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Abstract

Let TPER be the tree corresponding to the weighted permutation graph G = (V,E). The eccentricity e(v)

of the vertex v is defined as the sum of the weights of the vertices from v to the vertex farthest from

v ∈ TPER. A vertex with minimum eccentricity in the tree TPER is called the 1-center of that tree.

In an inverse 1-center location problem the parameter of the tree TPER corresponding to the weighted

permutation graph G = (V,E), like vertex weights have to be modified at minimum total cost such that a

pre-specified vertex s ∈ V becomes the 1-center of the permutation graph G. In this paper, we present an

optimal algorithm to find an inverse 1-center location on the tree TPER corresponding to the permutation

graph G = (V,E), where the vertex weights can be changed within certain bounds. The time complexity

of our proposed algorithm is O(n), where n is the number of vertices of the weighted permutation graph

G.

Keywords: Tree-networks, center location, 1-center location, inverse 1-center location, inverse opti-

mization, tree, permutation graph.

1 Introduction

An undirected graph G = (V,E) with vertex set V = {1, 2, . . . , n} is said to be a permutation graph iff

there exists a permutation π = {π(1), π(2), . . . , π(n)} on {1, 2, . . . , n} such that for all i, j ∈ V , (i, j) ∈ E

iff

(i− j)(π−1(i)− π−1(j)) < 0,

where for each i ∈ V , π−1(i) denotes the position of the number i in π [22]. We assume that the graph is

connected. Permutation graphs can be visualized as a class of intersection graphs [22]. Pnueli et al. [43]

showed that permutation graphs are exactly those comparability graphs (transitively orientable graphs)

whose complements are also comparability graphs. If the permutation graph is given in the form of an

adjacent matrix or an adjacent list, we can construct the permutation representation (diagram) in O(n2)
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time [22, 40]. Henceforth, we assume that a permutation representation is given for the input graph. We

assume that the permutation is stored in the array π(i), i = 1, 2, . . . , n and the inverse permutation of π

is stored in array π−1(i), i = 1, 2, . . . , n. The array π−1(i) can be computed in O(n) time from the array

π(i). Figure 1 represents the permutation graph G and Figure 2 is the corresponding matching diagram

of the permutation graph G.

✉ ✉ ✉✉ ✉ ✉
1(2) 7(1) 6(7) 9(3) 8(2)

✉

✉ ✉

✉
✉ ✉

3(4) 4(5)

5(6)

10(4)

Figure 1: A permutation graph G.

2(3) 11(5)

12(6)

1 2 3 4 5 6 7 8 9 10 11 12

3 5 7 2 4 1 9 6 10 12 8 11

Figure 2: Matching diagram of the permutation graph G of Figure 1.

Permutation graphs is a class of perfect graphs and can be used to solve many real world problems

like the problem of airline routes connection with various cities such that all scheduled to be utilized at

the same time of the day, the problem of shifted intervals etc.

Breadth-first-search (BFS) is a strategy for searching in a graph when search is limited to essential two

operations: (a) visit and inspect a node of a graph; (b) gain access to visit the nodes that neighbour the

currently visited node. The BFS begins at a root node and inspect all the neighbouring nodes. Then for

each of those neighbour nodes in turn, it inspects their neighbour nodes which were unvisited, and so on.

BFS is a uniformed search method that aims to expand and examine all nodes of a graph or combination

of sequences by systematically searching through every solution. In other words, it exhaustively searches

the entire graph or sequence without considering the goal until it finds it.

Let G be a connected undirected graph, let v be a vertex of G and let T be its spanning tree obtained

by the BFS of G with the initial vertex v. An appropriate rooted tree T (v) = (V,E
′

) ⊆ G let us call a

Breadth-First-Search Tree (BFS tree, shortly) with the root v, the edges of G that do not appear in BFS

tree let us call non-tree edges.

In an un-weighted tree T = (V,E
′

), where |E
′

| = |V |−1, the eccentricity e(v) of the vertex v is defined

as the distance from v to the vertex farthest from v ∈ T , i.e.,

e(v) = max {d(v, vi), for all vi ∈ T },

where d(v, vi) is the number of the edges on the shortest path between v and vi.

In a weighted tree T = (V,E
′

), where |E
′

| = |V | − 1, the eccentricity e(v) of the vertex v is defined as

sum of the weights of the vertices from v to the vertex farthest from v ∈ T , i.e.,
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e(v) = max {d(v, vi), for all vi ∈ T },

where d(v, vi) is the sum of the weights of the vertices on the shortest path between v and vi.

A vertex with minimum eccentricity in the tree T is called a center of that tree T, i.e., if e(s) =

min{e(v), for all v ∈ V }, then s is the 1-center. It is clear that every tree has either one or two centers.

The eccentricity of a center in a tree is defined as the radius of the tree and is denoted by ρ(T ), i.e.,

ρ(T ) = {minv∈T e(v)}.

The diameter of a tree T is defined as the length of the longest path in T i.e., the maximum

eccentricity is the diameter. A spanning tree with minimum diameter is defined as minimum diameter

spanning tree.

