2022

Mathematics

[Honours]

(B.Sc. Third Semester End Examination-2022) PAPER-MTMH C302

(Group Theory - II and Linear Algebra-II)

Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary
[Use separate answer script for each group]

Group-A

[Group Theory-II]

1. Answer any TWO questions

 $2 \times 2 = 4$

(a) Show that an Abelian group of order 35 is cyclic.

(b) Let
$$G = \left\{ \begin{pmatrix} a & a \\ a & a \end{pmatrix} : a \neq 0 \in \mathbb{R} \right\}$$

and
$$G^{\dagger} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R} \text{ and } ad - bc \neq 0 \right\}$$

Is $G \times G'$ forms a group? Justify.

(c) Let G be a commutative group of order n. If gcd(m,n) = 1, prove that the mapping $f: G \to G$ defined by $f(x) = x^m, x \in G$ is an automorphism.

2. Answer any TWO questions

 $2 \times 5 = 10$

(a) Let G be a group and Z(G) be the centre of G. If G/Z(G) is cyclic then show that G is a commutative group If G be a finite non commutative group then show that $|Z(G)| \le \frac{1}{4}|G|$

3+2

- (b) Show that any group of order less than 6 is commutative. 5
- (c) Let H, K be finite cyclic groups. Then show that $H \times K$ is cyclic if and only if O(H) and O(K) are relatively prime.

3. Answer any ONE question

 $10 \times 1 = 10$

- (a) (i) State and prove Cayley's theorem for group.
 - (ii) Define inner automorphism of a group. Show that $G/Z(G) \cong Inn(G)$.
- (b) (i) Define commutator subgroup. Suppose C is the commutator subgroup of a group G. Show that C is normal subgroup in G. Also show that the quotient group $\frac{G}{C}$ is

Abelian. Then show that if N be a normal subgroup of G, then $\frac{G}{N}$ is Abelian if and only if $C \subset N$. 1+1+1+3

(ii) Prove that a finite group of order n is isomorphic to a subgroup of S_n . Find the permutation group isomorphic to the group $G = (\{1, i, -1, -i\}, .)$.

Group-B

[Linear Algebra-II]

4. Answer any eight questions

 $2 \times 8 = 16$

- a) Show that the solutions of the differential equation $2\frac{d^2y}{dx^2} 9\frac{dy}{dx} + 2y = 0$ is subspace of a vector space of all real valued continuous functions.
- b) Consider the following subspace of \mathbb{R}^3 such that $W = \{(x, y, z) \in \mathbb{R}^3 | 2x + 2y + z = 0, 3x + 3y 2z = 0, x + y 3z = 0\}.$ Then what is the dimension of W?
- c) Let = $\{(-1,0,1), (2,1,4)\}$. For what value of k for which the vector (3k + 2,3,10) belongs to L(S)?
- d) Examine that the set of vectors $\{(1,2,2),(2,1,2),(2,2,1)\}$ is linearly independent in \mathbb{R}^3 .
- e) Give an example to show that union of two vector subspace of a vector space V may not be subspace of V.
- f) Define null space and range space of a linear mapping.

- g) Find two linear operators T_1 and T_2 on \mathbb{R}^2 such that $T_1T_2=0$ bnt $T_2T_1\neq 0$.
- h) Let V be a vector space over a field F. If $\alpha \in F$ and $x \in V$ such that $\alpha x = x$ then show that $\alpha = 1$ or x = 0
- i) Find the dimension of the vector space Cover \mathbb{R} .
- j) What do you mean by quotient space of a vector space?
- k) Define image and kernel of a linear mapping.
- 1) Let the matrix of the linear mapping $T: \mathbb{R}^2 \to \mathbb{R}^2$ relative to the ordered basis $B = \{(1,1), (-1,1)\}$ be $\begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$. Find T.

5. Answer any two questions

 $5 \times 2 = 10$

- a) Show that every finite dimensional real vector space of dimension n is isomorphic to \mathbb{R}^n
- b) Let V be a vector space of all 2×2 matrices over \mathbb{R} . Determine whether $A, B, C \in V$ are dependent, given that $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}, B = \begin{bmatrix} 3 & -1 \\ 2 & 2 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & -5 \\ -4 & 0 \end{bmatrix}$
- c) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map such that, T(2,3) = (4,5) and T(1,0) = (0,0). Find T(x,y).

6. Answer any one question

 $10\times1=10$

a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear map defined by T(x,y,z) = (3x, x - y, 2x + y + z) for all $(x,y,z) \in \mathbb{R}$. Then check whether T is invertible? If so find T^{-1} .

- b) (i) State and prove first isomorphism theorem for vector space. 2+4
 - (ii) State rank -nullity theorem. By using first isomorphism theorem prove the rank-nullity theorem. 2+2