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Computation of Inverse 1 -Center Location Problem
on the Weighted Trees

Biswanath Jana, Sukumar Mondal and Dr. Madhumangal Pal

4bstr¢cf---Let  r   be a tree with  (" + 1 )   vertices and  #   edges
with positive edge weights. The inverse 1 -center problem on an edge
weighted tree consists in changing edge weights at minimum cost so
that  a pre-specified  vertex  becomes  the  1-center.  In  the  context  of
location  problems  Cai  et  al.   [9]  proved  that  the  inverse   1-center
location   problem   with   edge   length   modification   on   general   un-
weighted  directed  graphs  is  NP-hard,  while  the  underlying  center
location  problem  is  solvable  in polynomial  time.  Alizadeh et al.  [1]
have  designed  an  algorithm  for  inverse  1 -center  location  problem

with edge length augmentation on trees in  a(" log ")   time, using
a  set of suitably extended AVL-search  trees.  In  [2],  Alizadeh et al.
have designed a combinatorial algorithm for inverse absolute on trees

in   a(772)   time  when  topo|ogy  not  allowed  and   °("2J.)   time
when   topology   allowed.   In   this   paper,   we   present   an   optimal
algorithm to  find an inverse  1-center location  on the weighted trees

with  (" + 1 )   vertices and  "   edges, where the edge weights can be
changed within certain bounds. The time complexity of our proposed

algorithmis°("),ifTistraversedinadepth-first-searchmarmer.

ffej7words--Tree-Networks,  Center  Location,  1 -Center  Location,
Inverse 1 -Center Location, hverse Optimization, Tree.

L
I.              INTRODUCTION

ET  G  =  (y , E)  be a c;nnected graph with vertex set  7'

and  edge  set   E  ,  such that  I  7'  |=  7? + 1,  I  E  |=  #  .  Every

edge   (c4,v) €  E    has  different  weight   w,.  .  In  G,  a  walk  is

defined as a finite alternating sequence of vertices and edges
beginning  and  ending  with  vertices  such  that  each  edge  is
incident with the vertices preceding and following it. No edge
appears  more than  once in  a walk.  A  vertex,  however,  may
appear  more  than  once.  An  open  walk  in  which  no  vertex
appears  more  than  once  is  called  a  path.  A  closed  walk  in
which   no   vertex   (except  the  initial   and  the   final   vertex)
appears  more  than  once  is  called  a  circuit.  A  tree  T  is  a
connected graph without any circuits. i.e., a tree is a connected
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acyclic graph. Clearly there is one and only one path between
every pair of vertices of  T. A tree T is weighted if there is a
non-negative real number associated with  each  edge of T.  In
an  un-weighted tree  I  =  (7', E) ,  where  I E |=| 7'  I -1,  the

eccentricity e(v) of the vertex v is defined as the distance from

v  to the vertex farthest from  v €  7T  , i.e.,

e(v)   =  max  { d(v,v,)  , for all  v,.  e  r} ,

where  d(v, v, )   is the sum of the weights of the edges on the

path between v and  vz.  .

In  weighted tree  r  = (7', E ) ,  the eccentricity e(v)  of the

vertex v is defined as the sum of the weights of the edges from
v  to the vertex farthest from  v €  I  , i.e.,

e(v)  =  max  { d(v,v,)  , for all  v,.  €  r} ,

where  d(v, v, )   is the sum of the weights of the edges on the

path between v and v,. .
A vertex with minimum eccentricity in the tree T is called'a

center   of  that   tree   T,   i.e.,   if   e(I) =  in.#{6(v),    for   all

v €  y'  }, then  s   is the  I-center.  It is clear that every tree has
either one or two centers.

The eccentricity of a center in a tree is defined as the radius

of the tree and is denoted by  f'(I ) , i.e.,

p(r)  =  {mJ.#`.Er e(v)} .

The  diameter  of a tree  T    is  defined  as  the  length  of the
longest   path   in   T   i.e.,   the   maximum   eccentricity   is   the
diameter.  Let  the  weighted tree  T  with  (n+1)  vertices  and n
edges.   The  inverse  1-center  problem  on  a  tree  consists  in
changing  edge  weights  within  certain  bounds  so  that  a  pre-
specified vertex becomes  1-center.

