B (y, z))

for a certain geometric representation. If μP
B(w, x) =

1 (or μN
B (w, x) = −1) and μP

B(y, z) = 0 = μN
B (y, z),

then we say that the graph has no crossing. Similarly,
if the value of μP

B(w, x) is near to 1 and μP
B(y, z) and

μN
B (y, z) have values near to 0, the crossing is not be

important for the planarity. If μP
B(w, x) has value near

to 1 and μP
B(y, z) has value near to 1, then the crossing

becomes very indispensable for the planarity.
Before going to the main definition, some

co-related terms are discussed below.

3.1. Intersecting value in bipolar fuzzy multigraph

The positive-strength of an edge (a, b) is mea-

sured by IP
(a,b) = μP

B
(a,b)

min{μP
A

(a),μP
A

(b)} . Similarly, the

negative-strength of the edge (a, b) is measured by

IN
(a,b) = |μN

B
(a,b)|

| max{μN
A

(a),μN
A

(b)}| . So, positive-strength and

negative-strength belongs to the unit interval [0,1].
Therefore, IP

(a,b) − IN
(a,b) ∈ [−1, 1].

Based on the values of IP
(a,b) and IN

(a,b), four types
of edges are defined.

Definition 2. Let ξ = (A, B, V, E) be a BFMG. An
edge (a, b) in ξ is said to be

(i) p-strong if IP
(a,b) ≥ 0.5

(ii) n-strong if IN
(a,b) ≥ 0.5

(iii) very p-strong if IP
(a,b) − IN

(a,b) ≥ 0.5

(iv) very n-strong if IN
(a,b) − IP

(a,b) ≥ 0.5

In BFMG, when two edges intersect at a point, the
value associated to that point is calculated in the fol-
lowing way. Let a BFMG contains two edges ((a, b),
μP

B(a, b), μN
B (a, b)) and ((c, d), μP

B(c, d), μN
B (c, d))

which are intersected at a point T . Now, we calcu-
late IP

(a,b) − IN
(a,b) and IP

(c,d) − IN
(c,d) for the respective

edges. Then, the average of these values is calculated
as

g =
(
IP

(a,b) − IN
(a,b)

)
+

(
IP

(c,d) − IN
(c,d)

)

2
.

We define the intersecting value at the point T by
IT = 1 + g. It is noted that 0 ≤ IT ≤ 2. If strengths
of two edges are large, then intersecting value is large
and so on. Planarity is inversely proportional to the
number of point of intersections in a BFMG. Based
on this concept, a new defintion is introduced below
in BFMG.

Definition 3. Let ξ be a BFMG and for a certain geo-
metrical representation T1, T2, . . . , Tk be the point of
intersections between the edges. ξ is said to be bipolar
fuzzy planar graph (BFPG) with degree of planarity
f , where

f = 1

1 + {IT1 + IT2 + . . . + ITk
} .

It is easy to verify that the range of f is 0 < f ≤ 1.
In a certain geometrical representation of a BFPG,

if there is no point of intersection then the degree of
planarity of the BFPG is 1. In this case, the underlying
graph of this BFPG is the crisp planar graph. If f

decreases, then the number of point of intersections
between the edges increases and obviously the nature
of planarity decreases. From this analogy, one can say
that every BFG is a BFPG graph with some degree
of planarity.
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The degree of planarity for the bipolar fuzzy com-
plete graph is calculated from the following theorem.

Theorem 1. Let ξ be a complete BFPG. The degree
of planarity, f of ξ is given by f = 1

1+Np
, where Np

is the number of point of intersections between the
edges in ξ.

Proof. Let ξ = (V, E, A, B) be a complete BFPG. For
the complete BFPG, μP

B(x, y) = min{μP
A(x), μP

A(y)}
and μN

B (x, y) = max{μN
A (x), μN

A (y)} for all x, y ∈ V .
Let T1, T2, . . . , Tk, be the point of intersections

between the edges in ξ, k being an integer. For
any edge (a, b) in a bipolar fuzzy complete multi-
graph, strength of an edge =IP

(a,b) − IN
(a,b) = 0. Thus

g = 0 and IT1 = 1 + g = 1. Hence ITi = 1 for i =
1, 2, . . . , k.

