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Inventory model for an item is developed in stochastic environment with price-dependent
demand over a finite time horizon. Here, probabilistic lead-time is considered and short-
ages are allowed (if occurs). In any business, placement of an order is normally connected
with the advance payment (AP). Again, depending upon the amount of AP, unit price is
quoted, i.e., price discount is allowed. Till now, this realistic factor is overlooked by the
researchers. In this model, unit price is inversely related with the AP amount. Against this
financial benefit, the management has to incur an expenditure paying interest against AP.
Taking these into account, mathematical expression is derived for the expected average
profit of the system. A closed form solution to maximize the expected average profit is
obtained when demand is constant. In other cases model is solved using generalized
reduced gradient (GRG) technique and stochastic search genetic algorithm (GA). Moreover,
results of the models without and with advance payment are presented and solved. The
numerical examples are presented to illustrate the model and the results for two models
obtained from two methods are compared in different cases. Also, some parametric studies
and sensitivity analyses have been carried out to illustrate the behavior of the proposed
model. It is observed that advance payment has positive effect on the system.

Crown Copyright � 2008 Published by Elsevier Inc. All rights reserved.
1. Introduction

It is normally observed that after receiving an order, supplier needs some time to deliver the item, which is known as
lead-time. Lead-time is normally fuzzy or stochastic in nature. A number of research papers have been already published in
this direction [1,2]. Recently, Kalpakam and Sapan [3] studied a perishable inventory model with stochastic lead-time. Again
in the classical inventory models, either in deterministic or probabilistic model, it is often assumed that payment will be
made to the supplier for goods immediately after receiving the consignment. However, one can easily observe that a sup-
plier provides a credit period for a retailer to stimulate the demand, to boost market share or to decrease inventories of
certain items. Goyal [4] first studied an EOQ model under the conditions of permissible delay in payments. Chung [5] pre-
sented the discounted cash flow (DCF) approach for the analysis of the optimal inventory policy in the presence of the trade
credit. Later, Shinn et al. [6] extended Goyal’s [4] model and considered quantity discounts for freight cost. Recently, to
accommodate more practical features of the real-life inventory systems, Aggarwal and Jaggi [7] and Hwang and Shinn
[8] extended Goyal’s model to consider the deterministic inventory model with a constant deterioration rate. Shah and Shah
2008 Published by Elsevier Inc. All rights reserved.
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[9] developed a probabilistic inventory model when delay in payments is permissible. They developed an EOQ model for
deteriorating items in which time and deterioration of units are treated as continuous variable and demand is a random
variable. Later on, Jamal et al. [10] extended Aggarwal and Jaggi’s [7] model to allow for shortages and make it more appli-
cable in real world.

All the above inventory models overlooked the situation of advanced payment of ordering an item. It is normally observed
that a wholesaler demands some payment when an order from a retailer is placed. Also in some situations it is observed that
if a retailer gives an extra advance-payment (AP) then he/she may get some price discount at the time of final payment (e.g.,
bricks and tiles factories announce such offer at the beginning of the season). Though AP is a real life phenomenon, it has not
been addressed till now. Here an attempt has been made to incorporate this phenomenon where lead-time for delivery of an
item is stochastically governed by some feasible distribution.

In the present competitive market, the selling price of a product is one of the decisive factors in selecting the item for use.
In practice, higher selling price of a product negates the demand where as reasonable and low price has a reverse effect. This
argument is more appropriate for defective goods whose demand is always price dependent. Whitin [11] first presented an
inventory model considering the effect of price dependent demand. Generally this type of demand is seen in finished goods.
Though extensive research work has been done in this area [12–15], very few of them have considered selling price as a deci-
sion variable [16,17].

Taking the above shortcomings into account, here an inventory model is developed where demand of the item depends on
selling price, lead-time is stochastic in nature, retailer has to pay some advance payment at the time of ordering and is eli-
gible for a price discount against extra advance payment. Shortages are completely backlogged and are met as soon as new
order arrives. Here objective is to maximize the expected average profit. A GA, based on Roulette selection, whole arithmetic
crossover and non-uniform mutation is developed for the model and objective function is optimized using it. Results via GA
are compared with a non-linear optimization technique, GRG, in some particular cases. In a particular situation when de-
mand is constant, closed form solution is obtained. Models are illustrated with some numerical examples and some sensi-
tivity analyses have been presented. Results for the models with and without advance payment are obtained and it is
observed that profit is more when advance payment is allowed and price discount due to that is permitted.