A.    Survey of Relevahi hiterature

As  shown  in  [8,  31,  32],  the  inverse  problems  of many
combinatorial/network  optimization  problems  can  be  solved
by strongly or weakly polynomial algorithms. h fact in [29], it
is   shown   that   for   a   large   class   of  combinatorial/network
optimization  problems,  if the original  problem  can be  solved
in polynomial times, then its inverse problem can be solved in

polynomial time by a quite uniform methodology.  A detailed
survey  on  inverse  optimization  problems  has  been  compiled
by Heuberger  [21]. h the context of location problems Cai et
al.  [9]  proved that the inverse  1-center location problem with
edge  length  modification   on   general  un-weighted   directed
graphs   is   NP-hard,   while   the   underlying   center   location
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problem  is solvable in polynomial time.  In  2004, Burkard et
al.   [4]  consider  inverse  p-median  location  problems  can  be
solved  in  polynomial  time,  when  p  is  fixed  and not  an  input

parameter.  They  proposed  a  greedy  like   O(#log#)    time
algorithm   for   the   inverse   1-median   problem   with   vertex
weight  modifications  on  tree  networks.  Galavi  [17]  showed

later that this problem  can actually be solved in  a(#)   time.

Moreover,  Burkard et al.  [4] proved that the inverse  1 -median
problem  on the plane under Manhattan  (or Chebyshev) norm
can be solved in  a(# log #)  time. Later the same authors [5]
investigated the inverse  1-median problem with vertex weight
modification  and unit  cost  on  a  cycle.  They showed that this

problem can be solved in  a(7€2 )  time by using methods from
computational  geometry.  In  2007,  Gassner. [16]  suggested  an

efficient  a(# log #)   time solution method for the inverse  1-

maxian   problem   with   edge   length   modifications   on   tree
networks. The inverse Fermat-Weber problem was studied by
Burkard  et  al.   [6,  7].  The  authors  derived  a  combinatorial

approach  which  solves the problem  in  a(# log #)   time  for

unit cost and under the assumption that the pre-specified point
that should become a  1-median does not coincide with a given
point in the plane. Galavii [17]  showed that the  1-median on a
path  with positve/negative weights lies in  one of the vertices
with  positive  weights or  lies  in  one of the  end points  of the
path.   This  property  allows   to   solve  the  inverse   1-median

problem   on  a  path  with  negative  weights  in   a(#)   time.
Gassner   [18]   consider   an   inverse   version   of  the   convex
ordered median problem and showed that this problem is NP-
hard on general  graphs,  even  on trees.  Further, it was shown
that  the problem  remains NP-hard  for  unit  weights  or  if the
underlying problem is a K-centrum problem (but not,  if both
of these conditions hold). The inverse unit-weight K-centrun
problem with unit cost coefficients on a tree can be solved in
o(7€342 )  time.  Recently,  Yang and Zhang  [30] proposed an

a(#2 |og#)    time  solution  method  for  the  inverse  vertex

center  problem  on  a  tree  provided  that  the  modified  edge
lengths always remain positive.  Dropping this condition,  they
mention    that    the    general    problem    can    be    solved    in

O(#3|og#)     time.    Recently,   Alizadeh    et    al.    [1]    have

designed  an  algorithm  for  inverse  1 -center  location  problem
with edge length augmentation on trees in  a(77 log #)   time,

using  a  set  of  suitably  extended  AVL-search  trees.  In  [2],
Alizadeh  et  al.  have  designed  a  combinatorial  algorithm  for

inverse absolute  on trees  in  a(722 )   time when  topology not

allowed and  a (#27')  time when topology allowed.

Inverse    optimization    problems    have    recently   attained
significant   theoretical   interest   due   to   their   relevance   in
practice    and    for    a    comprehensive    survey    on    inverse
optimizationproblems see [13,19,21,23].          `

Network  location  pr.oblems  belong  to  basic  optimization
models  which  are concerned with  finding the "best"  location

71

of single  or  multiple  new  facilities  in  a network  of demand
points   such   that   a  given   function   which   depends   on   the
distance between the facilities and clients beeomes minimum.
Depending  on the the model under investigation,  facilities or
clients may either be placed only at vertices or may also lie on
edges of the network. For further details on these problems the
reader is referred to the books  of Daskin  [10],  Drezner et al.
[12], Francis et al.  [15], Mrchandani et al.  [26] and Nickel  et
al.  [28].

