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The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as
far as practicable
HHustrate the answers wherever necessary

Group-A
[Real Analysis 1]

1. Answer any ten questions 10x2 =20

a. Let f:[a,b] » Rbe continuous and strictly monotone in [a,&]
Let f(a)# f(h)Let K be any number between f(a) and f(b)
Then exists exactly one point ¢ € (a.b)such that f(¢)= K [using
Intermediate value theorem]

b. Show that x.2' = has a solution in (0, 1)

: . . :
c. Provethat f(x)= - is not uniformly continuous on ((,1)
X

d. Let f:R >R be continuous on R and f(g)=0 for every

rational number ¢. Prove that f(x) =0 Vxe K



. Let f(x)={

i. Prove that Cosx<l—f—+x—if 0<x<E
2 24

m. IFind the limit lim

(@)

0 -1<x<0

1 O0<x <l

Is there a function F such that P'(x)= f(x) in[-1,1]

. A function f is differentiable on [0,2] and

f(O)=0, f()=2, f(2)=1 Prove that f'(c)=0 for some
ce(0,2)

_If f'(x) exists and is bounded in some interval I then f is

uniformly continuous on I

. Show that there is no real number k for which the equation

x* —3x+k =0 has two distinct roots in (0, 1)

2 4

2

j. Write the sufficient condition for differentiability of the

function f(x,y) at (a,h)

Give an example to show that the condition is not necessary.

s/2 5/2 5
. If w=tan™ ¥_ Y | show that x@ +y Y - sin2u
X =~\fy 8x ox

. let. f(x)=Sgnx,g(x)rx(]—x?') Show that the composite

function g o {is continuous at 0

PRI

(3}

n. State the nature of discontinuity of f(x) at x=0 where

f(x)=Sinl x=0
X
=0, x=0

o. Let f:[a,b] = Rand g:[a,b] > Rbe both continuous on[a,b]

and both differentiable on (a,b) Is f'(x) = g'(x)Vxe(a,b)

implies f(x)=g(x)? justify.

2. Answer any four questions 4x5=20

a.

Let /:R — R such that f(x) is periodic with periodicity p i.e
there exists p>0 such that f(x+ p) = f(x) for all x Prove that
if f is continuous on R then f is bounded and uniformly
continuous on R
State and prove Role’s theorem
l.et f be a real-valued function which is continuous in the
interval [a, b] and which has first and second order derivatives
on (ab). If F(x)=f(x)~a-px-yx’ where a,B,y are
chosen so that F(a)= F(b)=F({c)=0
Prove that there exists & € (a,b) such that

1 a  fla) l a o

;/'"(_f):! bof /|t b » 5
I ¢ f(o) I ¢ ¢



(4)

. lim@ 1 .
d. If F(x)=Cosx .Prove that —— where @ is given by
‘ h—0 2
fh)y= FO)+hf"(6R), 0<O<1 5

c. Find the maximum value of 8xyz subject to the condition

2 2
X ol
‘"T-i‘yj '1‘—j =1 S
a b

f. i) If ¢(v2—x2,v2—y2,v2—zz):0 where v is a function of

1w 1ov 1ov 1
x,y,zshow that——+——+-——=—
xdx yoy zdz v

i v &v oy
i) If v ztan ' Y Prove that —(—‘7 + 5 +—=0 342
X ox Oyt oz

3. Answer any two questions 2x10=20
a. (1) l.et f:[u.h] >R and continuous on closed and bounded

interval o, bl I f{a) f{b) < 0Othen prove that there exists at

least a pointe o {a,h)such that ,f‘((-) = (. Henee prove that it f

is montonic i Jw.h| then there exists a unique ¢ o (@) such

that f(¢) 0

‘ .
.. . . .. . f(x)yx"sin . v /0
iy A function Cis defined on (-1, 1) by X
O - 0
Prove thal O« a - Tthen f(0ydoes not exist.

(5)

(i) If @ >1 then f'(x) is continuous and f(0)=0. 44244
b. (i) Let a function f:IR -» R Prove that fis continuous on R 1f
and only if f7'(¢7) is open in R whenever G is openin R

i1) Evaluate the lLimits lirgl f(x) and lirgl f(x) Hence deduce

. : . : 1
that llII(] /(x)exists or not where f(x)= -
x-x0
e’ +1
!
iii) Justify Rolle’s theorem is applicable or not f(x)=1~(x—1)

on -1, 1] 54342

c. {1) Letf = (a,h)be a bounded open mterval and f:7 > R be a

monotonically increasing function on . Prove that

Sup (o
1) I fis bounded above on | then l_i;}l _/'(x) R S

xe{a.h)
y . inf f(x
2) If £'is bounded below on I then lim /() - /)
Tk xe ((Lb)
. . lim 3™ cosx
) Let ¢:]0,2]-> IR be defined by ¢(x) - o --’--!-;-]’-(....
F7 S ¥ & v

Discuss  continuity  of @(x) on [0, 2], Henee justily  the

Bolzno’s theorent is applicable or not on gx)in |, 2]
. 4
1) Prove that Sinv - vV« ((), ’) ) 141D
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