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Abstract The ecological, economical, and agricultural benefits of accurate interpolation of spatial

distribution patterns of soil organic carbon (SOC) are well recognized. In the present study, differ-

ent interpolation techniques in a geographical information system (GIS) environment are analyzed

and compared for estimating the spatial variation of SOC at three different soil depths (0–20 cm,

20–40 cm and 40–100 cm) in Medinipur Block, West Bengal, India. Stratified random samples of

total 98 soils were collected from different landuse sites including agriculture, scrubland, forest,

grassland, and fallow land of the study area. A portable global positioning system (GPS) was used

to collect coordinates of each sample site. Five interpolation methods such as inverse distance

weighting (IDW), local polynomial interpolation (LPI), radial basis function (RBF), ordinary krig-

ing (OK) and Empirical Bayes kriging (EBK) are used to generate spatial distribution of SOC. SOC

is concentrated in forest land and less SOC is observed in bare land. The cross validation is applied

to evaluate the accuracy of interpolation methods through coefficient of determination (R2) and

root mean square error (RMSE). The results indicate that OK is superior method with the least

RMSE and highest R2 value for interpolation of SOC spatial distribution.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Spatial variability of soil organic carbon (SOC) is an impor-

tant indicator of soil quality, as well as carbon pools in the ter-
restrial ecosystem and it is important in ecological modeling,
environmental prediction, precision agriculture, and natural
resources management (Wei et al., 2008; Zhang et al., 2012;
Liu et al., 2014). Revealing the characteristics of SOC’s spatial

pattern will provide the basis for evaluating soil fertility, and
assist in the development of sound environmental management
policies for agriculture. Scientific management of SOC nutrient

is important for its sustainable development in agricultural sys-
tem. So, there is a need of adequate information about spatio-
temporal behavior of SOC over a region. SOC measurements,

however, are inherently expensive and time consuming,
particularly during the installation phase, which requires soil
sampling. Consequently, the number of soil sampling that is

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jssas.2016.02.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jssas.2016.02.001
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available in a given area is often relatively sparse and does not
reflect the actual level of variation that may be present. There-
fore, accurate interpolation of SOC at unsampled locations is

needed for better planning and management.
Different statistical and geostatistical approaches have been

used in the past to estimate the spatial distribution of SOC

(Kumar et al., 2012, 2013). Classical statistics could not make
out the spatial allocation of soil properties at the unsampled
locations. Geostatistics is an efficient method for the study

of spatial allocation of soil characteristics and their inconsis-
tency and reducing the variance of assessment error and execu-
tion costs (Saito et al., 2005; Liu et al., 2014; Behera and
Shukla, 2015). Earlier researchers have applied geospatial tech-

niques to appraise spatial association in soils and to evaluate
the geographical changeability of soil characteristics (Wei
et al., 2008). Zare-mehrjardi et al. (2010), reported that ordi-

nary kriging (OK) and cokriging methods were better than
inverse distance weighting (IDW) method for prediction of
the spatial distribution of soil properties. Robinson and

Metternicht (2006) used three different techniques including
kriging, IDW and Radial basis function (RBF) for prediction
of the levels of the soil salinity, acidity and organic matter.

Pang et al. (2011) reported that ordinary kriging is most com-
mon type of kriging in practice and provides an estimate of
surface maps of soil properties.

Hussain et al. (2014) reported that Empirical Bayes kriging

(EBK) is most suitable for spatial prediction of total dissolved
solids (TSD) in drinking water. Mirzaei and Sakizadeh (2015)
reported that EBK model is best of all the geostatistical models

such as OK and IDW for estimation of groundwater
contamination.

These five widely used interpolation methods (RBF, IDW,

OK, LPI and EBK models) have led to the quest about which
is most appropriate in prediction of soil organic carbon in
deferent soil depth. Therefore, the objective of this study

was to conduct a thorough comparison of the GIS based
interpolation techniques for estimating the spatial distribution
of SOC in Medinipur Block, West Bengal, India, and apply
cross validation to evaluate the accuracy of interpolation
Figure 1 Location of the study area and sampling design with land u

Mapper data.
method through the root mean square error (RMSE)
measurement.