2. Assumptions and notations for the proposed models

Single-item inventory model with shortages in a finite time horizon is developed using the following notations and
assumptions:
X lead-time which is a random variable (r.v)
x real variable corresponding to r.v. X
f ðxÞ density function of X
FðxÞ distribution function of X
m mean of X when it follows normal distribution
r standard deviation of X when it follows normal distribution, and the value of r is sufficiently small so that probability

of X 6 0 is negligible (see Section 5)
k parameter of exponential distribution when X follows exponential distribution
C3 set-up cost per cycle
P selling price per unit item
p unit cost per unit item
s mark-up of selling price, i.e., P ¼ sp, which is a decision variable
n total number of replenishment to be made during the prescribed time horizon
H prescribed time horizon, where H is sufficiently larger than mean of X so that probability of n < 2 is negligible (see

Section 5)
DðPÞ demand per unit time is a function of selling price, i.e., DðPÞ ¼ D0P�c

T equal length of each time-cycle, i.e., T ¼ H=n
h holding cost per unit item per unit time
qðtÞ inventory level at time t
Q maximum inventory level
Q r re-order level when permissible AP allowed (decision variable)
Ap advance payment for purchasing quantities
Sp total selling price over the planning horizon H
Pc total purchasing cost over planning horizon H
Cs shortage cost per unit item per unit time
Ib percentage of bank interest
Id percentage of AP on total purchase cost per cycle
Id0 minimum percentage of AP on total purchase cost per cycle, which is mandatory
Ic percentage of discount on unit cost, which is a function of Id and is of the form: Ic ¼ k� k 100�Id

100�Id0

� �2
, where k is a con-

stant ð0 < k < 100Þ
Q�r optimum value of Q r
Z� optimum value of the profit function Z
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Q � optimum value of Q
T� optimum value of T
s� optimum value of s

3. Model development and analysis

To develop the proposed inventory model, we assume that business starts with an inventory level of Q units of the item.
At the beginning of every renewable cycle (i.e., at t ¼ tj for jth renewable cycle, j ¼ 1;2; . . . ;n� 1), when the inventory level
reaches at reorder level Q r, then new order placed to meet the customer demand for the next cycle. After delivery of the
order, at first, shortages (if any) of previous cycle are fulfilled and then the rest of the order quantities are kept in store where
it is used to meet the demand. In line with most researchers [18], we assume that immediately after the arrival of an order
the installation stock will always exceed the reorder level, so at most one order will be outstanding at any time. When the
stock level reaches to the reorder level Q r at t ¼ tjþ1 order for the next ðjþ 1Þth renewable cycle is made. Thus, in the interval
½0;H�, including the initial order, n ordering points are at t ¼ 0, t ¼ tj, ðj ¼ 1;2; . . . ;n� 1Þ. Shortages are not allowed for the
last cycle. The time X between placement and receipt of an order is random in nature and is assumed to follow a feasible
distribution. The pictorial representation of the inventory system is depicted in Fig. 1.

The differential equation of the inventory system is given by
dqðtÞ
dt
¼ �DðPÞ; ð1Þ
with the initial conditions, qð0Þ ¼ Q ¼ DðPÞT , t1 ¼ Q�Q r
DðPÞ , qðtjÞ ¼ Q r, j ¼ 1;2; . . . ;n. The solution of the differential Eq. (1) is
qðtÞ ¼
Q r � DðPÞðt � tjÞ; tj 6 t 6 tj þ x

Q r þ Q � DðPÞðt � tjÞ; tj þ x 6 t 6 tjþ1 ¼ tj þ T

�
ð2Þ
for j ¼ 1;2; . . . ;n� 1.
According to the assumptions, in each renewable cycle ðtj; tjþ1Þ, two cases may arise.
Case-1: When no shortages occur.
Case-2: When shortages occur.

