2022

Mathematics

[Honours]

(B.Sc. Third Semester End Examination-2022) PAPER-MTMH C303

[Real Analysis II]

Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

Group-A

[Real Analysis II]

1. Answer any ten questions

 $10 \times 2 = 20$

- a. Let $f:[a,b] \to \mathbb{R}$ be continuous and strictly monotone in [a,b]Let $f(a) \neq f(b)$ Let K be any number between f(a) and f(b)Then exists exactly one point $c \in (a,b)$ such that f(c) = K [using Intermediate value theorem]
- b. Show that x.2' = 1 has a solution in (0,1)
- c. Prove that $f(x) = \frac{1}{x}$ is not uniformly continuous on (0,1)
- d. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} and f(q) = 0 for every rational number q. Prove that $f(x) = 0 \ \forall x \in \mathbb{R}$

e. Let
$$f(x) = \begin{cases} 0 & -1 \le x \le 0 \\ 1 & 0 < x \le 1 \end{cases}$$

Is there a function F such that P'(x) = f(x) in [-1,1]

- f. A function f is differentiable on [0,2] and f(0) = 0, f(1) = 2, f(2) = 1 Prove that f'(c) = 0 for some $c \in (0,2)$
- g. If f'(x) exists and is bounded in some interval I then f is uniformly continuous on I
- h. Show that there is no real number k for which the equation $x^3 3x + k = 0$ has two distinct roots in (0, 1)
- i. Prove that $Cosx < 1 \frac{x^2}{2} + \frac{x^4}{24}$ if $0 < x < \frac{\pi}{2}$
- j. Write the sufficient condition for differentiability of the function f(x, y) at (a, b)

Give an example to show that the condition is not necessary.

k. If
$$u = \tan^{-1} \left(\frac{x^{5/2} + y^{5/2}}{\sqrt{x} - \sqrt{y}} \right)$$
 show that $x \frac{\partial y}{\partial x} + y \frac{\partial y}{\partial x} = \sin 2u$

- 1. Let f(x) = Sgn x, $g(x) = x(1-x^2)$ Show that the composite function g of is continuous at 0
- m. Find the limit $\lim_{x\to 0} \frac{1}{x^2}$

- n. State the nature of discontinuity of f(x) at x = 0 where $f(x) = Sin \frac{1}{x} \quad x \neq 0$
- o. Let $f:[a,b] \to \mathbb{R}$ and $g:[a,b] \to \mathbb{R}$ be both continuous on [a,b] and both differentiable on (a,b) Is $f'(x) = g'(x) \forall x \in (a,b)$ implies f(x) = g(x)? justify.

2. Answer any four questions

=0.

x = 0

 $4 \times 5 = 20$

5

- a. Let $f: \mathbb{R} \to \mathbb{R}$ such that f(x) is periodic with periodicity p i.e there exists p > 0 such that f(x+p) = f(x) for all x Prove that if f is continuous on \mathbb{R} then f is bounded and uniformly continuous on \mathbb{R}
- b. State and prove Role's theorem
- c. Let f be a real-valued function which is continuous in the interval [a, b] and which has first and second order derivatives on (a,b). If $F(x) = f(x) \alpha \beta x \gamma x^2$ where α, β, γ are chosen so that F(a) = F(b) = F(c) = 0

Prove that there exists $\xi \in (a,b)$ such that

$$\frac{1}{2}f''(\xi) = \begin{vmatrix} 1 & a & f(a) \\ 1 & b & f(b) \\ 1 & c & f(c) \end{vmatrix} / \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$$

d. If f(x) = Cosx. Prove that $\frac{\lim \theta}{h \to 0} = \frac{1}{2}$ where θ is given by $f(h) = f(0) + hf'(\theta h)$, $0 < \theta < 1$

e. Find the maximum value of 8xyz subject to the condition $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{a^2} = 1$

f. i) If $\phi(v^2 - x^2, v^2 - y^2, v^2 - z^2) = 0$ where v is a function of x, y, z show that $\frac{1}{x} \frac{\partial v}{\partial x} + \frac{1}{y} \frac{\partial v}{\partial y} + \frac{1}{z} \frac{\partial v}{\partial z} = \frac{1}{v}$

ii) If
$$v = z \tan^{-1} \frac{y}{x}$$
 Prove that $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} = 0$ 3+2

3. Answer any two questions

 $2 \times 10 = 20$

- a. (i) Let $f:[a,b] \to \mathbb{R}$ and continuous on closed and bounded interval [a,b]. If f(a) | f(b) < 0 then prove that there exists at least a point $c \in (a,b)$ such that f(c) = 0. Hence prove that if f is montonic in [a,b] then there exists a unique $c \in (a,b)$ such that f(c) = 0
 - ii) A function f is defined on (-1, 1) by $\frac{f(x) x^{\alpha} \sin \frac{1}{x}}{x}, \quad x \neq 0$ $= 0, \quad x = 0$

Prove that i) if $0 < \alpha \le 1$ then f'(0) does not exist.

- (ii) If $\alpha > 1$ then f'(x) is continuous and f'(0) = 0. 4+2+4
- b. (i) Let a function $f: \mathbb{R} \to \mathbb{R}$ Prove that f is continuous on \mathbb{R} if and only if $f^{-1}(G)$ is open in \mathbb{R} whenever G is open in \mathbb{R} .
 - ii) Evaluate the limits $\lim_{x\to 0+} f(x)$ and $\lim_{x\to 0-} f(x)$ Hence deduce that $\lim_{x\to 0} f(x)$ exists or not where $f(x) = \frac{1}{e^x + 1}$
 - iii) Justify Rolle's theorem is applicable or not $f(x) = 1 (x-1)^{\frac{1}{2}}$ on [-1, 1] 5+3+2
- c. (i) Let I = (a,b) be a bounded open interval and $f: I \to \mathbb{R}$ be a monotonically increasing function on I. Prove that
 - 1) If f is bounded above on I then $\lim_{x \to b} f(x) = \frac{Sup_{-} f(x)}{x \in (a,b)}$
 - 2) If f is bounded below on I then $\lim_{x \to a} f(x) = \frac{\inf f(x)}{x \in (a,b)}$
 - ii) Let $\phi:[0,2] \to \mathbb{R}$ be defined by $\phi(x) = \frac{\lim_{n \to \infty} \frac{x^{2n+2} \cos x}{x^{2n+1}}$

Discuss continuity of $\phi(x)$ on [0, 2]. Hence justify the Bolzano's theorem is applicable or not on $\phi(x)$ in [0, 2]

iii) Prove that $Sin x + x \forall x \in \left(0, \frac{\pi}{2}\right)$ 4+4+2

RNLKWC/B.Sc./CBCS/HIS/MTMHC303/22