For the weighted tree T with n vertices and n − 1 edges of the corresponding weighted permutation

graphs, the inverse 1-center problem on weighted tree T is concerned with modifying parameter, like

vertex weight, at minimum total cost within certain modification bounds such that a pre-specified vertex

becomes the 1-center. For example, consider the train station of a city which can not be relocated. The

mayor could change some parameters in the urban system (e.g., improving streets or urban transportation

lines) at minimum cost subject to evident length constraints such that the current location of the train

station becomes the center (in a graph theoretic sense) of the city.

Our problem is to design an optimal algorithm to compute the inverse 1-center location problem on

weighted permutation graphs.

2 Survey of the related work

As shown in [9, 50, 51], the inverse problems of many combinatorial/network optimization problems can

be solved by strongly or weakly polynomial algorithms. In fact in [48], it is shown that for a large class of

combinatorial/network optimization problems, if the original problem can be solved in polynomial times,

then its inverse problem can be solved in polynomial time by a quite uniform methodology. A detailed

survey on inverse optimization problems has been compiled by Heuberger [24]. In the context of location

problems Cai et al. [10] proved that the inverse 1-center location problem with edge length modification on

general un-weighted directed graphs is NP -hard, while the underlying center location problem is solvable

in polynomial time. In 2004, Burkard et al. [5] consider inverse p-median location problems can be solved

in polynomial time, when p is fixed and not an input parameter. They proposed a greedy like O(n logn)

time algorithm for the inverse 1-median problem with vertex weight modifications on tree networks.

Galavi [21] showed later that this problem can actually be solved in O(n) time. Moreover, Burkard et al.

[5] proved that the inverse 1-median problem on the plane under Manhattan (or Chebyshev) norm can

be solved in O(n log n) time. Later the same authors [6] investigated the inverse 1-median problem with

vertex weight modification and unit cost on a cycle. They showed that this problem can be solved in

O(n2) time by using methods from computational geometry. In 2007, Gassner [20] suggested an efficient

O(n log n) time solution method for the inverse 1-maxian problem with edge length modifications on tree

networks. The inverse Fermat-Weber problem was studied by Burkard et al. [7, 8].
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The authors derived a combinatorial approach which solves the problem in O(n log n) time for unit cost

and under the assumption that the pre-specified point that should become a 1-median does not coincide

with a given point in the plane. Galavii [21] showed that the 1-median on a path with positve/negative

weights lies in one of the vertices with positive weights or lies in one of the end points of the path. This

property allows to solve the inverse 1-median problem on a path with negative weights in O(n) time.

Gassner [20] consider an inverse version of the convex ordered median problem and showed that this

problem is NP -hard on general graphs, even on trees. Further, it was shown that the problem remains

NP -hard for unit weights or if the underlying problem is a K-centrum problem (but not, if both of these

conditions hold). The inverse unit-weight K-centrum problem with unit cost coefficients on a tree can be

solved in O(n3k2) time. Recently, Yang and Zhang [49] proposed an O(n2 logn) time solution method

for the inverse vertex center problem on a tree provided that the modified edge lengths always remain

positive. Dropping this condition, they mention that the general problem can be solved in O(n3 logn)

time. Some papers on circular-arc graphs which helps to complete this paper are Jana et al. [26], Mondal

et al. [37, 38], Saha et al. [44, 45, 46], Swagata et al. [30, 31, 32, 33], Satyabrata et al. [42]. Recently,

Alizadeh et al. [1] have designed an algorithm for inverse 1-center location problem with edge length

augmentation on trees in O(n logn) time, using a set of suitably extended AVL-search trees. In [2],

Alizadeh et al. have designed a combinatorial algorithm for inverse absolute on trees in O(n2) time when

topology not allowed and O(n2r) time when topology allowed.

Inverse optimization problems have recently attained significant theoretical interest due to their rele-

vance in practice and for a comprehensive survey on inverse optimization problems see [17, 23, 24, 29].

Network location problems belong to basic optimization models which are concerned with finding the

best location of single or multiple new facilities in a network of demand points such that a given function

which depends on the distance between the facilities and clients becomes minimum. Depending on the

the model under investigation, facilities or clients may either be placed only at vertices or may also lie on

edges of the network. For further details on these problems the reader is referred to the books of Daskin

[12], Drezner et al. [16], Francis et al. [19], Mirchandani et al. [35] and Nickel et al. [41].

Burton and Toint [4] first investigated an inverse shortest paths problem in 1992. Since then, many

problems have been considered by various authors, working at least partly independently. The notation of

’inverse optimization’ is always similar, but not the same. Recently, Jana et al. [25, 27, 28] have designed

a linear time algorithm to compute inverse 1-center location problem on the edge weighted trees, weighted

interval graphs respectively and weighted circular-arc graphs.

2.1 Applications of the problem

For instance, an important application comes from geophysical sciences and concerns predicting the

movements of earthquakes. To achieve this aim, geologic zones are discretized into a number of cells.