2. Materials and methods

2.1. Study area

The study was conducted in Medinipur block of Paschim Med-
inipur district in West Bengal (India). It is extended between

22�2304500N–22�3205000N latitude and 87�0504000E–87�3100100E
longitude covering an area of 353 sq km (Fig. 1). The area is
dry and the land surface of the block is characterized by red

lateritic covered area, flat alluvial and deltaic plains. Extremely
rugged topography is seen in the western part of the block and
rolling topography is experienced in lateritic covered area (Shit

et al., 2013). The maximum temperature recorded in April is
43 �C and minimum temperature is 9 �C. The average annual
rainfall is about 1450 mm. Number of rainy days per annum
is nearly about 101 days.

2.2. Sampling and estimate of soil properties

A pilot study was conducted to analyze the soil particles under

different land use characteristics. Reconnaissance soil survey
of Medinipur Block was carried out on 1:50,000 scale during
2014–2015 using the Survey of India (SOI) Toposheets as base

maps. The Geo-coded Landsat 4–5 Thematic Mapper (TM)
false color composite images were visually and digitally inter-
preted for physiographic analysis. Land use map was gener-

ated based on supervised classification technique using
maximum likelihood algorithm technique in ERDAS Imagine
software v9.0. The entire block has been classified into eight
classes following the forest, fallow land, scrub land, agricul-

tural land, river, sand and settlement area. To validate the clas-
sification accuracy, an error matrix table was generated and
accuracy assessment analysis was performed. The study of soil

profile in all physiographic units was done under different land
use to develop soil–physiography relationship. Using the base
se land cover of Medinipur block derived from Landsat Thematic
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maps, the field survey was carried out following the procedure
as outlined in the soil survey manual (1970). The morpholog-
ical features of representative pedons in each physiographic

unit were studied up to a depth of 100 cm (shallow soils) and
the soil samples were collected from different soil horizons
for laboratory analysis.

Stratified random sampling technique was used for sam-
pling in field during post-monsoon season. A total 98 soil sam-
ples were collated from 36 sites including agriculture (21),

scrubland (16), forest (19), grassland (16), and fallow land
(16) of the Medinipur block. A portable global positioning sys-
tem (GPS) was used to record each sample site. In forest land
use, the sampling was conducted in dense forest, degraded for-

est and open forest area. Undisturbed soil samples at three
depths of 0–20 cm, 20–40 cm, and 40–100 cm were collected
with 5 soil cores from each site and mixed well into a compos-

ite soil sample. Soil samples were air-dried and passed through
a 2 mm sieve for laboratory analysis of soil texture and SOC
was measured by Walkley–Black wet oxidation method (Bao,

2000).

2.3. Interpolation methods

In the present study, deterministic (i.e., create surfaces from
measured points) and geostatistical (i.e., utilize the statisti-
cal properties of the measured points) interpolation tech-
niques were used. In this study, a variety of deterministic

interpolation techniques, including those based on either
the extent of similarity (inverse distance weighted), local
polynomial interpolation (LPI), degree of smoothing (radial

basis functions) or geostatistical interpolation, namely
ordinary kriging (OK), and Empirical Bayes (EBK) were
used to generate the spatial distribution of SOC

(Johnston et al., 2001).

2.3.1. IDW method

The IDW is one of the mostly applied and deterministic inter-

polation techniques in the field of soil science. IDW estimates
were made based on nearby known locations. The weights
assigned to the interpolating points are the inverse of its dis-

tance from the interpolation point. Consequently, the close
points are made-up to have more weights (so, more impact)
than distant points and vice versa. The known sample points
are implicit to be self-governing from each other (Robinson

and Metternicht, 2006).