Now, f = 1
1+IT1+IT2 +...+ITk

= 1
1+(1+1+...+1) =

1
1+Np

, where Np is the number of point of
intersections between the edges in ξ. �

Depending on the degree of planarity, the number
of point of intersections of a BFPG can be found.
The following theorem proves that there is no point
of intersection between very p-strong edges if the
degree of planarity is greater than 0.4.

Theorem 2. Let ξ be a BFPG with degree of planarity
f . If f > 0.4, ξ has no point of intersection between
very p-strong edges.

Proof. Let ξ be a BFPG with degree of planarity
f > 0.4. Let, if possible, there be atleast one point
of intersection, say at T , between two very p-strong
edges (a, b) and (c, d). As (a, b) is very p-strong,
IP

(a,b) − IN
(a,b) ≥ 0.5 and similarly for (c, d), IP

(c,d) −
IN

(c,d) ≥ 0.5. Thus g ≥ 0.5 and IT ≥ 1.5. Hence, f ≤
1

1+1.5 , i.e.f ≤ 0.4. A contradiction arises as f > 0.4.
This concludes that ξ has no point of intersection
between very p-strong edges. �

From Theorem 2, one can identify a special kind
of BFPG whose degree of planarity is more than 0.4.
This type of BFPG is defined below.

Definition 4. A BFPG is said to be very p-strong, if
its degree of planarity is more than 0.4.

Theorem 3. Let ξ be a BFPG with degree of planarity
f . If f < 0.67, ξ has no point of intersection between
very n-strong edges.

Proof. Let ξ be a BFPG with degree of planarity
f < 0.67. Let, if possible, there be atleast one point

Fig. 2. An example of very p-strong BFPG as well as very strong
BFPG.

of intersection, say at T , between two very n-strong
edges (a, b) and (c, d). As (a, b) is very n-strong,
IN

(a,b) − IP
(a,b) ≥ 0.5 and similarly for (c, d), IN

(c,d) −
IP

(c,d) ≥ 0.5. Then obviously, IP
(a,b) − IN

(a,b) ≤ −0.5

and similarly for (c, d), IP
(c,d) − IN

(c,d) ≤ −0.5. Thus

g ≤ −0.5 and IT ≤ 0.5. Hence, f ≥ 1
1+0.5 , i.e.f ≥

0.67. A contradiction arises as f < 0.67. This con-
cludes that ξ has no point of intersection between
very n-strong edges. �

From Theorem 3, one can identify a special kind
of BFPG whose degree of planarity is less than 0.67.
This type of BFPG is defined below.

Definition 5. A BFPG is said to be very n-strong, if
its degree of planarity is less than 0.67.

Definition 6. (Very strong BFPG) A BFPG is said
to be very strong, if its degree of planarity is more
than 0.4 and less than 0.67.

Example 3. Let us consider an example of a bipolar
fuzzy planar graph shown in Fig. 2. In this BFPG,
there are two points of intersections T1 and T2 of
crossing of edges.

For the intersecting point T1,

– the edges (a, d) and (b, f ) are intersected at T1,
– the positive-strength (IP

(a,d)) and negative-

strength (IN
(a,d)) of the edge (a, d) are 1 and 1

respectively,
– the positive-strength (IP

(b,f )) and negative-

strength (IN
(b,f )) of the edge (b, f ) are 0.43 and

1 respectively,
– then the intersecting value at the point

T1 is IT1 = 1 + (1−1)+(0.43−1)
2 = 1 − 0.285 =

0.715 � 0.72.
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For the intersecting point T2,

– the edges (a, d) and (c, f ) are intersected at T2,
– the positive-strength (IP

(a,d)) and negative-

strength (IN
(a,d)) of the edge (a, d) are 1 and 1

respectively,
– the positive-strength (IP

(c,f )) and negative-

strength (IN
(c,f )) of the edge (c, f ) are 0.125 and

1 respectively,
– then the intersecting value at the point T2

is IT2 = 1 + (1−1)+(0.125−1)
2 = 1 − 0.4375 =

0.5625 � 0.56.