Adjacency relations can be modeled by arcs in a corresponding network (Moser [39]). Although some

estimates for the transmission times are known, precise values are hard to obtain. By observing an

earthquake and the arrival times of the resulting seismic perturbations at various points and assuming

that earthquakes travel along shortest paths, the problem is to refine the estimates of the transmission

times between the cells. This is just an inverse shortest path problem.
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Another possible application actually changes the real costs: Assume that we are given a road network

and some facility in it. The aim is to place the facility in such a way that the maximum distance to the

customers is minimum. However we are often faced with the situation that the facility already exists

and can not be relocated with reasonable costs. In such a situation, we may want to modify the network

as little as possible (improving roads costs), such that the location of the facility becomes optimum (or

such that the distances to the customers do not exceed some given bounds). This is an example of the

inverse center location problem. When modeling traffic networks, a further option is to impose tolls in

order to enforce an efficient use of the network (Dial [15]). The choice of the word ‘inverse optimization’

was motivated in part by the widespread use of inverse methods in other fields, for instance Marlow [34]

and Engl et al. [18].

2.2 Our result

In this paper, we design an algorithm to compute inverse 1-center location problem on weighted permu-

tation graphs in O(n) time, where n is the number of vertices of the graph.

2.3 Organization of the paper

In the next section, i.e., Section 3, we shall discuss about the construction of the tree. In subsection 3.1,

we discuss BFS tree on permutation graph. In subsection 3.2, we discuss about the minimum diameter

spanning tree. In Section 4, we develop modified spanning tree of the tree T . In Section 5, we present

an algorithm to get inverse 1-center of the permutation graph. The time complexity is also calculated in

this section. In Section 6, we give a conclusion.

3 Construction of the tree

3.1 Construction of BFS tree on permutation graph

It is well known that BFS is an important graph traversal technique and also BFS constructs a BFS tree.

In BFS, started with vertex v, we first scan all edges incident on v and then move to an adjacent vertex

w. At w we then scan all edges incident to w and move to a vertex which is adjacent of w. This process

is continued till all the edges in the graph are scanned [14].

BFS tree can be constructed on general graphs in O(n+m) time, where n and m represent respectively

the number of vertices and number of edges [47]. To construct this BFS tree on a permutation graph

we consider the matching diagram. We first placed the line segment x on the zero level and all vertices

adjacent to x on the first level. Next we traverse the matching diagram step by step. In first step we scan

the untraversed line segment which are situated at the right side of line segments x and in the second step

we scan all untraversed line segments which are situated at the left side of the line segment x. In each

iteration, we scan numbers within an interval on the top channel and scan permutation number within

an interval on the bottom channel alternately in an order. Recently Mondal et al. [36], have designed an

algorithm to construct a BFS tree T ∗(i) with root as i on trapezoid graph in O(n) time, where n is the

number of vertices and Barman et al. have designed another algorithm to construct the BFS tree on a
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permutation graph with any vertex x as root in O(n) time [3]. Figure 3 is the BFS tree constructed by

the Algorithm PBFS [3].

3.2 Computation of minimum diameter spanning tree

Let T (1), T (π(1)) be two BFS trees designed by Algorithm PBFS [3] of a permutation graph G. Let

TPER be the minimum heighted tree between T (1) and T (π(1)). Let P be the main path (longest path)

of TPER of the permutation graph G and it is denoted by u∗

0 → u∗

1 → u∗

2 → · · · → u∗

k, where k ≤ (n− 1)

and u∗

0 is either the vertex 1 or the vertex corresponding to π(1) of G. The vertices of the path P , i.e.,

u∗

i , i = 0, 1, 2, 3, . . . , k defined as internal nodes.

✉ ✉✉ ✉✉

✉
❩
❩
❩❩

✉

✉

✉

✉✉

✉

1(2)

2(3)3(4) 4(5)5(6)

7(1)

6(7)

9(3)

8(2)

12(6)
10(4)

11(5)

Level

0

1

2

3

4

5

6

Figure 3: BFS tree TPER rooted at vertex 1 of the permutation graph G shown in Figure 1.

We have the following terms:

The open neighbourhood of the vertex u∗

i in the path P of G, denoted by N(u∗

i ) and defined as

N(u∗

i ) = {u : (u, u∗

i ) ∈ E} and the closed neighbourhood N [u∗

i ] = {u∗

i } ∪N(u∗

i ), where E is the edge set

of the given permutation graph.

Next we define level of the vertex u as the distance of u from the root i of the BFS tree T (i) and

denote it by level(u), u ∈ V and take the level of the root i as 0. The level of each vertex on BFS tree

T (i), i ∈ V can be assigned by the BFS algorithm of Chen and Das [11]. The level of each vertex of the

tree TPER can be computed in O(n) time.

As per construction of BFS tree by the algorithm PBFS [3], we have the important result in BFS tree

TPER.

In permutation diagram, two intersecting line segments of V-type or inverted V-type defined as the

scissors type line segments of permutation graphs. Figure 4 gives the illustration of scissors type line

segments.

Lemma 1 Minimum number of scissors type line segments with maximum spread of the permutation

diagram cover the whole region.

Proof. Let {1, 2, . . . , n} be the set of numbers and {π(1), π(2), . . . , π(n)} be the permutation. To cover
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1 to n, i.e., whole region, there are two types of scissors, marked as dotted lines (V-type) and continued

lines (inverted V-type), shown in the Figure 4 and Figure 5.