Zðx0Þ ¼
Pn

i¼1
xi

h
b
ijPn

i¼1
1

h
b
ij

ð1Þ

where z(x0) is the interpolated value, n representing the total
number of sample data values, xi is the ith data value, hij is
the separation distance between interpolated value and the

sample data value, and ß denotes the weighting power.

2.3.2. LPI method

LPI fits the local polynomial using points only within the spec-

ified neighborhood instead of all the data (Hani and Abari,
2011). Then the neighborhoods can overlap, and the surface
value at the center of the neighborhood is estimated as the

predicted value. LPI is capable of producing surfaces that cap-
ture the short range variation (ESRI, 2001).
2.3.3. RBF method

Radial basis function (RBF) predicts values identical with

those measured at the same point and the generated surface
requires passing through each measured point. The predicted
values can vary above the maximum or below the minimum

of the measured values (Li et al., 2007, 2011). RBF method
is a family of five deterministic exact interpolation techniques:
thin-plate spline (TPS), spline with tension (SPT), completely

regularized spline (CRS), multi-quadratic function (MQ and
inverse multi-quadratic function (IMQ). RBF fits a surface
through the measured sample values while minimizing the total
curvature of the surface (Johnston et al., 2001). RBF is ineffec-

tive when there is a dramatic change in the surface values
within short distances (ESRI, 2001; Cheng and Xie, 2009).
The most widely used RBF that is CRS was selected in this

study.

2.3.4. OK method

Ordinary kriging method incorporates statistical properties of
the measured data (spatial autocorrelation). The kriging
approach uses the semivariogram to express the spatial conti-
nuity (autocorrelation). The semivariogram measures the

strength of the statistical correlation as a function of distance.
The range is the distance at which the spatial correlation van-
ishes, and the sill corresponds to the maximum variability in

the absence of spatial dependence. The coefficient of determi-
nation (R2) was employed to determine goodness of fit
(Robertson, 2008). Kriging estimate z*(x0) and error estima-

tion variance rk
2(x0) at any point x0 were, respectively, calcu-

lated as follows:

z�ðx0Þ ¼
Xn

i¼1

kizðxiÞ ð2Þ

r2
kðx0Þ ¼ lþ

Xn

i¼1

kicðx0 � xiÞ ð3Þ

where ki are the weights; l is the lagrange constant; and c
(x0 � xi) is the semivariogram value corresponding to the dis-
tance between x0 and xi (Vauclin et al., 1983; Agrawal et al.,
1995).

Semivariograms were used as the basic tool with which to
examine the spatial distribution structure of the soil properties.
Based on the regionalized variable theory and intrinsic

hypotheses (Nielsen and Wendroth, 2003), a semivariogram
is expressed as follows:

cðhÞ ¼ 1

2NðhÞ
XNðhÞ

i¼1

ZðxiÞ � Zðxi þ hÞ½ �2 ð4Þ

where c(h) is the semivariance, h is the lag distance, Z is the
parameter of the soil property, N(h) is the number of pairs

of locations separated by a lag distance h, Z(xi), and Z
(xi + h) are values of Z at positions xi and xi + h (Wang
and Shao, 2013). The empirical semivariograms obtained from

the data were fitted by theoretical semivariogram models to
produce geostatistical parameters, including nugget variance
(C0), structured variance (C1), sill variance (C0 + C1), and dis-

tance parameter (k). The nugget/sill ratio, C0/(C0 + C1), was
calculated to characterize the spatial dependency of the values.
In general, a nugget/sill ratio <25% indicates strong spatial
dependency and >75% indicates weak spatial dependency;
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otherwise, the spatial dependency is moderate (Cambardella

et al., 1994).