Calculation for jth renewable cycle ½tj; tjþ1�
For jth cycle, in case-1 the holding cost H1(x) is given by
H1ðxÞ ¼ h
Z tjþx

tj

qðtÞdt þ
Z tjþ1

tjþx
qðtÞdt

" #
¼ h

2DðPÞ ½ðQ r þ Q � DðPÞxÞ2 � ðQ r � DðPÞxÞ2�: ð3Þ
In case-2 the holding cost H2(x) is given by
H2ðxÞ ¼ h
Z tjþQ r=DðPÞ

tj

qðtÞdt þ
Z tjþ1

tjþx
qðtÞdt

" #
¼ h

2DðPÞ ½ðQ r þ Q � DðPÞxÞ2�: ð4Þ
So expected holding cost in jth cycle E(H(x)) is given by
EðHðxÞÞ ¼ h
2DðPÞ

Z Q r=DðPÞ

0
fðQ r þ Q � DðPÞxÞ2 � ðQ r � DðPÞxÞ2gf ðxÞdx

�

þ
Z 1

Q r=DðPÞ
fðQ r þ Q � DðPÞxÞ2gf ðxÞdx

#
ð5Þ

¼ h
2DðPÞ

Z Q r=DðPÞ

0
fðQ 2 þ 2QQ rÞ � 2QDðPÞxgf ðxÞdx

�

þ
Z 1

Q r=DðPÞ
fðQ r þ QÞ2 � 2ðQ r þ QÞDðPÞx� ðDðPÞxÞ2gf ðxÞdx

#

¼ h
2DðPÞ ½fðQ

2 � 2QQ rÞFðQ r=DðPÞÞ þ 2QDðPÞI11g

þ fðQ r þ QÞ2ð1� FðQ r=DðPÞÞÞ � 2ðQ r þ QÞDðPÞI21 � DðPÞ2I22g�; ð6Þ
where
I11 ¼
Z Q r=DðPÞ

0
xf ðxÞdx; ð7Þ



Fig. 1. Instantaneous state of inventory system.
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I21 ¼
Z 1

Q r=DðPÞ
xf ðxÞdx; ð8Þ

I22 ¼
Z 1

Q r=DðPÞ
x2f ðxÞdx ð9Þ
and expressions of FðQ r=DðPÞÞ, I11, I21 and I22 for normal and exponential distributions of X are given in Appendix 1.
The shortage cost ScðxÞ is given by
ScðxÞ ¼ Cs

Z tjþx

tjþQ r=DðPÞ
�qðtÞdt ¼ CsfQ r � DðPÞxg2

2DðPÞ : ð10Þ
So expected shortage cost EScðxÞ is given by
EðScðxÞÞ ¼
Cs

2DðPÞ

Z 1

Q r=DðPÞ
fQ r � DðPÞxg2f ðxÞdx ¼ Cs

2DðPÞ fQ
2
r ð1� FðQ r=DðPÞÞÞ � 2Q rDðPÞI21 þ DðPÞ2I22g ð11Þ
Calculation of expected average profit in H
Holding cost for the time period ½0; t1� and ½tn;H�, H3, is given by
H3 ¼ h
Z Q=DðPÞ

0
qðtÞdt ¼ hQ2

2DðPÞ : ð12Þ
For each cycle, total selling price Sp, total purchase cost Pc, advance payment for purchasing quantities Ap, interest on loan
from bank Lp, expected interest on loan from bank EðLpÞ are given respectively by Sp ¼ QP, Pc ¼ Qp, Ap ¼ IdQpð1� IcÞ,
Lp ¼ ApXIb and EðLpÞ ¼ ApmIb, m ¼ EðXÞ being the mean of the distribution of X.

So total expected profit over the planning horizon = hSales revenuei � hPurchase costi � hExpected interesti � hOrdering
costi � hExpected holding costi � hExpected shortage costi.