Firstly, if we select first dotted line segment (1, π−1(1)) on top line. Then we consider such line segment

(i, π−1(i)), which is maximum spread among all adjacent to the corresponding first line segment 1 and

we marked all the line segment adjacent to 1. Next, we consider such line segment (j, π−1(j)) which is

maximum spread among all unmarked line segment adjacent to i, continuing this process until all the line

segments are covered, i.e., marked. Let this path be of the type top → bottom → top → bottom → . . ..

Similar manner to be followed from the bottom line. Then we obtain the another path of the form

bottom → top → bottom → top → . . .. In this way whole region is covered by the both paths.

Next we consider minimum path between them which will be the shortest path to covered all the line

segments. Hence, the scissors type lines segment of the permutation graph covered the whole region. �

1

i

k

π(1)

j

i′
j′

Figure 4: An Illustration.

Lemma 2 [3] Two intersecting line segments of the permutation graph of the matching diagram are

assigned on the same level or adjacent levels.

Lemma 3 If u, v ∈ V and |level(u)− level(v)| > 1 in TPER, then there is no edge between the vertices

u and v in G.

Proof. If possible let |level(u)− level(v)| > 1 but (u, v) ∈ E, i.e., u and v are directly connected. Since

u and v are directly connected so by Lemma 11 either level(u) = level(v) or |level(u) − level(v)| = 1

which is contradictory to the assumption that |level(u)− level(v)| > 1. Hence (u, v) 6∈ E, i.e., u and v

are not directly connected in G. �

The time complexity of the algorithm PBFS is stated below.

Theorem 1 [3] The BFS tree rooted at any vertex x ∈ V can be computed in O(n) time for a permutation

graph containing n vertices.

Obviously, this BFS is a spanning tree.
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i

j

k

π(1)
i′

j′

Figure 5: Region covered by the projection of minimum number of line segments.

1

Now, we shall prove that this spanning tree is also a minimum diameter spanning tree.

Lemma 4 The spanning tree TPER is a minimum diameter spanning tree.

Proof. According to the construction the BFS tree, the main path of the tree TPER is the longest path

which is the diameter of TPER. The main path contains minimum number of scissors type line segments

(by lemma 1). But this diameter is minimum, because TPER is the minimum heighted tree between

T (1), T (π(1)). Also, TPER is a spanning tree. Hence TPER is a minimum diameter spanning tree. �

In next section, we compute the inverse 1-center of the permutation graph by modifying the spanning

tree TPER.

4 Inverse 1-center

In this section we discuss about inverse 1-center.

Now, before going to our proposed algorithm we introduce some notations for our algorithmic purpose.

Let i be the pre-specified vertex in G.

Ri : Longest path right to the vertex i.

Li : Longest path left to the vertex i.

w(Ri) : Sum of weights of the vertices except the vertex i of the path Ri.

w(Li) : Sum of weights of the vertices except the vertex i of the path Li.

wlow(v) : Minimum weight of the vertex in the graph G.

wupp(v) : Maximum weight of the vertex in the graph G.

wmin : min{w(Li), w(Ri)}.

wmax : max{w(Li), w(Ri)}.

w1 : min{w(v), v ∈ G}.

w2 : max{w(v), v ∈ G}.

k1 : The number of vertices in such path between Li, Ri whose weight is maximum, except the vertex i.

k2 : The number of vertices in such path between Li, Ri whose weight is minimum, except the vertex i.

TPER : Weighted tree corresponding to the permutation graph G.

T ′

PER : Modified tree of the tree TPER corresponding to the permutation graph G.

w∗(Ri) : Sum of weights of the vertices except the vertex i of the path Ri after modification.

w∗(Li) : Sum of weights of the vertices except the vertex i of the path Li after modification.

To find the inverse 1-center, we discuss following two cases:



2019 44(4 )

126

Cases I: If number of adjacent of i is one, i.e., deg(i) = 1, then we can not construct a tree with root i

and two branches. Therefore, vertex i is not inverse 1-center of the weighted tree corresponding to the

permutation graph.

Case II: If number of adjacent vertices to the vertex i are more than one, i.e., deg(i) > 1, then we can

construct a tree with root i and two branches. To get inverse 1-center following six possibilities arises:

1. If sum of weights of one side of the vertex i is equal to the sum of weights of other side, i.e.,

w(Li) = w(Ri), then i is the center as well as the inverse 1-center of the graph.

2. If w(Li) 6= w(Ri), then we have following six cases :

Case-2.1. : When wmin is equal to the product of the number of vertices except the vertex i in the

path whose weight is maximum and minimum weight of the vertex in the graph,

i.e., wmin = k1w1.

Case-2.2. : When wmin is greater than the product of the number of vertices except the vertex i in

the path whose weight is maximum and minimum weight of the vertex in the graph,

i.e., wmin > k1w1.

Case-2.3. : When wmin is less than the product of the number of vertices except the vertex i in the

path whose weight is maximum and minimum weight of the vertex in the graph,

i.e., wmin < k1w1.

Case-2.4. : When wmax is equal to the product of the number of vertices except the vertex i in the

path whose weight is minimum and maximum weight of the vertex in the graph,

i.e., wmax = k2w2.

Case-2.5. : When wmax is greater than the product of the number of vertices except the vertex i in

the path whose weight is minimum and maximum weight of the vertex in the graph,

i.e., wmax > k2w2.