2.3.5. Empirical Bayesian kriging (EBK) method

Empirical Bayesian kriging automates the most difficult

aspects through a process of subsetting and simulations.
EBK process implicitly assumes that the estimated semivari-
ogram is the true semivariogram for the interpolation region

and a linear prediction that incorporates variable spatial
damping. The result is a robust non-stationary algorithm for
spatial interpolating geophysical corrections. This algorithm
extends local trends when data coverage is good and allows

for bending to a priori background mean when data coverage
is poor (Knotters et al., 2010; Krivoruchko, 2012;
Krivoruchko and Butler, 2013).

2.4. Cross-validation

Cross-validation technique was adopted for evaluating and

comparing the performance of different interpolation meth-
ods. The sample points were arbitrarily divided into two data-
sets, with one used to train a model and the other used to

validate the model. To reduce variability, the training and val-
idation sets must cross over in successive rounds such that each
data point is able to be validated against. The mean error
(ME), the mean relative error (MRE) and the root mean

square error (RMSE) for error measurement and coefficient
of determination (R2 value) were estimated to evaluate the
accuracy of interpolation methods. MRE is an important mea-

sure since both RMSE and ME do not provide a relative indi-
cation in reference to the actual data.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ð0i � SiÞ2
N

s
ð5Þ

ME ¼
PN

i¼10i � Si

N
ð6Þ
Table 1 Land Use and Land Cover (LULC).

Class name Number of pixels Area (in km2) Percen

Built-up area 14,016 12.61 3.57

River/water bodies 4581 4.12 1.17

Sand 2762 2.48 0.7

Fallow land 33,664 30.29 8.58

Forest 64,377 57.93 16.41

Grassland 16,933 15.24 4.31

Agricultural land 223,339 201.01 56.91

Shrub land 87,838 29.48 8.35

Overall classification accuracy = 88.00%.

Overall kappa statistics = 0.85.

Table 2 Summary statistics of soil organic carbon (SOC, %) conte

Soil depth (cm) N Mean Median Min

0–20 32 0.50 0.58 0.02

20–40 32 0.47 0.52 0.05

40–100 32 0.43 0.45 0.08

N =Number of samples, Min =Minimum, Max =Maximum, SD= S
MRE ¼ RMSE

D
ð7Þ

where 0i is observed value, Si is the predicted value, N is the
Number of samples, D is the range and equals the difference

between the maximum and minimum observed data (see
Table 1).

3. Results and discussion

3.1. Land use land cover (LULC)

Land use characteristics of the study site have been categorized
into eight classes (Fig. 1). Agricultural land covers 56.91%

(201 km2) of the study area and 24.76% (87 km2) area is cov-
ered by dense, degraded and open forest land. Consequently,
the fallow land is covered by 8.58% (30 km2) and settlement
area is enclosed by 3.57% (12 km2) of the entire study site.

On the southern part of the study site Kangsabati river is flow-
ing from western to eastern direction covering an area of
1.17% (4 km2) of the study site and the river bed deposit of

sand covers an enclosed area of 2.48 km2 (0.70%). The grass-
land covers 4.31% (15 km2) of the total land. Table 1 shows
the error matrix of LULC image derived from the supervised

classification technique. The overall classification accuracy
and Kappa statistics were 88.00% and 0.85, respectively.

3.2. Spatial variation of SOC

Fig. 2 represents the distribution of SOC at 0–20 cm (dark
shed), 20–40 cm (dark to gray shed) and 40–100 cm (very light
gray shed) depth analysis. The result showed concentration of

SOC is maximum in agricultural land at 0–20 cm depth and
the minimum percent was recorded in fallow land and forest
(Fig. 2). Consequently, SOC percent was higher in forest and

agricultural land at 20–40 cm depth and minimum percent
was observed in shrubs. Results also showed the highest per-
cent of SOC in forest and grassland at 40–100 cm depth and
t Producer accuracy (%) User accuracy (%) Kappa^

80.00 100.00 1.00

100.00 66.67 0.65

100.00 66.67 1.00

75.00 100.00 0.65

85.71 85.71 0.84

80.00 100.00 0.76

100.00 83.33 0.78

83.33 100.00 1.00

nt in different soil horizons.