Hence, the expected average profit during the planning horizon H is
Z ¼ ½nSp � nPc � ðn� 1ÞEðLpÞ � nC3 � ðn� 1ÞEðHðxÞÞ � H3� ðn� 1ÞEðScðxÞÞ�=H: ð13Þ
So the problem reduces to determine Q r and s to maximize Z. GRG technique is used to find local optima of the objective
function Z and a heuristic method GA is also used to find the solution. As GA searches for a global optima for an objective
function in a search space it is used to compare the result obtained via GRG.

3.1. Particular case

Here, demand is assumed as constant, i.e., c ¼ 0
In this particular case DðPÞ ¼ D0 and so Z is a function of Q r only and can be optimized analytically.

Theorem 1 (Differentiation under the integral sign). If a function f ðx; yÞ is defined and continuous on the rectangle
R ¼ ½a; b : c; d� and if

(i) fxðx; yÞ exists and is continuous on the rectangle R
(ii) / : ½a; b� ! ½c; d� and w : ½a; b� ! ½c; d� are both differentiable

(iii) gðxÞ ¼
R wðxÞ

/ðxÞ f ðx; yÞdy for x 2 ½a; b�then gðxÞ is differentiable on ½a; b�, and
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g0ðxÞ ¼
Z wðxÞ

/ðxÞ
fxðx; yÞdyþ f ðx;wðxÞÞw0ðxÞ � f ðx;/ðxÞÞ/0ðxÞ
for x 2 ½a; b�
Proof. The proof of this theorem is available in standard texts (cf. Apostol [19]). h

Proposition 1. For c ¼ 0, the expected shortage cost EðScðxÞÞ is convex in Q r.

Proof. For c ¼ 0, the demand DðPÞ becomes D0. The expected shortage cost is a function of only one variable Q r. Now, dif-
ferentiating (11) with respect to Q r using Theorem 1, we have
dEðScðxÞÞ
dQ r

¼ Cs

D0

Z 1

Q r=D0

fQ r � D0xgf ðxÞdx ¼ Cs

D0
½Q rð1� FðQ r=D0ÞÞ � D0I21�; ð14Þ
expressions of I21 can be obtained from (8) by replacing DðPÞ by D0.

Thus, the optimal value of Q r, Q�r , is the solution of dEðScðxÞÞ
dQ r

¼ 0, i.e., the solution of
Q rð1� FðQ r=D0ÞÞ � D0I21 ¼ 0: ð15Þ
The condition for optimality is
d2EðScðxÞÞ
dQ 2

r

¼ Cs

D0

Z 1

Q r=D0

f ðxÞdx ½using Theorem-1� ¼ Cs

D0
½1� FðQ r=D0Þ� > 0 for Q r ¼ Q �r : ð16Þ
Hence, expected shortage cost EðScðxÞÞ is convex in Q r. h

Proposition 2. For c ¼ 0, the expected holding cost EðHðxÞÞ is convex in Q r.

Proof. For c ¼ 0, the demand DðPÞ becomes D0. The expected holding cost is a function of only one variable Q r. Now, differ-
entiating (6) with respect to Q r using Theorem 1, we have
dEðHðxÞÞ
dQ r

¼ h
D0

Z 1

0
fQ r þ Q � D0xgf ðxÞdx�

Z Q r=D0

0
fQ r � D0xgf ðxÞdx

� �

¼ h
D0
fQ r þ Q � D0EðXÞg � Q rFðQ r=D0Þ � D0

Z Q r=D0

0
xf ðxÞdx

� �� �

¼ h
D0
fQ r þ Q � D0EðXÞg � fQ rFðQ r=D0Þ � D0ð1� I11Þg½ �; ð17Þ
expressions of I11 can be obtained from (7) by replacing DðPÞ by D0.
Thus, the optimal value of Q r, Q�r , is the solution of dEðHðxÞÞ

dQ r
¼ 0, i.e., the solution of
fQ r þ Q � D0EðXÞg � fQ rFðQ r=D0Þ � D0ð1� I11Þg ¼ 0: ð18Þ
The condition for optimality is
d2EðHðxÞÞ
dQ 2

r

¼ h
D0
½1� FðQ r=D0Þ� > 0 for Q r ¼ Q �r : ð19Þ
Hence, expected shortage cost EðHðxÞÞ is convex in Q r. h

Proposition 3. For c ¼ 0, the expected average profit ZðQ rÞ is concave in Q r.