Case-2.6. : When wmax is less than the product of the number of vertices except the vertex i in the

path whose weight is minimum and maximum weight of the vertex in the graph,

i.e., wmax < k2w2.

Under above conditions we modify the tree TPER with the help of following non-linear semi-infinite

(or nonlinear) optimization model:

Minimize
∑

v∈V (TPER)

{c+(w(v))x(w(v)) + c−(w(v))y(w(v))}
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subject to

maxv∈V (TCIR) dw(v, i) ≤ maxv∈V (TPER) dw(v, p), for all p ∈ TPER(or p ∈ V (TPER)),

w(v) = w(v) + x{w(v)} − y{w(v)} for all v ∈ V (TPER),

x{w(v)} ≤ w+{w(v)}, for all v ∈ V (TPER),

y{w(v)} ≤ w−{w(v)}, for all v ∈ V (TPER),

x{w(v)}, y{w(v)} ≥ 0, for all v ∈ V (TPER),

where w(v) be the modified vertex weight, w+{w(v)} = wupp(v) − w(v) and w−{w(v)} = w(v) −

wlow(v) are the maximum feasible amounts by which w(v) can be increased and reduced respectively,

i.e., wlow(v) ≤ w(v) ≤ wupp(v), x{w(v)} and y{w(v)} are the maximum amounts by which the vertex

weight w(v) is increased and reduced respectively, c+(w(v)) is the non negative cost if w(v) is increased

by one unit and c−(w(v)) is the non negative cost if w(v) is reduced by one unit. Every feasible solution

(x, y) with x = {x(w(v)) : v ∈ V (TPER)} and y = {y(w(v)) : e ∈ V (TPER)} is also called a feasible

modification of the inverse 1-center location problem.

Now, we prove the following results.

Lemma 5 If wmin = k1w1 in TPER, then w∗(Li) = w∗(Ri) by reducing the weights of all vertices except

the vertex i, i.e., root i up to minimum weight maintaining the bounding condition in the path whose

weight is maximum and i is the inverse 1-center.

Proof. If k1 be the number of vertices in the maximum weighted path Li or Ri and w1 be the minimum

weight of the vertex among the vertices in TPER as well as Li or Ri, then there is a scope to reduce

weight of each vertex up to w1. As k1 vertices is there in the path Li or Ri, so we can reduces at least

k1w1 weight and hence reduced weight of the path Li or Ri becomes k1w1. Again we have wmin = k1w1.

By this way we can balance the weights of both paths. So we get the modified tree of the tree TPER, say

T ′

PER. Again, since the permutation graph is an arbitrary, so our assumption is true for any permutation

graphs.

Finally in T ′

PER, we have w∗(Li) = w∗(Ri), which implies that i is the inverse 1-center of the given

weighted permutation graph. Hence the result. �

Lemma 6 If wmin > k1w1 in TPER, then w∗(Li) = w∗(Ri) by reducing the weights of some vertices

except the root i maintaining the bounding condition in the path whose weight is maximum and i is the

inverse 1-center.

Proof. Since we can decrease the weight of each vertex except the root up to minimum weight of the

vertex in TPER, so we can reduce the weight in the path whose weight is maximum in such a way that

its least weight of the path becomes k1w1. Again we have wmin > k1w1. Therefore we can decrease the

weights (wmax − wmin) from the vertices except the root i in the path whose weight is maximum using

the conditions of non-linear semi-infinite (or nonlinear) optimization model technique (Section 3). By

this way we can balance the weights of both paths. So we get the modified tree of the tree TPER, say

T ′

PER. Again, since the permutation graph is an arbitrary, so our assumption is true for any permutation

graphs.
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Finally in T ′

PER, we have w∗(Li) = w∗(Ri), which implies that i is the inverse 1-center of the given

weighted permutation graph. Hence the result. �

Lemma 7 If wmin < k1w1 in TPER, then w∗(Li) = w∗(Ri) by reducing the weights of all vertices

up to minimum weight except the root i maintaining the bounding condition in the path whose weight is

maximum and enhance the weights of some vertices except the root i in the path whose weight is minimum

and i is the inverse 1-center.

Proof. Since we can decrease the weight of each vertex up to minimum weight of the vertex in TPER, so

we can reduce the weights of the vertices except the root in the path whose weight is maximum in such

a way that its least weight of the path becomes k1w1. Again we have wmin < k1w1. Therefore we can

increase the weights (k1w1 −wmin) to the vertices except the root in the path whose weight is minimum

using the conditions of non-linear semi-infinite (or nonlinear) optimization model technique (Section 3).

By this way we can balance the weights of both paths. So we get the modified tree of the tree TPER, say

T ′

PER. Again, since the permutation graph is an arbitrary, so our assumption is true for any permutation

graphs.

Finally in T ′

PER, we have w∗(Li) = w∗(Ri), which implies that i is the inverse 1-center of the given

weighted permutation graph. Hence the result. �

Lemma 8 If wmax = k2w2 in TPER, then w∗(Li) = w∗(Ri) by enhance the weights of all vertices up

to maximum weight except the root i maintaining the bounding condition in the path whose weight is

minimum and i is the inverse 1-center.