Max SD CV (%) Skewness Kurtosis

0.82 0.32 64.297 0.25 1.30

0.87 0.39 81.79 0.02 1.59

0.99 0.32 75.06 0.11 0.81

tandard Deviation, CV = Coefficient of Variation.



Figure 2 Characteristics of soil organic carbon in different land use categories. The error bars represent ± one standard error.

Table 3 Comparison of the efficiencies and errors of the interpolation methods to predict SOC.

Interpolation type Interpolation method Soil depth (cm) Efficiency Error

R2 RMSE ME MRE

Deterministic IDW 0–20 0.776 0.125 0.568 0.214

20–40 0.791 0.121 0.385 0.254

40–100 0.808 0.145 0.645 0.210

LPI 0–20 0.792 0.130 0.398 0.228

20–40 0.816 0.127 0.257 0.251

40–100 0.851 0.148 0.468 0.216

RBF 0–20 0.742 0.176 0.845 0.268

20–40 0.765 0.159 0.681 0.289

40–100 0.781 0.147 0.754 0.275

Geostatistical OK 0–20 0.918 0.110 0.110 0.158

20–40 0.921 0.120 0.124 0.195

40–100 0.938 0.123 0.121 0.154

EBK 0–20 0.879 0.128 0.351 0.245

20–40 0.848 0.127 0.364 0.235

40–100 0.895 0.131 0.358 0.233

R2 = coefficient of determination, RMSE= root mean square error, ME =mean error, MRE=mean relative error, IDW: inverse distance

weighting, LPI: local polynomial interpolation, RBF: radial basis function, OK: ordinary kriging and EB: Empirical Bayes model.
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lowest percent was observed in fallow land and agricultural
land. The storage capacity of carbon among the entire forest

category under consideration was significantly higher in the
top layer (P < 0.03). The present result is corroborated with
previous studies by Gurumurthy et al. (2009), Sheikh et al.

(2011) and Saha et al. (2012).
3.3. Vertical distribution of SOC

The vertical distribution of SOC percent was analyzed
(Table 2). The average value of SOC was 0.50 at 0–20 cm depth,
and the percent decreased with the increase of depth (Table 2).
The skewness and kurtosis coefficients are often used to
describe the shape and flatness of data distribution respectively.

All the data showed positive skewness, showing the concentra-
tion at lower end of data distribution. SOC content ranged
from 0.02% to 0.82% (0–20 cm depth) and the allocation was

positively skewed due to few high values found in the western
part of the area. Average SOC content was 0.47% and 0.43%
at 20–40 cm and 40–100 cm depth respectively. The results also

showed positive skewness. Briefly, a good concentration of car-
bon sink was found in the 0–40 cm depth in all the forest soil
samples in the study site. Storage of SOC in upper soil layer
has been associated with the growth of root systems (Pillon,

2000) and with the quantity of aboveground biomass addition



Figure 3 (a) Spatial distribution of SOC using IDW (inverse distance weighting), (b) spatial distribution of SOC using LPI (local

polynomial interpolation), (c) spatial distribution of SOC using BRF model (radial basis function), (d) spatial distribution of SOC using

EBK (Empirical Bayesian Kriging), and (e) spatial distribution of SOC using OK (ordinary kriging).
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on the soil surface (Burle et al., 2005) indicating that the trees
will usually increase organic carbon.

In this study, IDW, LPI, OK, EBK and RBF were used to
estimate the spatial distribution of SOC. The summary
statistics of the interpolation are represented in Table 3.
Fig. 3 represents the spatial distribution of SOC at three differ-
ent soil depth. The characteristics of the semivariograms for

SOC are abridged in Table 4. Preliminary calculations showed
that all semivariograms were exponential. Semivariogram
analysis indicated that SOC was best fitted to exponential



Fig. 3 (continued)
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model with nugget, sill, and nugget/sill equal to 0.15, 1.10, and