Therefore, the degree of planarity of the fuzzy
graph shown in Fig. 2 is 1

1+0.72+0.56 � 0.44 which
lies between 0.4 and 0.67. Thus this fuzzy graph is a
very p-strong BFPG and also a very n-strong BFPG
and hence it is a very strong BFPG.

Theorem 4. Let ξ be a BFPG with degree of planarity
f . If f > 0.25, ξ has at most one point of intersection
between very p-strong edges.

Proof. Let ξ be a BFPG with degree of planarity
f > 0.25. Let, if possible, there is atleast two point
of intersections. First, consider T1 is one of the inter-
sections, between two very p-strong edges (a, b) and
(c, d). As (a, b) is very p-strong, IP

(a,b) − IN
(a,b) ≥ 0.5

and similarly for (c, d), IP
(c,d) − IN

(c,d) ≥ 0.5. Thus
g ≥ 0.5 and IT1 ≥ 1.5. Similarly, for another inter-
section T2, IT2 ≥ 1.5. Hence, f ≤ 1

1+1.5+1.5 , i.e.f ≤
0.25. A contradiction arises as f > 0.25. This con-
cludes that ξ has at most one point of intersection
between very p-strong edges. �

Theorem 5. Let ξ be a BFPG with degree of planarity
f . If f < 0.5, ξ has at most one point of intersection
between very n-strong edges.

Proof. Let ξ = (A, B, V, E) be a BFPG with degree
of planarity f < 0.5. Let, if possible, there is atleast
two point of intersections. First, consider T1 is one of
the intersections, between two very n-strong edges
(a, b) and (c, d). As (a, b) is very n-strong, IN

(a,b) −
IP

(a,b) ≥ 0.5 and similarly for (c, d), IN
(c,d) − IP

(c,d) ≥
0.5. Then obviously, IP

(a,b) − IN
(a,b) ≤ −0.5 and simi-

larly for (c, d), IP
(c,d) − IN

(c,d) ≤ −0.5. Thus g ≤ −0.5
and IT1 ≤ 0.5. Similarly, for another point of inter-
section T2, IT2 ≤ 0.5. Hence, f ≥ 1

1+0.5+0.5 , i.e.f ≥
0.5. A contradiction arises as f < 0.5. This concludes
that ξ has at most one point of intersection between
very n-strong edges. �

Strength of an edge plays an important role to
model some types of problems. If the strength of an
edge is very low, the edge should not be considered
to design any kind of model. So the edges with suf-
ficient strengths are useful to model such problems.
We call these edges as considerable edges, the formal
definition is given below.

Definition 7. Let ξ = (A, B, V, E) be a BFG. Let 0 <

c < 0.5 be a rational number. An edge (x, y) is said
to p-considerable edge if IP

(a,b) − IN
(a,b) ≥ c.

Let 0 < c < 0.5 be a rational number. If IP
(a,b) −

IN
(a,b) ≥ c for all edges (a, b) of a BFG, then the

number c is said to be p-considerable number of the
BFG. p-considerable number of a BFG may not be
unique.

Obviously, for a specific value of c, a set of
p-considerable edges is obtained and for differ-
ent values of c, one can obtain different sets of
p-considerable edges. Actually, c is a pre-assigned
number for a specific application. For example, a
social network is viewed as a BFG, where a social unit
(people, organisation, etc.) is taken as a vertex and the
relation between them is represented by an edge. The
amount of friendship (measured within unit scale) is
taken as positive membership value of the edge and
similarly the amount of animosity is taken as nega-
tive membership value. Now for this network, if we
choose c = 0.25, then we get a set of p-considerable
edges, say C. This set gives a group of people who
have some p-considerable amount (0.25 in this case)
of relationship.

Similarly, the definition of n-considerable edges is
given below.

Definition 8. Let ξ be a BFG. Let 0 < c < 0.5
be a rational number. An edge (a, b) is said to be
n-considerable edge if IN

(a,b) − IP
(a,b) ≥ c.

The number of point of intersections between
p-considerable edges and n-considerable edges can
be determined from the following theorems.