Proof. From Eq. (13), we get the expected average profit function in Q r. Differentiating (13) with respect to the decision var-
iable Q r, we have
dZ
dQ r
¼ �ðn� 1Þ DEðHðxÞÞ

dQ r
þ dEScðxÞ

dQ r

� �
: ð20Þ
For maximum value Z, dZ
dQ r
¼ 0, i.e., the solution of Eqs. (15) and (18) will give value of Q r to maximize Z and let this value be

Q �r . The condition for optimality,
d2Z

dQ2
r

¼ �ðn� 1Þ d2EðHðxÞÞ
dQ2

r

þ d2EScðxÞ
dQ 2

r

" #
< 0 ð21Þ

when Q r ¼ Q �r and n > 1; ½using ð16Þ and ð19Þ�
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Hence, due to convexity of expected shortage and holding costs, the expected profit function is concave in the decision var-
iable Q r. Thus, we get the closed form solution from the expressions (15) and (18). h
4. Genetic algorithm

Genetic algorithms are heuristic search process for optimization that resembles natural selection and have been
developed by Holland [20], his colleagues and students at the University of Michigan (c.f. Goldberg [21]). According
to Goldberg [21], Davis [22], Michalewicz [23] Genetic Algorithms are adaptive computational procedures which are
modelled as the mechanics of natural genetic systems. Because of its generality and other advantages over conventional
optimization methods it has been successfully applied to different decision making problems in different areas like trav-
elling salesman problems (Forrest [24]), Scheduling problem (Davis [25]), Numerical optimization (Michalewicz [23]),
etc. But, till now, only a very few researchers have applied it in the field of Inventory control system. Among them,
one may refer to the works of Sarkar and Newton [26] and Mondal and Maiti [27]. In most cases, they can find the
global optimum solution with a high probability. They mimic the process of natural selection and is based on Darwin’s
survival of the fittest principles. In this algorithm, a population of individuals (potential solutions) undergoes a sequence
of unary (mutation type) and higher order (crossover type) transformations. These individuals select the next generation.
This new generation contains a higher proportion of the characteristics possessed by the’good’ members of the previous
generation and in this way good characteristics are spread over the population and mixed with other good character-
istics. After a few number of generations, the program either converges or is terminated and the best individual is taken
as the optimal solution. It is generally accepted that any Genetic Algorithm to solve a problem must have the following
basic components:

� Values of parameters (population size, probabilities of applying genetic operators, etc.) of Genetic Algorithms.
� Chromosome representation.
� Initial population production.
� Evaluation function rating solutions in terms of their fitness.
� Selection process
� Genetic operators (crossover and mutation) that alter the genetic composition of parents during reproduction.

Here, GA is used to verify the results obtained by GRG method. The stepwise procedure of Genetic Algorithm is shown as
below:

GA Algorithm

1. Begin
2. Initialize maximum generation number (M), population size (N), probability of crossover (pc) & mutation(pm).
3. t  o [t represents the number of current generation]
4. Initialize pðtÞ [pðtÞ represents the population at t-th generation].
5. Evaluate(pðtÞ). [This function is assigned fitness to each solution.]
6. While (t < M)
a. t  t þ 1.
b. Select pðtÞ from pðt � 1Þ.
c. Alter (crossover and mutate) pðtÞ.
d. Evaluate (pðtÞÞ.

7. End While
8. Print the best result
9. End

4.1. GA procedures for the proposed model

The different steps of the proposed genetic algorithm to find optimal decision of the model are discussed below:

(a) Representation: A two-dimensional real vector Q i ¼ ðqi1; qi2Þ is used to represent i-th solution, where qi1 and qi2 repre-
sent two decision variables Q r and s, respectively of the problem.

(b) Initialization: Nð¼ 20Þ such solutions Q 1;Q 2; . . . Q N are randomly generated by random number generator such that
each solution satisfies the resource constraints of the problem. The constraints are checked using a separate subfunc-
tion named check_constraint(). Also set M ¼ 500, pc ¼ 0:6, pm ¼ 0:1. These values of pc and pm give better result for the
proposed model.