Burton  and Toint  [3]  first  investigated  an  inverse  shortest
paths problem in  1992.  Since then, many problems have been
considered   by   various   authors,    working   at   least   partly
independently. The notation of 'inverse optimization' is always
similar,   but  not  the  sane.   Handler  [20]   showed  minimax
location of a facility in an undirected tree graph. Hs paper is
addressed to the problem  of locating the absolute and vertex
centers   (minimax   criterion)   of  an   undirected   tree   graph.
Hochbaum  [22]  introduced the pseudo flow algorithm  for the
maximum-flow problem  that  employs  only pseudo flows  and
does  not  generate  flows  explicitly.  The  complexities  of the

pseudo flow   algorithm,    the   pseudo flow-simplex,    and    the
parametric  variants  of pseudo flow  and  pseudo flow-simplex
algorithms are all O(mnlogn) on a graph with n nodes and in
arcs.   Zhang   et   al.   [33]   presented   a   strongly  polynomial
algorithm  for  a  reverse  location  problem  in  tree  networks.
Megiddo   [25]   designed   linear-time   algorithms   for   linear
Progranming in R3.

In this paper,  we propose an algorithm to compute inverse
1-center  location  problem  on  edge  weighted  trees  in   a(#)

time, where  #  is number of vertices of the tree.

8.    Applications of the problem

For    instance,    an    important    application    comes    from
geophysical  sciences and concerns predicting the movements
of  earthquakes.   To   achieve  this   aim,   geologic   zones   are
discretized into a number of cells. Adjacency relations can be
modeled  by  arcs  in  a  corresponding  network  (Moser  [27]).
Although   some   estimates   for   the   transmission   times   are
known,  precise  values  are  hard  to  obtain.  By  observing  an
earthquake  and   the   arrival  times   of  the  resulting   seismic
perturbations at various points and assuming that earthquakes
travel   along   shortest   paths,   the   problem   is   to   refine  the
estimates of the transmission times between the cells. This is
just an inverse shortest path problem.

Another possible application actually changes the real costs:
Assume that we are given a road network and some facility in
it.  The  aim  is  to  place  the  facility  in  such  a  way  that  the
maximum distance to the customers is minimum. However we
are  often  faced  with  the  situation  that  the  fac  ility  already
exists and can not be relocated with reasonable costs. h such a
situation,  we  may  want  to  modify  the  network  as  little  as
possible (improving roads costs),  such that the location of the
facility  becomes  optimum  (or  such  that  the  distances  to  the
customers  do  not  exceed  some  given  bounds).  This  is  an
example   of   the   inverse   center   location   problem.   When
modeling traffic networks, a further option is to impose tolls in
order  to  enforce  an  efficient  use  of the  network  @ial  [11]).
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The choice  of the word  `inverse  optimization'  was motivated
in  part  by  the  widespread  use  of inverse  methods  in  other
fields, for instance Marlow [24] and Engl et al. [14].

C.    Organization of the paper

In the next section we shall discuss about preliminaries i.e.,
the   formulation   of  inverse   1-center   problem   of  the   edge
weighted tree.  In  Section  3 ,  we present  an  algorithm  to get
inverse   1-center  of the  modified  edge  weighted  tree.   Some
notations   have   also   presented   in   this   section.   The   time
complexity is also calculated in this section. In  Section  4   we

give a conclusion.

11.              PRELIMIN ARIES

Let  vt, , t;I , v2 ,..., `;t„_o , v„  be an unweighted path between

vo    and   v„    of  the  tree   I    such   that   (vk,vk+I)€  E    for

k=0,1,2,3 ,..., (#-1)     and    this    path    is    denoted    by

P(vo,v„) .  Clearly  in  a  path   P(vo,v„) ,  the  length  of the

path,        denoted        by        a(P),        is        c7(vo,v„),        i.e.,

c7(vo,v„) =  6(P) =  e(vo) =  e(v„)   and if this length  of the

path  P(vtr v„ )  is even, i.e.,  #  is even, then radius of the path

P   is  given  by   a(P) =  a/2  =  c7(vo,v„)/2    and  this  is  the

eccentricity of the vertex  vn  .  So  vn   is the center of the path
22

P (vo , v„ )  and is at odd location when n is odd, then radius of

the  path   P   is  given  by   P(P) =  (J + I)/2   and this  is  the

eccentricity  of each  of the  vertices   v„_1   and  v„+, ,  i.e.,   v„_1
222

and  v„+,   are the two  centers  of the path  P(vt,,v„)   if  7?   is
2

odd.

Now we can introduce dummy vertex  vc  in between  v„_I
2

and   v„+,    such  that   (v„_,,vL`)€  I    and   (vc,v„+1)  e  E    so

222

that  vc  becomes the one center of the path  p(vo , v„ ) .