Theorem 6. Let ξ be a very p-strong BFPG with
p-considerable number c. The number of point of
intersections between p-considerable edges in ξ is
at most 1.

Proof. Let ξ be a very p-strong BFPG. Let 0 <

c < 0.5 be a p-considerable number and f be the
degree of planarity. For any p-considerable edge
(a, b), IP

(a,b) − IN
(a,b) ≥ c. Let T1, T2, . . . , Tk be the

k point of intersections between the p-considerable
edges. Thus, for the point T1 between two intersecting



A
U

TH
O

R
 C

O
P

Y

T. Pramanik et al. / A study on bipolar fuzzy planar graph and its application in image shrinking 1869

p-considerable edges (a, b) and (c, d), IT1 = 1 +
(IP

(a,b)−IN
(a,b))+(IP

(c,d)−IN
(c,d))

2 ≥ 1 + c. So
∑k

i=1 ITi ≥ k ×
(1 + c). Hence f ≤ 1

1+k(1+c) . Since ξ is a very

p-strong BFPG, 0.4 < f ≤ 1
1+k(1+c) , i.e., 0.4 <

1
1+k(1+c) . This implies k < 3

2(1+c) . This inequal-
ity will be satisfied for integral values k = 0, 1.
Thus the number of point of intersections between
p-considerable edges in ξ is at most 1. This proves
the result. �

Theorem 7. Let ξ be a very n-strong BFPG with
n-considerable number c. The number of point of
intersections between n-considerable edges in ξ is
at least 1.

Proof. Let ξ be a very n-strong BFPG. Let 0 <

c < 0.5 be an n-considerable number and f be the
degree of planarity. For any n-considerable edge
(a, b), IN

(a,b) − IP
(a,b) ≥ c. Therefore, IP

(a,b) − IN
(a,b) ≤

−c. Let T1, T2, . . . , Tk be the k point of intersections
between the n-considerable edges. Thus, for the point
T1 between two intersecting n-considerable edges

(a, b) and (c, d), IT1 = 1 + (IP
(a,b)−IN

(a,b))+(IP
(c,d)−IN

(c,d))

2

≤ 1 − c. So
∑k

i=1 ITi ≤ k × (1 − c). Hence f ≥
1

1+k(1−c) . Since ξ is a veryn-strong BFPG, 1
1+k(1−c) ≤

f < 0.67, i.e., 1
1+k(1−c) < 0.67. This implies k >

0.49
1−c

. This inequality will be satisfied for integral
values k = 1, 2, 3, . . .. Thus number of point of inter-
sections between n-considerable edges in ξ is at
least 1. This proves the result. �

In crisp sense, K5 and K3,3 cannot be drawn with-
out crossing of edges. So, any graph containing K5
or K3,3 is non-planar, in conventional sense.

Note 1. A bipolar fuzzy complete graph of five ver-
tices K5 or bipolar fuzzy complete bipartite graph
K3,3 are very strong BFPG. This statement is justified
below.

Let ξ = (V, E, A, B) be a bipolar fuzzy complete
graph of five vertices where V = {a, b, c, d, e}.

From Theorem 1, it is known that the degree of pla-
narity of a bipolar fuzzy complete graph is f = 1

1+Np
,

where Np is the number of point of intersections of
the edges in ξ. We know that the geometric represen-
tation of the underlying crisp graph of a bipolar fuzzy
complete graph of five vertices is non-planar and one
point of intersection can not be avoided for any repre-
sentation. So f = 1

1+1 = 0.5. Hence ξ is very strong
BFPG.

Similarly, it can be shown that a bipolar fuzzy
complete bipartite graph K3,3 is a very strong BFPG.

Face of a planar graph is an important parame-
ter. We now introduce the face of a BFPG. Face in
a BFG is a region bounded by edges. Every face is
represented by edges in its boundary. If positive mem-
bership values of all the edges in the boundary of a
face are 1 or negative membership values of that edges
are −1, then the face becomes a crisp face. If one of
such edges is removed or has positive membership
value 0 or negative membership value 0, the face does
not exist. So the existence of a face depends on the
minimum value of strength of edges in its boundary.
A face in BFG is defined below.