(c) Fitness value: The value of the objective function ZðQ iÞ due to the potential solution Qi ¼ ðq1i; q2iÞ is taken as fitness
value.
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(d) Selection process for mating pool: There are several approaches to select solutions from the initial population for mating
pool [21,23]. All these approaches has some merits and demerits over the others. Among these approaches Roulette
wheel selection process [23] plays a major role. In this study, Roulette wheel selection process is used. Following
are the steps of this process:

(i) Find total fitness of the population F=
PN

i¼1ZðQiÞ
(ii) Calculate the probability of selection fi of each solution Qi by the formula fi ¼ ZðQ iÞ=F.

(iii) Calculate the cumulative probability cpi for each solution Qi by the formula cpi ¼
Pi

j¼1fi

(iv) Generate a random number ’r’ from the range [0,1].
(v) If r < cp1 then select Q1 otherwise select Q ið2 6 i 6 NÞ where cpi�1 6 r < cpi.

(vi) Repeat steps (iv) and (v) N times to select N solutions for mating pool. Clearly one solution may be selected more
than once.

(vii) Selected solution set is denoted by P1ðTÞ in the proposed GA algorithm.

(e) Crossover:
(i) Selection for crossover: For each solution of P1ðTÞ generate a random number r from the range [0,1]. If r < pc then

the solution is taken for crossover, where pc is the probability of crossover.
(ii) Crossover process: Crossover taken place on the selected solutions. For each pair of coupled solutions Y1, Y2 a

random number c is generated from the range [0,1] and Y1, Y2 are replaced by their offspring’s Y11 and Y21 respec-
tively where Y11 ¼ cY1 þ ð1� cÞY2;Y21 ¼ cY2 þ ð1� cÞY1.

(f) Mutation:
(i) Selection for mutation: For each solution of P1 generate a random number r from the range [0,1]. If r < pm then

the solution is taken for mutation, where pm is the probability of mutation.
(ii) Mutation process: To mutate a solution Qi ¼ ðqi1; qi2Þ select a random integer r in the set {1,2}. Then replace qr by

randomly generated value within the boundary of r-th component of Qi.
4.2. Implementation and usage

The algorithm is implemented using C-language to optimize the objective function of the proposed model. For each set of
numerical data for the proposed model, the program is run several times and in most of the cases this GA gives almost same
result. The best result found is taken as near optimum solution.

5. Numerical illustration

5.1. General inventory model with advance payment

The model is illustrated with two examples as given below.

Example 1. Here it is assumed that lead-time X is normally distributed with a known mean m and standard deviation r.
Different parametric values for this example are C3 ¼ $26, n ¼ 12, m ¼ 0:3, r ¼ 0:06, Id ¼ 30, Id0 ¼ 20, Ib ¼ 6, D0 ¼ 10; 000,
H ¼ 8, p ¼ $4:0, h ¼ $0:6, Cs ¼ $2, k ¼ 20, c ¼ 2:6 and results are obtained by both GRG technique using LINGO software and
GA method using C-language and presented in Table 1.

Example 2. Here it is assumed that lead-time X is exponentially distributed with a known parameter k ¼ 3:33. Different
parametric values for this example are same as Example 1. As Example 1, results are obtained by both GRG and GA and pre-
sented in Table 1.

From the above result, it is clear that results obtained by both GA and GRG techniques are almost same. In that case also, it
is observed that expected average profit for normal distribution is more than that of exponential distribution.
Table 1
Results for general inventory models with advance payment

Example Technique Q�r s� Z�ð$Þ

GA 11.065 1.625 153.816
Example 1 GRG 11.294 1.623 153.817

GA 14.092 1.683 143.032
Example 2 GRG 14.123 1.683 143.032
Example 3 Analytical approach 4.306 – 282.731
Example 4 Analytical approach 5.244 – 276.643
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5.1.1. Particular case (c ¼ 0)
In this particular model demand is price independent and is solved analytically as discussed in Section 3.1. It is illustrated

with two examples as given below.