0.14, respectively for 0–20 cm depth. The value of nugget, sill,
and nugget/sill was recorded as 0.001, 0.97 and 0.10 respec-
tively for 20–40 cm, and 0.001, 1.08 and 9.26 for 40–100 cm
soil depth respectively.
3.4. Comparison of deterministic methods

Spatial distributions of SOC were analyzed in the study area
obtained by deterministic methods (IDW, LPI, and RBF).
The comparative results showed LPI is more accurate than
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the other two methods. The R2 value for LPI varied from
0.792, 0.816 and 0.851 for 0–20 cm, 20–40 cm and 40–100 cm
respectively. The R2 value for IDW varied from 0.776, 0.791,

and 0.808 for 0–20 cm, 20–40 cm and 40–100 cm respectively.
However, the value of RBF showed lesser accuracy in the esti-
mation method.

Most quantitative comparison of these three techniques

was obtained through cross-validation statistics (Table 3).
LPI showed RMSE of 0.125, 0.121, and 0.145 at 0–20 cm,
20–40 cm and 40–100 cm soil depth respectively. IDW resulted
RMSE of 0.121–0.145 whereas RBF gave RMSE of 0.147–
0.176 at different depth of SOC concentration. IDW resulted

in ME of 0.385–0.645 whereas LPI gave ME of 0.257–0.468.
LPI resulted in MAE of 0.216–0.251 and IDW gave RSS of
0.210–0.254. However, the result of the analysis represented
that LPI is more accurate than IDW with lesser ME and smal-

ler RMSE value. The analysis also showed IDW providing bet-
ter result than RBF.



Fig. 3 (continued)
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3.5. Comparison of geostatistical methods

The ordinary kriging (OK) and Empirical Bayes model (EBK)
are used to interpolate the spatial variability of SOC in three
soil depths (Table 3). The summary results processed by OK
showed the smallest RMSE value of 0.148, 0.120 and 0.123
at 0–20 cm, 20–40 cm and 40–100 cm soil depth respectively.

The Coefficient of determination (R2) of the model represented



Fig. 3 (continued)
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as 0.918, 0.921 and 0.938 at 0–20 cm, 20–40 cm and 40–100 cm
soil depth respectively. Table 4 represents the key parameters

of semivariogram model for OK.
The R2 of the model at each soil depth were greater than

0.5, indicating a good fit with the ground value. OK resulted

in RMSE 0.110–0.123 whereas EBK gave 0.127–0.131. The
RSS was approximately close to zero for all soil depths and
it is determined that theoretical models of SOC well reflect
the spatial distribution and also corresponded strongly to the

spatial correlation. OK showed the ME of 0.110–0.124
whereas EBK gave 0.351–0.364. The best results, in terms of
cross validation, are achieved by OK which gave the lowest

RMSE, ME and MAE. The information derived from
semivariograms pointed out the reality of different spatial



Table 5 Summary of the performance of interpolation methods in terms of improvement over radial basis function method.

Performance soil depth (cm) Reduction in RMSE over RBF (%) Reduction in MRE over RBF (%) Increase in R2 over RBF (%)

IDW LPI OK EBK IDW LPI OK EBK IDW LPI OK EBK

0–20 28.98 26.14 37.5 27.28 20.14 14.93 41.05 8.58 4.58 3.74 23.72 18.46

20–40 23.9 20.13 24.53 20.13 12.11 13.15 32.53 18.69 3.40 6.67 20.39 10.85

40–100 1.37 0.69 16.33 10.89 23.64 21.45 44.00 15.27 3.46 8.96 20.10 14.60

Average 18.08 15.65 26.12 19.43 18.63 16.51 39.19 14.18 3.81 6.45 21.40 14.63

R2 = coefficient of determination, RMSE= root mean square error, ME =mean error, MRE=mean relative error, IDW: inverse distance

weighting, LPI: local polynomial interpolation, RBF: radial basis function, OK: ordinary kriging, and EB: Empirical Bayes model.