Definition 9. Let ξ = (A, B, V, E) be a BFPG. A face
is a region of ξ, surrounded by the set of edges E′ ⊂ B

of a geometric representation of ξ. The strength of a
face is given by

m = min
{

|IP
(a,b) − IN

(a,b)| : for all (a, b) ∈ E′
}

.

Strength of faces in BFG belongs to [0,1]. If the
strength of a face greater than 0.5, the face is called
strong otherwise it is weak face. Every BFPG has an
infinite region which is called outer face. Other faces
are called inner faces.

Example 4. In Fig. 3, a BFPG is considered whose
vertex and edge membership values are listed in
Table 1.

Fig. 3. Example of faces in BFPG.

Table 1
Vertex and edge membership values of the BFPG considered

in Fig. 3

Vertices Membership Values Edges Membership Values

v1 [0.6, −0.1] (v1, v2) [0.50, −0.02]
v2 [0.7, −0.2] (v2, v3) [0.60, −0.04]

(v2, v4) [0.50, −0.03]
v3 [0.8, −0.1] (v3, v5) [0.30, −0.01]

(v3, v1) [0.40, −0.02]
v4 [0.5, −0.3] (v4, v1) [0.46, −0.01]
v5 [0.4, −0.2] (v5, v1) [0.38, −0.02]
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Table 2
Strengths of the faces of the BFPG shown in Fig. 3

Faces F1 F2 F3 F4

Strengths 0.46 0.46 0.63 0.47

Here F1, F2, F3 and F4 are four faces and

(i) F1 is bounded by the edges (v1, v2), (v2, v3)
and (v1, v3),

(ii) F2 is bounded by the edges (v2, v3), (v2, v4),
(v3, v5) and has an infinite region (this face is
an outer face),

(iii) F3 is bounded by the edges (v1, v2), (v2, v4)
and (v1, v4),

(iv) F4 is bounded by the edges (v1, v5), (v1, v3)
and (v3, v5).

Strengths of all these faces are calculated and listed
in Table 2.

From Table 2 it is observed that, F3 is a strong
face. The face F3 is surrounded by very p-strong
edges. Therefore a conclusion can be drawn that,
every strong face is surrounded by either very
p-strong edges or very n-strong edges.

4. Bipolar fuzzy dual graph

In this section, we introduce the dual of a BFPG
whose degree of planarity is 1. In bipolar fuzzy dual
graph, a vertex corresponds to each face and there is
an edge between two vertices if the faces correspond-
ing to the vertices are adjacent by an edge. The formal
definition is given below.

Definition 10. Let ξ = (A, B, V, E) be a BFPG with
degree of planarity 1 where, A = (V, μP

A, μN
A ) and

B = (V × V, μP
B, μN

B ). Again, let F1, F2, . . . , Fk be
the strong faces of ξ. The bipolar fuzzy dual graph
(BFDG) of ξ is a BFPG ξ′ = (A′, B′), where A′ is
a BFS on V ′ = {xi, i = 1, 2, . . . , k}, xi is considered
for the face Fi of ξ and B′ is a BFS on V ′ × V ′.

The positive membership values of vertices are
given by the mapping μP

A′ : V ′ → [0, 1] such that
μP

A′ (xi) = max{μP
B(u, v) : (u, v) is an edge of the

boundary of the face Fi}. The negative membership
values of the vertices are taken as μN

A′ : V ′ → [−1, 0]
such that μN

A′ (xi) = min{μN
B (u, v) : (u, v) is an edge

of the boundary of the face Fi}.
Between two faces Fi and Fj of ξ, there may exist

more than one common edge. Thus between two ver-
tices xi and xj in BFDG ξ′, there may be more than

one edge. We denote μ
l(P)
B′ (xi, xj) be the positive

membership value of the l-th edge between xi and xj .
The membership values of the edges of the BFDG
are given by μ

l(P)
B′ (xi, xj) = μP

B(u, v)l where (u, v)l

is an edge adjacent to each of the two faces Fi and
Fj and l = 1, 2, . . . , s, where s is the number of com-
mon edges adjacent to each of the faces Fi and Fj (i.e.
the number of edges between xi and xj). Similarly,

we denote μ
l(N)
B′ (xi, xj) be the negative membership

value of the l-th edge connecting xi and xj . The neg-
ative membership values of the edges of the BFDG
are given by μ

l(N)
B′ (xi, xj) = μN

B (u, v)l where (u, v)l

is an edgeadjacent to each of the two faces Fi and Fj

and l = 1, 2, . . . , s, where s is the number of com-
mon edges adjacent to each of the faces Fi and Fj