Let  v ,   be the pre-specified vertex which is to be the center

of  the  edge  weighted  path   P(vo,v„) .   Our  problem  is  to

minimize  the  cost  of changing  the  weights  of the  edges  in

order to  v,   to become the center of the path  P(vo , 1/„ ) . Now

in  the  following,  we  give  the  steps  to  show  the  inverse  1-

center problem on the edge weighted path  P (vo , v„ ) .

1)          FindcJ[   =cJ(v,.,vo)   andcz2  =c7(v,,v„).

2)         IfcJ]  =  cJ2,then  v,   isl-center.

72

3)        If c7]  <  c72  weincreasetheedgeweightsoftheedges

(v,,`;„),(v„,v(,_2)),...,(1;I,iJo)anddecreasetheedge

wei ght s                           of                           th e                           edges

(V,,v(„),(v„+„v(,+2,) ,..., (vt„_„v„)     maintaining    the

following three conditions:

a)        The vertex  v,.   becomes inverse  1-center  of  p   with

respect to  w(e) , where  e e  E(P)  i.e., for all  p €  7'(P) ,

moxv€v(,,d=(v,v,)Smoxv€y(p,cJ=(v,f7),

where   w =  w(e)   is  the  weight  of the  edge  (positive  real

number)  e  and  ;(e)  are the modified edge weights,
b)        Thelinearcostfunction

Z:     {C+(M/)X(M/)+C-(M/)}J(W)}
e€ E (P )

becomes    minimum,    where    x(w)     and    )/(w)     are   the

maximum   amounts   by   which   the   edge   weight    w(e)    is

increased   and   reduced   respectively.    c+(M;)    is   the   non-

negative cost if  w(e)  is increased by one unit and  c-(w)   is

the non-negative cost if w(e)  is reduced by one unit,

yl"

Fig.1  A Tree T

The new edge weights lie within given modification bounds

W,ow (e) <  w(e)  S  w„„ (e)

for all edge in  E (P )  .

c)         If c7]  >  c72  weincreasetheedgeweights oftheedges

(`Jj,v,+`),(t7,+„v,+2) ,..., (v„„iJ„)    and  decrease  the  edge

weights    of    the    edges     (v,,v,_1),(v.,_I,v,_2) ,..., (v,,vt,)

maintaining the above three conditions.
Hence, based on the above conditions, the inverse  1 -center

location   problem   on   the   edge   weighted   tree   T   can   be
formulated   as   the   following   non-linear   semi-infinite   (or
nonlinear) ,optimization model :

Mz.7?/.mJ.ze   I    {c+(w(e))Jc(w(e))
e € E. ( T )

+c_(w(e))J,(W(e)))

subj ect to
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max`,er, (I) d= (I; , S)  S  in czx,,€,, (,, ) c7= (t7, p )  ,  for all

p € T (or p € V (T )) ,

I(e)  =  w(e) + x{MJ(e)} -)/{i4;(c)} ,   for all

e €  E(T) ,

j;{w(e)}  S  w+{w(e)}  , for all  w e  E(I)  ,

);{w(e)}  S=  w-{w(e)} , for all  w  e  E(r)  ,

x{w(e)} , );{ti;(e)}  2  0 , for all  w €  E(I)  ,

Where                    w+{w(e)}  =  wwpp(e) -w(e)                     and

MJ-{tl;(e)}  =  w(e)-w,ow(e)     are   the   maximum    feasible

amounts  by  which   w(e)    can   be   increased  and  reduced,

respectively.       Every      feasible      solution       (j;,)J)        with

x={x(w(e)):e€  E(r)}and                          );=  {};(w(e)):

e e  E(I)}    is   also   called   a  feasible  modification   of  the

inverse 1 -center location problem.

In.                  ALGORITHM AID ITs cOMPLExlTy

In this section we propose a combinatorial algorithm for the
inverse 1-center location problem on the edge weighted tree T.
The main idea of our proposed algorithm is as follows:

Let   I   be  a  weighted  tree  with   (73 + I)    vertices  and   72

edges. Let  V   be the vertex set and  E   be the edge set. Let  s

be any non-pendant specified vertex in the tree  I   which is to
be  1-center.  At  first  we  calculate  the  longest  weighted  path

from  s   to any pendant vertex  of  r .  Let  sv,   be the longest

weighted path from  s   to  v, land  sv,.  be the next longest path

from  s  to  v,.   such that there is no common vertex except  s  .