Table 4 Summary of semivariogram parameters of best-fitted theoretical model to predict soil properties and cross-validation

statistics.

Soil depth (cm) Best-fit model Nugget (C0) Sill (C0 + C) Range (m) Nugget/sill R2 RSS ME RMSE

0–20 Exponential 0.15 1.10 1.076 0.14 0.918 0.005 0.110 0.110

20–40 Exponential 0.001 0.97 1.33 0.10 0.921 0.008 0.124 0.120

40–100 Exponential 0.001 1.08 1.21 9.26 0.938 0.003 0.121 0.123

R2 = coefficient of determination, RSS = residual sum square, ME =mean error, RMSE= root mean square error.
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dependence for collected soil properties from the field
(Table 4). The proportion of nugget to sill (C0/C0 + C) imi-

tates the spatial autocorrelation (Wei et al., 2008).

3.6. Comparison of geostatistical and deterministic methods

The best models from the deterministic and geostatistical
methods were compared to find the most suitable spatial inter-
polation method of the region. Assessment measures of model

performance are summarized in Table 3. The superiority of
IDW, LPI, OK and EBK models over RBF to predict SOC
at three different soil depths was well established. To quantify
the relative performance, the percentage improvement of

IDW, LPI, OK and EBK over RBF was also calculated. The
obtained results are shown in Table 5 and it was clearly indi-
cated that IDW, LPI, OK and EB average decreased RMSE

value of 18.08%, 15.65%, 26.12% and 19.93% respectively
lower than RBF. Similarity reduction of MRE value of
IDW, LPI, OK and EB was 18.63%, 16.51%, 39.19% and

14.18% respectively. The R2 value of IDW, LPI, OK and
EBK models showed increase of 3.81%, 6.45%, 21.40%, and
14.63% over RBF model.

High value of coefficients of determination, and low value
of RMSE and ME indicated a good match between observed
and predicted SOC concentration at three different soil depths.
The OK gave the lowest error (RMSE value) and highest R2

value in the spatial interpolation of three soil depths among
all geostatistical methods. IDW and LPI methods gave the best
results among the deterministic methods. Overall the perfor-

mance of the geostatistical methods was thoroughly compared
with that of the deterministic methods. The ordinary kriging
was found the best among all of the methods. OK and related

geostatistical techniques incorporate spatial autocorrelation
and statistically optimize the weights. OK methods often give
better interpolation for estimating values at unmeasured loca-
tions (Burgess and Webster, 1980; Liu et al., 2006; Nayanaka

et al., 2010; Zhang et al., 2011; Mousavifard et al., 2012;
Varouchakis and Hristopulos, 2013; Venteris et al., 2014;
Tripathi et al., 2015). Among the five interpolation methods,

the performance of OK was best in comparison with other
interpolation models. The MRE, which provided relative error
of the predicted data in reference to the actual data, was also

very low for OK.

4. Conclusion

The clear understanding of SOC distribution is the key issue
for agricultural and environment management. Due to relative
profusion of a variety of methods, many algorithms are pre-

sently applied, and research continues, aiming at the definition
of the ‘‘best” method for delineation of spatial distribution of
SOC. The methods are evaluated using efficiency and error
estimates of interpolation techniques. The efficiency is assessed

by coefficient of determination (R2 value), and errors are rep-
resented by the root mean square error (RMSE), mean error
(ME) and mean relative error (MRE). The study shows that

OK interpolation method is superior than geostatistical and
deterministic methods. The performance of the exponential
semi-variogram model is outstanding with OK interpolation

techniques. IDW skill has the worst presentations, deriving
higher RMSE and MRE than other deterministic and geosta-
tistical methods. The study carries out at only 36 soil sampling

sites over the study area of 353 km2. The interpolation could
be more accurate, with more close samples and incorporation
of sufficient topographical information. Finally, the results
guide to the amplification of trustworthy SOC concentration

maps which can significantly contribute to proper application
of agricultural and ecological modeling.
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