(i.e. the number of edges between xi and xj).
If there be any pendant edge in the BFPG, then

there is a self loop in ξ′ corresponding to this pendant
edge. The membership value of the self loop is same
as to the membership value of the pendant edge.

Example 5. In Fig. 4, the dual of the BFPG shown
in Fig. 3 (vertex and edge membership values are
given in Table 1) is depicted. The filled circles are the
vertices of BFPG and plain lines represent the edges
of the BFPG. The circles represents the vertices of
dual of the BFPG considered and dashed lines rep-
resents the edges of dual of the said BFPG. All the
computations for vertex membership values and edge
membership values of the dual of BFPG are shown
as follows.

i) Vertex x1 is corresponding to the face F1 which
is bounded by the edges (v1, v2), (v2, v3) and
(v1, v3).

Therefore,

μP
A(x1) = max{0.5, 0.4, 0.6} = 0.6

μN
A (x1) = min{−0.02, −0.02, −0.04}

= −0.04.

Fig. 4. Bipolar fuzzy dual graph of a bipolar fuzzy graph.
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ii) Vertex x2 is corresponding to the face F2
which is bounded by the edges (v2, v3), (v2, v4),
(v3, v5) and has an infinite region.

Therefore,

μP
A(x2) = max{0.6, 0.5, 0.3} = 0.6

μN
A (x2) = min{−0.04, −0.03, −0.01}

= −0.04.

iii) Vertex x3 is corresponding to the face F3 which
is bounded by the edges (v1, v2), (v2, v4) and
(v1, v4).

Therefore,

μP
A(x3) = max{0.5, 0.5, 0.46} = 0.5

μN
A (x3) = min{−0.02, −0.03, −0.01}

= −0.03.

iv) Vertex x4 is corresponding to the face F4 which
is bounded by the edges (v1, v5), (v1, v3) and
(v3, v5).

Therefore,

μP
A(x4) = max{0.4, 0.3, 0.38} = 0.4

μN
A (x4) = min{−0.02, −0.01, −0.02}

= −0.02.

The edges of the dual of BFPG and their member-
ship values are

i) μP
B(x1, x2) = μP

B(v2, v3) = 0.6 and μN
B (x1, x2)

= μN
B (v2, v3) = −0.04,

ii) μP
B(x1, x3) = μP

B(v1, v2) = 0.5 and μN
B (x1, x3)

= μN
B (v1, v2) = −0.02,

iii) μP
B(x1, x4) = μP

B(v1, v3) = 0.4 and μN
B (x1, x4)

= μN
B (v1, v3) = −0.02,

iv) μP
B(x2, x3) = μP

B(v2, v4) = 0.5 and μN
B (x2, x3)

= μN
B (v2, v4) = −0.03,

v) μP
B(x2, x4) = μP

B(v3, v5) = 0.3 and μN
B (x2, x4)

= μN
B (v3, v5) = −0.01.

Theorem 8. Let ξ = (A, B, V, E) be a BFPG with
degree of planarity 1 containing only very p-strong
edges. Then the dual of BFPG ξ′ is also a BFPG
whose degree of planarity is 1.

Proof. Given ξ = (A, B, V, E) be a BFPG with
degree of planarity 1 containing only very p-strong
edges. Then every vertex of the BFDG of ξ′ is cor-
responding to a face which is surrounded by very
p-strong edges. Also, the BFPG has no point of inter-
section and hence the corresponding BFDG contains

no point of intersection. Hence, the BFDG ξ′ is a
BFPG whose degree of planarity is 1. �

Theorem 9. Let ξ = (A, B, V, E) be a BFPG with
degree of planarity 1 containing only very p-strong
edges and the BFDG of ξ be ξ′ = (A′, B′, V, E′). The
positive membership values and negative member-
ship values of the edges of ξ′ are equal to positive
membership values and negative membership values
of the edges of ξ respectively.

