End Semester Examination, 2022

Semester - V

Physics

PAPER - DSE-2T

Full Marks: 60

Time: 3 Hours

The Figures in the right hand margin indicate marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

	-	
1.	Answer any <u>ten</u> questions: 10x2=	20
a)	An α -particle of energy 5 Mev is scattered throu	gh
	180° by a fixed Uranium nucleus. Calculate t	he
	distance of closest approach.	2
b)	"A GM counter cannot be used to detect the ne	u-
	trons". Explain the statement.	2
c)	Find spin & parity for ground state of $^{63}_{32}$ Ge, usi	ng
	the shell model.	- 1
d)	Explain that k-shell electron is more probable du	ır-
	ing photoelectric emission by γ -ray.	2
e)	What do you meant by 'cerenkov radiation, pr	о-
	cess?	2
f)	What is nuclear isomerism? Explain with examp	le.
		2

- g) A μ^- meson decays into an electron (e⁻) and pair of neutrinos. Calculate the maximum available energy for the process and the average electron energy.
- h) Calculate the mass of Pb²¹⁴ (RaB) having a radioactivity of 1 curie. Half-life of Pb²¹⁴ is 26.8 minutes.
- i) Electrons are accelerated to get maximum kinetic energy in a cyclotron under the influence of a magnetic field of 3.2 Wb/m². Calculate the frequency of the evolution of the emerging electron.
- j) What are mirror nuclei?
- k) Discuss the role of electric quadrupole moment to determine the shape of the nuclei. 2
- 1) Out of ₃Li⁶, ₃Li⁸, ₄Be⁹ and ₄Be¹⁰, which nucleus more stable?
- m) Identify the unknown particle in the reactions given below using conservation laws. 2
 - i) $p+? \rightarrow \frac{1}{0}n+\gamma_{\mu}$
 - ii) $\Pi^- + p \rightarrow k^0 + ?$
- n) Describe the existance of the 'color' quantum number.
- o) A GM counter has a dead time 400 μs. What is the true counting rate when observed rate 100 per minute.

Group - B

Answer any <u>four</u> questions :

- 2. a) Establish the relation $A \approx 2Z$ for light nuclei using semi-empirical mass formula given $a_c = 0.71 \text{MeV}$, $a_n = 22.7 \text{MeV}$, M(!H) = 1.0078U, M(n) = 1.0086 unit.
 - b) What are the advantages of semiconductor counters over gas filled detectors.(counters), 3+2

4x5=20

- 3. a) Explain the principle of action of a scintillation counter.
 - b) For the isobaric family with A=75, find the most stable isobar. (Using the liquid drop model) 3+2
- 4. a) Assuming the collision to be elastic, show by using the Q equation that the kinetic energy K_X of the target particle is given by, $K_X = 4K_x \frac{m_x M_X}{(m_x + M_X)^2} \cos^2 \theta$
 - b) For $^{23}_{11}Na$, $^{206}_{82}Pb$ nucleus find out numbers of U and d auarks.
- 5. a) Explain qualitatively how the neutrino hypothesis solve the apparent breakdown of conservation of momentum; spin and energy in β decay.
 - b) Define the range of an α -particle. How did Geiger related the range with energy? 3+2

- 6. a) What do you mean by mass defect and binding energy of nucleus? Draw a curve showing the variation of binding energy per nucleon against the mass number.

 1+1+1
 - b) Using the relation between mass number and nuclear radius $R = 1.3 \times A^{1/3} Fm$, estimate the density of nuclear matter.
- 7. a) What do you mean by internal conversion? 2
 b) A beam of v-rays from ThC" is incident normally on an 13 Al²⁷ sheet of uniform thickness
 48 cm, which reduces the intensity of the incident beam to 15% of its original value. Calculate the mass absorption coefficient aluminium. (density of aluminium is 2.65 gm/c.)

Group - C

Answer any two questions: $2 \times 10=20$

- 8. a) Write down the assumption of Fermi gas model.
 - b) What are the sucesses of the fermi gas model.
 - c) Which of following reaction are allowed or not and find out which type of reaction.
 - i) $\Pi^+ + n \rightarrow K^+ + \Sigma^0$
 - ii) $k^{-} + p \rightarrow \overline{k}^{0} + n$
 - iii) $n \rightarrow p + e^- + \overline{\gamma}_e$
 - d) Why do not all heavy nuclei show auto fission?

 3+2+3+2

- 9. a) What do you meant by nucleo synthesis? How does the A < 60 nuclei are formed after Big-bang?
 - b) What is r-process and s-process?
 - c) Explain the difference between an ionisation chamber, a proportional counter and a Geiger Muller counter. What is dead time of GM counter?

 4+2+4
- a) What is mass parabola? How does mass parabola explain the steability of nuclei of same isobar.
 - b) Determine the possible values of the spin of Π^- meson by means of the reaction, $\Pi^- + p \rightarrow n + \gamma$
 - c) What is Compton effect?
 - d) Derive an expression for Compton shift in wavelength.

4

- 11. a) Explain the action of a Van-de-Graff generator by drawing a neat sketch of the machine. 4
 - b) What are the design parameters for a cyclotron that would accelerate a particles to a maximum energy of 20 MeV? The dees are to have a diameter of 1m.
 - c) What do you mean by octet symmetry? Demonstrate the octet symmetry of baryons in a weight diagram. 2+2