Proof. If k2 be the number of vertices in the minimum weighted path Li or Ri and w2 be the maximum

weight of the vertex among the vertices in TPER as well as Li or Ri, then there is a scope to increase

the weight of each vertex up to w2. As k2 vertices is there in the path Li or Ri, so we can enhance

atmost k2w2 weight and hence enhanced weight of the path Li or Ri becomes k2w2. Again we have

wmax = k2w2. By this way we can balance the weights of both paths. So we get the modified tree of the

tree TPER, say T ′

PER. Again, since the permutation graph is an arbitrary, so our assumption is true for

any permutation graphs.

Finally in T ′

PER, we have w∗(Li) = w∗(Ri), which implies that i is the inverse 1-center of the given

weighted permutation graph. Hence the result. �

Lemma 9 If wmax > k2w2 in TPER, then w∗(Li) = w∗(Ri) by enhance the weights of all vertices up to

maximum weight except the root i maintaining the bounding condition in path whose weight is minimum

and reducing the weights of some vertices except the root i in the path whose weight is maximum and i is

the inverse 1-center.

Proof. Since we can increase the weight of each vertex up to maximum weight of the vertex in TPER,

so we can enhance the weights of all vertices except the root i in the path whose weight is minimum in

such a way that its greatest weight of the path becomes k2w2. Again we have wmax > k2w2. Therefore

we can reduces the weights (wmax − k2w2) to some vertices except the root in the path whose weight

is maximum using the conditions of non-linear semi-infinite (or nonlinear) optimization model technique
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(Section 3). By this way we can balance the weights of both paths. So we get the modified tree of the

tree TPER, say T ′

PER. Again, since the permutation graph is an arbitrary, so our assumption is true for

any permutation graphs.

Finally in T ′

PER, we have w∗(Li) = w∗(Ri), which implies that i is the inverse 1-center of the given

weighted permutation graph. Hence the result. �

Lemma 10 If wmax < k2w2 in TPER, then w∗(Li) = w∗(Ri) by enhance the weights of some vertices

except the root i maintaining the bounding condition in the path whose weight is minimum and i is the

inverse 1-center.

Proof. Since we can increase the weight of each vertex up to maximum weight of the vertex in TPER,

so we can enhance the weights of the vertices except the root i in the path whose weight is minimum in

such a way that its greatest weight of the path becomes k2w2. Again we have wmax < k2w2. Therefore

we can increase the weights (wmax − wmin) to some vertices except the root i in the path whose weight

is minimum using the conditions of non-linear semi-infinite (or nonlinear) optimization model technique

(Section 3). By this way we can balance the weights of both paths. So we get the modified tree of the

tree TPER, say T ′

PER. Again, since the permutation graph is an arbitrary, so our assumption is true for

any permutation graphs.

Finally in T ′

PER, we have w∗(Li) = w∗(Ri), which implies that i is the inverse 1-center of the given

weighted permutation graph. Hence the result. �

5 Algorithm and its complexity

In this section we propose a combinatorial algorithm for the inverse 1-center location problem on the

vertex weighted tree TPER. The main idea of our proposed algorithm is as follows:

Let TPER be a weighted tree corresponding to the permutation graph G with n vertices and (n − 1)

edges. Let V be the vertex set and E be the edge set. Let i be any non-pendant specified vertex in the tree

TPER which is to be inverse 1-center. At first we calculate the path whose weight is maximum from i to

any pendant vertex of TPER. Let L and R be the left and right paths from i in which weights are maximum

with respect to sides. Let w(Li), w(Ri) be the sum of weights of the vertices except the root of the paths

Li, Ri respectively with respect to the vertex i. If w(Li) = w(Ri), then i is the center as well as the inverse

1-center of the graph. If w(Li) 6= w(Ri), then six cases may arise. In the first case, if wmin = k1w1 in

TPER, where w1 = min{w(v), v ∈ G}, wmin = min{w(Li), w(Ri)}, k1 be the number of vertices in such

path between Li, Ri whose weight is maximum, except the root i and wmin > 0, then w∗(Li) = w∗(Ri)

by reducing the weights of all vertices up to minimum weight except the vertex i, i.e.,root i maintaining

the bounding conditions (Section 3) in the path whose weight is maximum and i is the inverse 1-center.

In the second case, if wmin > k1w1 in TCIR, where w1 = min{w(v), v ∈ G}, wmin = min{w(Li), w(Ri)},

k1 be the number of vertices in such path between Li, Ri whose weight is maximum, except the root i and

wmin > 0, then w∗(Li) = w∗(Ri) by reducing the weights of some vertices except the root i maintaining

the bounding conditions (Section 3) in the path whose weight is maximum and i is the inverse 1-center.