Now  calculate  the  weights  of two  paths   sv,    and   f v, .  If

weight of si;,  and  sv,  are equal then  s   is the vertex 1-center

as well  as inverse  1-center  of  r  .  But  our concentration  is on

unequal weights. If the weight of sv,  is greater than  sv,.  then

we add the maximum weight with the pre weighted edge from

f  to  v,  consecutively such that  w,o", (e) < I(e) S w„„ (e) ,

for   all    e€  E(r)  ,   where   w,ow(e)    and   w„pp(e)    are  the

smallest  and  highest  edge  weights  in   r   and  ;(e)   be  the
modified  edge  weight.  In  this  way if we  seen  the weight  of

sv,   and  weight  of  sv,.   are  equal,  then  a   be the  inverse  1-

center. But, if the weights of  sv,   and  sv,.  are not equal, then

we subtract the maximum weight from the pre weighted edge

consecutively    from    the    vertex     a      to     vf      such    that

w,o",(e) S  w(e) <  wapp.(e)  ,   for  all   e e  E(r)    and  in' this

way  the   weights   of   sv,    and   sv,    must   become   equal.

73

Therefore,  the pre-specified vertex  s   be the inverse  1-center
of the edge weighted tree T.

Now,   we  introduce   some  notations  for   our   algorithmic
Purpose.

A      :  Longestedgeweightedpath from  s.

I      :  Another longest edgeweightedpath
from  s   does not contain any vertex

ofthepath   A   except  f .

w'(J3) : Weight of the path  A  .

M,'(I,)   :               Weight of the path  I.

w*(A)   :             Modified weight ofthepath  jz.

w*(I,)   :             Modified weight ofthepath  I,.

Our proposed algorithm is as follows:

A.        Algorithm I-INV-LOC-TREE
/#pwf.. Tree T with edge weight and specified vertex s.
OwZpctf..   Vertex  s  as  inverse   1-center  of  the  tree  T  and

modified tree  I ' .
•      step /.  Set s as apre-specified vertex in T.
•      Sfep 2.  Compute the longest edge weighted path (only

one)  J2  =  sv,  from  s   to other vertex  vj   on the given

tree.
•      S/cp  3.  Next  compute  another  longest  edge  weighted

path (only one)  I,  =  sv,.  from  s  to the vertex  v,   does

not contain any vertex of the path  A   except  s .
•      Sfep 4. Calculate difference of the weights of two paths

R and L i.e.,  I w(A) -";(I) I .

•       Step5.

o      Sfep i./.  If t4;(stJ7 )  =  w;(sv,) ,  z.  I  /. , then  s

is the  vertex  one  center as  well  as  inverse  1-
Center of I .

o      Sfep5.2.  If w(sv,) >  w(si7,) , then distribute

the   weight    w(sv,.)-w(sv,)     on   the   path

Lsv, ,  i.e.,   I  ,  from  s   such  that   the  bounds

rule holds good.

o     Sfep i.2.I.  If  w*(I) =  w(ji) , then  f   is the
vertex 1 -center.

o     Sfep  i.2.2.  If  w*(I)<w(A),  then           we

decrease  the  excess  weight  of  the  path   A
from        s        with       bounds       rule       until

w*(I) -w*(jz, .

•      Scep   5.3.   If   M;(sv,)<w(sv,),   then   distribute   the

weight   w(sv,.)-iiJ(f`J,)    on  the  path   sv, ,  i.e.,   A  ,

from  a   such that the bounds rule holds good.

o      SJep 5.3./.  If  w¢(jz) = w(I) ,  then  s   is the

vertex  1 -center.
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o     step   i.3.2.   If   w*(A)<w(I),   then      we

decrease  the  excess  weight  of  the  path   I
from           a      with     bounds     rule          until

w*(A) -w*(I) .

•      end l-INV-LOC-TREE.
Us;+rig atoove algorithm  I -INV-LOC-TREE we car+ Flnd orut

the  inverse  1-center  location  problem  on  any edge  weighted
tree.   Justification   of  this   statement   follows   the   following
illustration.

Illustration Of the algorithm to the tree T   in Figure 1 :

Let  s = v]  be the pre-specified vertex of the tree  I  which

is   to   be    one    center.   Next    we    find   the   longest   path

ji  = v]v„  =  sv]3   from   S   to  other  vertex   v[3   on  the  given

tree  and  find next  longest  path   I  =  v[v]o  =  sv[o   from  a   to

the  vertex   v±o   does  not  contain  any  vertex  of the  path   A

except s .

