2022

Mathematics

[Honours]

(B.Sc. First Semester End Examination-2022) PAPER-MTMH C102

(Classical Algebra, Abstract Algebra-I and Linear Algebra-I)

Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

Group-A

[Classical Algebra]

1. Answer any two questions:

 $2 \times 4 = 8$

- a) Prove that $|z_1 + z_2| \le |z_1| + |z_2|$ where z_1 and z_2 are two complex numbers.
- b) If α, β, γ be the roots of the equation $x^3 px^2 + qx r = 0$ then find the value of $\sum \alpha^2 \beta^2$
- c) If a,b,c are positive, prove that $\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \ge \frac{3}{2}$.

- d) If the signs of a polynomial equation be all positive, show that it can not have positive root.
- e) Find the condition that sum of two roots of the equation $x^3 + bx + c = 0$ is zero.
- f) Find all values of $(-i)^{\frac{3}{4}}$.

2. Answer any one question:

 $1 \times 5 = 5$

- (a) Solve the equation using Cardan's method $x^3+3x^2+6x+4=0$.
- (b) If $a_1, b_2....$ a_n be all positive real numbers and $S = a_1 + a_2 + + a_n$

prove that
$$\frac{S}{S-a_1} + \frac{S}{S-a_2} + \dots + \frac{S}{S-a_n} \ge \frac{n^2}{n-1}$$

3. Answer any one question:

 $1 \times 10 = 10$

- a) i). Reduce the equation $4x^4 85x^3 + 357x^2 340x + 64 = 0$ to a reciprocal equation and then solve it.
- ii) If $\alpha = \cos \frac{2r\pi}{n} + i \sin \frac{2r\pi}{n}$ and if r and p are prime to n, then prove that $1 + \alpha^p + \alpha^{2p} + \alpha^{3p} \dots \alpha^{(n-1)p} = 0$.
- (b) (i) If α be an imaginary root of the equation $x^7 1 = 0$, find the equation whose roots are $\alpha + \alpha^6$, $\alpha^2 + \alpha^5$, $\alpha^3 + \alpha^4$
 - (ii) If x,y,z are positive real numbers and x + y + z = 1 prove that

$$8xyz \le (1-x)(1-y)(1-z) \le \frac{8}{27}$$

Group-B

[Abstract Algebra-I]

4. Answer any two questions:

 $2\times2=4$

- (a) Let $f: R \to R$ is defined by f(x) = |x| + x, $x \in R$ and $g: R \to R$ is defined by g(x) = |x| x, $x \in R$. Find $f \circ g$ and $g \circ f$.
- b) Find the general solution in integers of the equation 5x + 12y = 80.
- (c) If a is prime to b then show that a^2 is prime to b^2 .

5. Answer any two questions:

 $5 \times 2 = 10$

- a) If p be a prime show that \sqrt{p} is not a rational number.
- b) Let $S = \{x \in R: -1 < x < 1\}$ and $f: R \to S$ be defined by $f(x) = \frac{x}{1+|x|}, x \in R$. Show that f is bijection. Determine f^{-1} .
- c) State division algorithm. Use division algorithm to prove that the square of an odd integer is of the form (8k+1) where k is an integer.

Group-C

[Linear Algebra-I]

Group-C (Linear Algebra)

6. Answer any four questions:

$$4 \times 2 = 8$$

- a) If A is an orthogonal matrix then prove that $A^{-1} = A^{T}$.
- b) Let V be a vector space over a field F, then $0\alpha = 0$.
- c) Find the dimension of the subspace S of \mathbb{R}^3 defined by $S = \{(x, y, z) : 2x + y z = 0\}.$
- d) Find the eigen value of the diagonal matrix.
- e) Is the mapping $S: \mathbb{R}^3 \to \mathbb{R}$ defined by $S(x, y) = x^2$ linear? justify.
- f) Is the set $S = \{(1, -2, -1), (3,0,1), (1,4,3)\}$ linearly dependent? Justify.
- 7. Answer any one questions:

$$1 \times 1 = 5$$

- a) State and prove caley Hamilton theorem.
- b) Define rank of the matrix. Determine the conditions for the system of equations has only one solution, many solutions, no solution: x + y + z = 6, x + 2y + 3z = 10, x + 2y + az = b.

8. Answer any one questions:

$$10 \times 1 = 10$$

- a) i) Diagonalise the matrix $\begin{pmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{pmatrix}$
 - ii) If X and Y be two eigen vectors of a square matrix A corresponding to two distinct eigen values x and y respectively then prove that X and Y are linearly independent.

 5+5
- b) i) Obtain the fully reduced normal form of the matrix.

$$\begin{bmatrix} 0 & 0 & 1 & 2 & 1 \\ 1 & 3 & 1 & 0 & 3 \\ 2 & 6 & 4 & 2 & 8 \\ 3 & 9 & 4 & 2 & 10 \end{bmatrix}$$

Hence find the rank of the matrix.

ii) A linear mapping $S: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by S(x, y, z) = (x - y + 2z, x + 2y + z, x + y + 3z). Show that S is non-singular and determine S^{-1} . 5+5