2022

Mathematics [HONOURS]

(CBCS)

(B.Sc. Third End Semester Examinations-2022)

Paper: MTM-GE-301

[Analytical Geometry, Algebra & Vector Algebra]

Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

Group – A (Analytical Geometry)

1. Answer any three questions:

3x2=6

- a) Find the equation of curve $9x^2 + 4y^2 + 18x 16y 11$ referred to parallel axes through (-1,2).
- b) Determine the type of the conic which is represented by $4x^2 4xy + y^2 8x 6y + 5 = 0$
- c) Find the equation of the common tangent of the circle $x^2 + y^2 = 4ax$ and the parabola $y^2 = 4ax$.

- d) Find the equation of the bisectors of the angle between the pair of lines $3x^2 + 8xy + 4y^2 = 0$.
- e) Find the points on the conic $\frac{15}{r} = 1 4\cos\theta$ whose radius vector is 5.

2. Answer any one question

1x5=5

- a) Prove that the pair of straight lines joining the origin to the other two points of intersection of the curves
- b) $ax^2 + 2hxy + by^2 + 2gx = 0$ and $a'x^2 + 2h'xy + b'y^2 + 2g'x = 0$ will be at right angles if g(a+b) = g(a'+b').
- c) Show that the semi latus rectum of a conic is a harmonic mean between the segments of any focal chord.

3. Answer any one question

1x10=10

- a) i) Reduce the following equation to the canonical form and determine the nature of the conic represented by $x^2 5xy + y^2 + 8x 20y + 15 = 0$
 - ii) Find the value of χ for which the two lines $3x^2 8xy + \chi^2 = 0$ are perpendicular to one another.

(6+1)+3

b) i) Show that the triangle formed by the straight lines $ax^2 + 2hxy + by^2 = 0$ and the straight line lx + my = 1 is right angled if $(a+b)(al^2 + 2hlm + bm^2) = 0$

ii) Show that the locus of points such that two of the three normal drawn from them to the parabola $y^2 = 4ax$ coincide is $27ay^2 = 4(x-2a)^3$

Group – B (Algebra)

1. Answer any five questions:

5x2=10

- a) Define power set Find the power set of the set $A = \{a, b\}$
- b) Solve by crammer's rule 2x-y=3

$$6x-3y=1$$

- c) If $a^2=e$ for all $a \in G$ prove that G is a commutative group.
- d) Find χ such that $A = \begin{bmatrix} \cos \theta \sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & \chi \end{bmatrix}$ is an orthogonal

matrix

- e) Prove that set to odd integers does not form a group under addition.
- f) Find whether or not the relation R in the set $A = \{1,2,3\}$ are reflexive, symmetric where $R = \{(1,2),(2,2)\}$
- g) Show that the product of all the values of $(1+i\sqrt{3})^{\frac{1}{4}}$ is 8.
- h) Show that every skew symmetric determine of 2nd order is a perfect square.

2. Answer any two question

2x5=10

a) Let
$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and $\Delta' = \begin{vmatrix} A_1 & B_1 & C_1 \\ A_2 & B_2 & C_2 \\ A_3 & B_3 & C_3 \end{vmatrix}$

Where A_1 , B_1 , C_1 are the respective cofactors of a_1 , b_1 , c_1 in Δ . Prove that $\Delta^1 = \Delta^2$

b) If R be a relation in the set of integer Z defined by the open sentence 'x-y is divisible by 6', that is

$$R = \{(x, y) : x \in \mathbb{Z}, y \in \mathbb{Z}; x - y \text{ is divisible by 6}\}$$

Then prove that R is an equivalence relation.

c) Show that $H = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : ad - bc = 1 \right\}$ is a sub group of the multiplicative group of all real non singular matrices of order 2

3. Answer any one question

10x1=10

a) i) Express the matrix $A = \begin{pmatrix} -1 & 7 & 1 \\ 2 & 3 & 4 \\ 5 & 0 & 5 \end{pmatrix}$ is the sum of two matrices of which one is symmetrical and the other is skew-symmetrical.

- ii) In a class of 25 students, 12 have taken mathematics, 8 have taken mathematics but not biology. Find the number of students who have taken mathematics and biology and those who have taken biology but not mathematics.

 5+5
 - b) i) Show that

$$\begin{vmatrix} 0 & (a-b)^2 & (a-c)^2 \\ (b-a)^2 & 0 & (b-c)^2 \\ (c-a)^2 & (c-b)^2 & 0 \end{vmatrix} = 2(b-c)^2(c-a)^2(a-b)^2$$

- ii) Find the rank of the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 2 & 2 \end{pmatrix}$
- iii) Show that the set of all roots of the equation $x^4 = 1$ is group under usual multiplication. 4+3+3

Group – C (Vector Algebra)

1. Answer any two questions:

2x2=4

- a) Show that the vectors $\vec{a} = (1, 2, 3)$, $\vec{b} = (2, -1, 4)$ and $\vec{c} = (-1, 8, 1)$ are linearly dependent.
- b) Find the value of γ such that the vectors $(2\tilde{i} j + k)$, $(i + 2\tilde{j} + \gamma k)$ and (3i 4j + 5k) are coplanar.

c) Show that the angle between the vectors $(\vec{i} - 2\vec{j} - 2\vec{k})$ and $(2\vec{i} + 2\vec{j} - 2\vec{k})$ is $\cos^{-1}\frac{4}{9}$

2. Answer any one question

1x5=5

- a) If a vector $\vec{\alpha}$ be resolved into components parallel and perpendicular to another vector $\vec{\beta}$, then show that the components are $\frac{\vec{\beta}.\vec{\alpha}}{\left|\vec{\beta}\right|^2}\vec{\beta}$ and $\frac{\vec{\beta}\times(\vec{\alpha}\times\vec{\beta})}{\left|\vec{\beta}\right|^2}$ respectively.
- b) i) If $\vec{a} = (2\hat{i} + 3\hat{j} + 6\hat{k})$, $\vec{b} = 3\hat{i} 6\hat{j} + 2\hat{k}$ and $\vec{c} = 6\hat{i} + 2\hat{j} 3\hat{k}$ then find the value of $\vec{a} \cdot (\vec{b} \times \vec{c})$
- ii) Find the vector area of the triangle, the position vectors of those vertices are $(\hat{i} + \hat{j} + 2\hat{k})$, $(2\hat{i} + 2\hat{j} + 3\hat{k})$ and $(3\hat{i} \hat{j} \hat{k})$.