•-.-.....       ``              .,

Lad
Fig. 2Modified Tree T' of the Tree T

Next  calculate  the  weights  of the  paths   jz    and   I,  .  Let
wJ(JZ)   and   M;(I)    be  the  weights  of the  paths   jz    and   I

respectively.    Here     w(JZ)=57     and     t4J(I)=  34.    Next

calculate the difference of weights of two paths i.e.,  calculate
tiJ(jz) -w(I) .  Therefore   w(jI) -w(I) = 57  -34  =  23 .

To get equal weights of  iA;(ji)   and  w(I)   we add the weight

4   to the edge  (v] , 1;3 ) ,  8   to the edge  (v3 , v5 ) ,  1  to the edge

(V5,V9),  9   to the edge  (vg,v[o)   and decrease the weight  1

from the weight  of the edge  (tJ] , v2 ) .  After modification we

get              w(I)={(10+4)+(6+8)+(13+1)+(5+9)}
=  56 and  w(A)  =  {(10  -I) + 9 + 14 +  11 +  13}    =  56   i.e.,

w(I) =  w(A) .  Therefore  the  vertex   s = v[   is  the  inverse

one center.
Now, we have the modified tree  I '  with modified edge

weights.
Next we shall prove the following important result.

Lemma    1    The    algorithm    I-INV-LOC-TREE    conectly
computes  the inverse  1 -center  location  on the  edge  weighted
tree.
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Proo/ Let  s  be the pre-specified vertex in  I . We have to

prove that   f   is the inverse  1-center.  At  first,  by  Step  2  we
have calculated the weight of the path  A =  fv,  and by Step 3,

the weight of the path  I  =  fv, . If w(A) =  w(I) , then  s  is

the vertex  1-center as well as inverse  1-center (Step  5.1).  But

if  14;(A) >  w(I) ,  then  by  Step  5.2  we  have  distributed  the

excess weight  w(A) -w(I)   on thepath  I,   from  a   obeying

the   bounds   Conditions    w,ow(e) <  11;(c)  <  wapp(e)  ,   for   all

e e  I(7')   and  if  i4/(jz) <  w(I) ,  then  we  have  distributed

the excess weight  w`(I) -"7(A)   on the path  A   obeving the

same   bounds   rule   (Step    5.3).    By   this   process   we   get

w* (jz) =  w* (I ) ,  which is the condition  of inverse  1-center.

Therefore  s   is the inverse  1-center.  Hence cz/go77.ffem  j-tIvy-
£OC-ZREE  correctly  computes  the  inverse  1-center  for  any
edge weighted tree.

We  have  another  important  observation  in  the  tree   r'
give;ndy the algorithm 1 -INV-LOC-TREE.

£e7„"o 2  The specified vertex  s  in the modified tree  r'  is
the  1-center.

Proo/  This  result  directly  follows  from  Lemma   1.   By

algorithm l-INV-LOC-TREE, fintry we gct wS (R) = w* (L)

in the modified tree  r' .  Therefore the specified vertex  a   in

the modified tree  I '  is the 1-center.
The  following  describe  the  total  time  complexity  of the

algorithm  to  compute  inverse  1-center  problem  on  the  edge
weighted tree.

772eorene  J     The time  complexity to  find inverse  1-center

problem on a given edge weighted tree T is  a (# ) , where  7?
is the number of vertices of the tree.

Proo/  Step  1  takes   a(1)   time.  Step  2  i.e.,longest  edge

weighted path from  s   to  v,.   can be computed in  a(")  time

if T is traversed in a depth-first-search manner.  Similarly Step

3  can be computed in  a(72)  time.  Step 4 takes  a( 1 )  time as

comparing two numbers takes  a( I )  time.  Also Step 5 takes

a(1 )   time.  Comparing two numbers  and distribution  of the

excess weight takes  a(#)  time.  So, Stay 5.2 and Step 5.3 can

be  computed  a(72)   time.  Hence  overall  time  complexity  of

our prapased algorithm 1-INV-LOC-TREE is 0 (n)  Irrne.

IV.                   CONCLUDING REMARKS

In this article, we investigated the inverse  1-center location

problem   with   different    edge   weights    on   the   tree.   We
developed exact combinatorial  solution algorithm for the tree
with fast running time  a (# ) .
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