Proof. Let ξ = (A, B, V, E) be a BFPG with degree
of planarity 1 containing only very p-strong edges.
The BFDG of ξ is ξ′ = (A′, B′, V, E′) which is
also a BFPG whose degree of planarity is 1. Let
{F1, F2, . . . , Fk} be the set of strong faces of ξ.

From the definition of BFDG, we know
that μl(P)(xi, xj) = μP

j (u, v)l and μl(N)(xi, xj) =
νN
j (u, v)l where (u, v)l is an edge adjacent to each

of the two strong faces Fi and Fj and l = 1, 2, . . . , s,
where s is the number of common edges adjacent to
each of the faces Fi and Fj .

The number of edges of two BFG ξ and ξ′ are same
as ξ has only very p-strong edges. For each edge of
ξ there is an edge in ξ′ with same membership value.

�

5. Bipolar fuzzy planar graphs in image
shrinking

Image segmentation is one of the important step in
partitioning any digital image. Also, image segmen-
tation is used to recognize digital objects. Therefore,
image segmentation is helpful process in computer
vision, remote sensing, etc. The aim of image seg-
mentation is to extrapolate the objects for different
interest from background of the image. Images are
segmented by different procedures. In this section, a
methodology is described for image shrinking by seg-
menting each portions of an image by using BFPG.

An image is characterized by pixels and it has some
homogeneous sections. It can be represented by a
graph described below. Each pixel is represented by
a vertex and its positive membership value (negative
membership value) is determined by its intensity i.e.
gray value (dullness or non-intensity). Two neigh-
bouring pixels (vertices) are joined by edges. The
positive membership value (negative membership
value) of the edge is determined by the dissimilarity
(similarity) value of the corresponding pixels (ver-
tices). Several methods are available to measure the
dissimilarity or similarity between two pixels. One
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Fig. 5. An example of a color image for image shrinking.

Fig. 6. BFPG corresponding to the image shown in Fig. 5.

of them is used to measure the edge membership
values. Thus the entire image (see Fig. 5 for exam-
ple) is converted to a BFG (see Fig. 6) where each
coloured vertices signifies the corresponding seg-
mented coloured portion of the image of Fig. 5. The
edge membership values for the edges of the graph
shown in Fig. 6 is given in Table 3. Obviously, this
graph is a BFPG. Also, in the representation, no edges
cross other. So the degree of planarity of the graph is
1 (then the graph is strong BFPG). The background of
the image is represented by the unbounded face. The
BFDG of this BFPG can be drawn by the method
described in the Section 4 (see Fig. 7). The vertex
and edge membership values of the BFDG shown in
Fig. 7 is given in Table 4.

Now, we define some related terms such as edge
and kernel shrinking.

Fig. 7. Corresponding BFDG of the BFPG shown in Fig. 6.

Let ξ = (A, B) be a BFG and (a, b) be an edge.
Suppose, this edge is shrinked, then a new vertex,
say c, is created such that all the edges incident to
a and b are now incident to c, and the edge (a, b)
is removed from the graph. Also the positive mem-
bership value of the vertex c is given by σP (c) =
max{σP (a), σP (b)}. The negative membership value
of the vertex is given as σN (c) = max{σN (a),
σN (b)}.

If more than a pair of vertices are shrinked, then an
extended shrinking method, called kernel shrinking
is used. Suppose the edges (a, b), (a, c), (a, d), (a, e)
are to be shrinked simultaneously. Also let, σP (i) =
mi, σ

N (i) = ni, where i = a, b, c, d, e be given and
all these edges are shrinked to a single vertex, say
h. The positive membership value of the vertex h is
given by max{mi, i = b, c, d, e} and negative mem-
bership value of the vertex is given by max{ni, i =
b, c, d, e}. Note that the vertices b, c, d, e are merged
to the vertex h.