In third case, if wmin < k1w1 in TCIR, where w1 = min{w(v), v ∈ G}, wmin = min{w(Li), w(Ri)},
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k1 be the number of vertices in such path between Li, Ri whose weight is maximum, except the root

i and wmin > 0, then w∗(Li) = w∗(Ri) by reducing the weights of all vertices up to minimum weight

except the root i maintaining the bounding conditions (Section 3) in the path whose weight is maximum

and enhance the weights of some vertices except the root i in the path whose weight is minimum and

i is the inverse 1-center. In fourth case, if wmax = k2w2 in TPER, where w2 = max{w(v), v ∈ G},

wmax = max{w(Li), w(Ri)}, k2 be the number of vertices in such path between Li, Ri whose weight is

minimum, except the root i and wmax > 0, then w∗(Li) = w∗(Ri) by enhance the weights of all vertices

up to maximum weight except the root i maintaining the bounding conditions (Section 3) in the path

whose weight is minimum and i is the inverse 1-center. In fifth case, if wmax > k2w2 in TPER, where

w2 = max{w(v), v ∈ G}, wmax = max{w(Li), w(Ri)}, k2 be the number of vertices in such path between

Li, Ri whose weight is minimum, except the root i and wmax > 0, then w∗(Li) = w∗(Ri) by enhance

the weights of all vertices up to maximum weight except the root i maintaining the bounding conditions

(Section 3) in path whose weight is minimum and reducing the weights of some vertices except the root

i in the path whose weight is maximum and i is the inverse 1-center. In sixth case, if wmax < k2w2 in

TCIR, where w2 = max{w(v), v ∈ G}, wmax = max{w(Li), w(Ri)}, k2 be the number of vertices in such

path between Li, Ri whose weight is minimum, except the root i and wmax > 0, then w∗(Li) = w∗(Ri)

by enhance the weights of some vertices except the root i maintaining the bounding conditions (Section

3) in the path whose weight is minimum and i is the inverse 1-center.

Our proposed algorithm to the inverse 1-center location problem of the tree corresponding to the

permutation graph G is as follows:

Algorithm 1-INV-PER-TREE

Input: Weighted permutation graph G with weights wj to the each vertex vj , (j = 1, 2 . . . , n).

Output: Vertex i as inverse 1-center of the tree TPER and modified tree T ′

PER.

Step 1. Construction of the tree TPER with root i //Algorithm PER-TREE//.

Step 2. Compute the longest paths Ri and Li from i to the tree TPER.

Step 3. Calculate w(Li) and w(Ri).

Step 4. //Modification of the tee TPER//

Step 4.1. If w(Li) = w(Ri), then i is the vertex one center as well as inverse 1-center

of TPER.

Step 4.2. If w(Li) 6= w(Ri), then

Step 4.2.1. If wmin = k1w1 in TPER, then w∗(Li) = w∗(Ri) by reducing the weights of

all vertices except the vertex i, i.e.,root i up to minimum weight maintaining the

bounding condition in the path whose weight is maximum, then go to Step 4.3.

Step 4.2.2. If wmin > k1w1 in TPER, then w∗(Li) = w∗(Ri) by reducing the weights of some

vertices except the root i maintaining the bounding condition in the path whose

weight is maximum, then go to Step 4.3.

Step 4.2.3. If wmin < k1w1 in TPER, then w∗(Li) = w∗(Ri) by reducing the weights of

all vertices except the root i up to minimum weight maintaining the bounding

condition in the path whose weight is maximum and enhance the weights of

some vertices except the root i in the path whose weight is minimum, then go



2019 44(4 )

131

to Step 4.3.

Step 4.2.4. If wmax = k2w2 in TPER, then w∗(Li) = w∗(Ri) by enhance the weights of

all vertices except the root i up to maximum weight maintaining the bounding

condition in the path whose weight is minimum, then go to Step 4.3.

Step 4.2.5. If wmax > k2w2 in TPER, then w∗(Li) = w∗(Ri) by enhance the weights of

all vertices except the root i up to maximum weight maintaining the bounding

condition in path whose weight is minimum and reducing the weights of some

vertices except the root i in the path whose weight is maximum, then go to

Step 4.3.

Step 4.2.6. If wmax < k2w2 in TPER, then w∗(Li) = w∗(Ri) by enhance the weights of some

vertices except the root i maintaining the bounding condition in the path whose

weight is minimum, then go to Step 4.3.

Step 4.3. Modified tree T ′

PER of the tree TPER with w∗(Li) = w∗(Ri), and i is the

inverse 1-center.

end 1-INV-PER-TREE.

Using above Algorithm 1-INV-PER-TREE we can find out the inverse 1-center location problem

on any vertex weighted tree. Justification of this statement follows the following illustration.

Illustration of the Algorithm 1-INV-PER-TREE to the tree TPER in Figure 3 : Let i = 1 be the

pre-specified vertex of the tree TPER which is to be inverse 1-center. Next we find the longest left path Li

from the vertex 1 to other vertex 3, i.e., the path 1 → 3 and find longest right path Ri from 1 to the vertex

11 does not contain any vertex of the path Li except 1, i.e., the path 1 → 7 → 6 → 9 → 8 → 12 → 11.

Next calculate the weights of the paths Li and Ri. Let w(Li) and w(Ri) be the sum of the weights of

the vertices except the root i = 1 of the paths Li and Ri respectively. Here w(Li) = 4 and w(Ri) = 24.

Therefore wmin = w(Li) = 4 and wmax = w(Ri) = 24. Again k1 = 6 and w1 = 1, then k1w1 = 6.