Collection of some homogeneous pixels forms
a homogeneous section. Two pixels or two
homogeneous sections are said to be nearly homo-
geneous section if the difference between the
membership values of the pixels or sections is less
than some pre-assigned positive number. Nearly
homogeneous sections (non-considerable edges) are
shrinked in different levels and each level is obtained
from its previous level. From Fig. 6, it is clear that
an image is divided into some regions and a region
is bounded by lines. In the BFDG, the edges are the
boundary of the images.

Table 3
The edge membership values of the edges of graph shown in Fig. 6

Edge (a, b) (a, c) (a, d) (a, e) (b, c)
Membership Value [0.7, −0.3] [0.3, −0.4] [0.5, −0.5] [0.4, −0.5] [0.3, −0.3]
Edge (b, e) (c, d) (c, g) (d, e) (d, g)
Membership Value [0.4, −0.3] [0.3, −0.4] [0.3, −0.4] [0.4, −0.5] [0.5, −0.5]
Edge (e, f )
Membership Value [0.4, −0.6]
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Table 4
Vertex and edge membership values of the BFDG shown in Fig. 7

Vertices Membership Values Edges Membership Values

x [0.5, −0.5] (x, y) [0.5, −0.5]
(x, u) [0.4, −0.5]

y [0.5, −0.5] (y, z) [0.3, −0.4]
(y, v) [0.3, −0.4]

z [0.7, −0.4] (z, w) [0.7, −0.3]
(z, u) [0.3, −0.3]

w [0.7, −0.5] (w, x) [0.4, −0.5]
(w, u) [0.4, −0.3]

u [0.5, −0.6] (u, u) [0.4, −0.6]
(u, v) [0.3, −0.4]

v [0.5, −0.6] (v, u) [0.5, −0.5]

Fig. 8. An example of image pyramid.

Let us consider Fig. 8. In level 1 of the image
pyramid, each pixel is represented as vertex. Two
continuous homogeneous or nearly homogeneous
pixels or sections are shrinked into a single section.
This process is done by edge/kernel shrinking on the
BFG. Also, by this process, the corresponding edges
of the dual graph are removed. The final shrinked
image is shown in the top level of the pyramid (see
Fig. 8).

5.1. Another application of BFPG

Suppose, in a city planning, city routes are to be
so designed that the number of accidents should be
minimized. Now, the number of accidents depends
on many factors, like traffic system, road conditions,
number of crossing between routes, etc. To solve this

Fig. 9. Bipolar fuzzy planar graph corresponding to a city route
planning.

route planning problem, keeping in mind these fac-
tors, in a mathematical way, we convert the problem
into a bipolar fuzzy graph model shown in Fig. 9.

In this bipolar fuzzy graph consider routes as edges
and vertices are the transporting points. As the trans-
porting points has no contribution to this problem,
the membership values for all the vertices are taken as
[1, −1]. The positive membership values of edges are
assigned some grade between 0 and 1 depending on
chances of accidents in the corresponding route. The
negative membership values of edges are assigned
some grade between −1 and 0 depending on traffic
system available for that route. The gradation corre-
sponding to traffic system is conceptually taken as
negative since a better traffic system can decrease
the chances of accidents. Thus, the membership val-
ues of the edges (A, E) and (C, E) are [0.5, −0.2]
and [0.6, −0.5] respectively, which means the traffic
system of (C, E) is more strong than (A, E) and the
chances of accidents for the route (C, E) is more than
(A, E). Now, our problem is to find how much this
model is acceptable in the context of accident? For
this, we compute the degree of planarity. After usual
computations, the degree of planarity for this graph is
approximately 0.30. Greater the degree of planarity
means the chances of accident is less and vice-versa.
So, we conclude that there are approximately 70%
chances of accident.

6. Conclusion

This study describes the bipolar fuzzy multigraphs,
bipolar fuzzy planar graphs, and a very important
consequence of bipolar fuzzy planar graph known
as bipolar fuzzy dual graphs. A new term “degree of
planarity” is defined. This parameter characterizes a
bipolar fuzzy graph in many ways. Several properties
can be investigated on regular bipolar fuzzy planar
graph, irregular bipolar fuzzy planar graph.
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