Therefore wmin < k1w1. Therefore we reduce the weights of each vertex in Ri except the root i = 1

up to minimum weight 1 maintaining the bounding conditions (Section 3) and increase the weight 2

to the vertex 3 in Li, then we get w∗(Ri) = {1 + (7 − 6) + (3 − 2) + (2 − 1) + (6 − 5) + (5 − 4)} = 6.

Again w∗(Li) = 4+2 = 6, hence we get w∗(Li) = w∗(Ri). Therefore the vertex 1 is the inverse one center.

The above illustration gives the following table.
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Pre-specified vertex of the tree TPER i = 1

Longest left path Li from the vertex 1

to the vertex 3

1 → 3

Longest right path Ri from the vertex 1

to the vertex 11

1 → 7 → 6 → 9 → 8 → 12 → 11

Weight of the path Li except the vertex

i = 1

w(Li) = 4

Weight of the path Ri except the vertex

i = 1
w(Ri) = 24

wmin = w(Li) 4

wmax = w(Ri) 24

Number of vertices in Ri except i = 1 k1 = 6

Minimum weight of the vertex in the
graph

w1 = 1

k1w1 6

wmin < k1w1

Reduce the weights of each vertex in Ri

except the root 1 up to minimum weight
1 + (7− 6) + (3− 2) + (2 − 1)
+(6− 5) + (5 − 4) = 6

Increase the weight 2 to the vertex 3
in Li

4 + 2 = 6

w∗(Li) 6

w∗(Ri) 6

The weights of w∗(Li) and w∗(Ri) are

equal
w∗(Li) = w∗(Ri)

The vertex which is inverse 1-center i = 1

Now we have the modified tree T ′

PER (Figure 6) with modified vertex weight.
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1(2)

2(3)3(4 + 2) 4(5)5(6)

7(1)

6(7 - 6)

9(3 - 2)

8(2 - 1)

12(6 - 5)
10(4)

11(5 - 4)

Figure 6: Modified tree T ′

PER of the tree TPER .

Next we shall prove the following important result.

Lemma 11 The Algorithm 1-INV-PER-TREE correctly computes the inverse 1-center of the weighted

permutation graph.

Proof. Let i be the pre-specified vertex in TPER. We have to prove that i is the inverse 1-center. At

first, by Step 1, we have constructed the tree TPER (as per section 2) with root i, by Step 2, compute

the longest paths Ri and Li from i to the tree TPER, by Step 3, calculate the weight of the paths Li

and Ri from i except i, i.e., w(Li) and w(Ri). In Step 4, If w(Li) = w(Ri), then i is the vertex one

center as well as inverse 1-center of TPER (Step 4.1). But if w(Li) 6= w(Ri), then modify the tree TPER

under the conditions of non-linear semi-infinite (or nonlinear) optimization model (Step 4.2). By Step

4.3, modify the circular-arc tree TPER we get the weights w∗(Li) and w∗(Ri) of both sides of i and we get

w∗(Li) = w∗(Ri). Therefore i is the inverse 1-center. Hence Algorithm 1-INV-PER-TREE correctly

computes the inverse 1-center for any vertex weighted tree. �

We have another important observation in the tree T ′

PER given by the Algorithm 1-INV-PER-

TREE.

Lemma 12 The specified vertex i in the modified tree T ′

PER is the inverse 1-center.

Proof. By Algorithm 1-INV-PER-TREE, finally we get w∗(Li) = w∗(Ri) in the modified tree T ′

PER.

Therefore the specified vertex i in the modified tree T ′

PER is the inverse 1-center. �

The following describe the total time complexity of the algorithm to compute inverse 1-center problem

on the weighted tree corresponding to the weighted permutation graph G.

Theorem 2 The time complexity to find inverse 1-center problem on a given vertex weighted tree T ′

PER

corresponding to the weighted permutation graph G is O(n), where n is the number of vertices of the

graph.

Proof. Step 1 takes O(n) time, since the adjacency relation of permutation graph can be tested in O(n)

time. Step 2, i.e., longest weighted path from i to vi can be computed in O(n) time if TPER is traversed
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in a depth-first-search manner. Step 3 takes O(n) time to compute the sum of the weights of the paths.

Also, Step 4.1 takes O(1) time. Computation of k1 and k2, i.e., number of vertices in Ri and Li takes O(n)

time, so each Step 4.2 takes O(n) time (since comparison of two numbers and distribution of the excess

weight takes O(n) time, so, each Step 4.2.1 to 4.2.6 can be computed O(n) time). Also, modification

of weights in either Ri or Li just takes O(n) time as TPER contains n vertices and (n − 1) edges, so

Step 4.3 can be executed in O(n) time. Hence overall time complexity of our proposed Algorithm

1-INV-PER-TREE is O(n) time, where n is the number of vertices of the permutation graph. �

6 Concluding remarks

In this paper, we investigated the inverse 1-center location problem with vertex weights on the tree

corresponding to the weighted permutation graph G. Firstly, we develop minimum heighted tree with

two branches of level difference either zero or one of the permutation graph. Secondly, we modified the

tree maintaining the bounding conditions to get inverse 1-center. The time complexity of our proposed

algorithm is O(n), where n is the number of vertices of the permutation graph G. This idea can be

applied to solve the 1-center location problem to other graphs.
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