Example 3. Here it is assumed that lead-time X is normally distributed with a known mean m and standard deviation r.
Different parametric values for this example are C3 ¼ $25, n ¼ 14, m ¼ 0:22, r ¼ 0:04, Id ¼ 30, Id0 ¼ 20, Ib ¼ 6, D ¼ 60,
s ¼ 1:5, H ¼ 8, p ¼ $10:3, h ¼ $0:7, Cs ¼ 2, k ¼ 20.

Example 4. Here it is assumed that lead-time X is exponentially distributed with a known parameter k ¼ 4:54. All other
parametric values are same as Example 3. Optimal decisions for Examples 3 and 4 are obtained by solving Eqs. (15) and
(18) and are presented in Table 1.
5.2. Inventory models without advance payment

Examples 1–4 are solved not taking advance payment into account and the results are presented in Table 2.
From this table, it is observed that in all cases, profit is more when advance payment is made and the price discount due

to it is permitted.

5.3. Sensitivity analysis

Using the numerical Example 1, mentioned earlier, the effect of under or over estimation of various parameters on re-or-
der level, mark-up and expected average profit is studied. Here, we employ, DQ r ¼ ðQ 0r � Q rÞ=Q r � 100%,
Table 2
Results for inventory models without advance payment

Example Technique Q�r s� Z�ð$Þ

GA 10.330 1.687 141.474
Example 1 GRG 10.341 1.690 141.475

GA 12.950 1.746 131.771
Example 2 GRG 12.961 1.750 131.774

GA 4.308 – 255.928
Example 3 GRG 4.315 – 255.929

GA 5.240 – 249.843
Example 4 GRG 5.240 – 249.847

Table 3
Sensitivity analysis of general model for Example 1

Change of parameters �20% �10% �5% 5% 10% 20%

c DQ r 86.217 42.873 19.711 �7.455 �6.371 �6.242
Ds 18.400 7.228 3.393 �2.799 �5.903 �9.969
DZ 219.649 80.350 34.852 �26.878 �47.797 �77.178

D0 DQ r �6.371 �6.507 �6.507 5.664 9.353 23.033
Ds �0.615 �0.061 �0.061 �0.117 0.184 �0.009
DZ �25.102 �12.535 �6.269 6.268 12.533 25.071

Table 4
Sensitivity analysis on mean m for Examples 1 and 3

Demand Mean (m) Q�r s� Zð$Þ

Example 3 0.24 5.508 – 282.534
0.28 7.909 – 282.140
0.32 10.308 – 281.746
0.36 12.709 – 281.352
0.40 14.988 – 280.958

Example 1 0.32 12.685 1.629 153.715
0.36 16.101 1.619 153.522
0.40 18.95 1.625 153.333
0.44 21.865 1.624 153.138
0.48 23.858 1.620 152.725



Fig. 2. Id(%) vs. Z (demand is constant).

Fig. 3. Id(%) vs. Z (demand is price dependent).
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Ds ¼ ðs0 � sÞ=s� 100% and DZ ¼ ðZ0 � ZÞ=Z � 100% as measure of sensitivity, where Q r, s and Z are the true values and Q 0r, s0

and Z0 the estimated values. The sensitivity analysis is shown by increasing or decreasing the parameters by 5%, 10% and 20%,
taking one at a time and keeping the others at their true values. The results are presented in Table 3, which are self-
explanatory.

From Table 3, it is observed that DZ is symmetric with respect to D0 but it increases at a much faster rate when c decreases
than the rate of decrease when c increases.

For numerical Examples 3 and 1, results are obtained for different mean m and results are presented in Table 4. It is ob-
served that profit decreases as mean of the normal distribution increases for both constant (Example 3) and price dependent
(Example 1) demand. It happens because as m increases, lead-time increases which increases expected holding and shortage
cost which in turn decreases average profit.

Expected average profits (Z) for different percentage of advance payment (Id%) are calculated for Examples 1 and 3 and
are plotted in Figs. 2 and 3, respectively. It is observed that average profit increases with Id. But it is seen that rate of increase
of profit slowly decreases with the increase of percentage of advance payment. This phenomenon agrees with reality. It is
Fig. 4. Z vs. n (for normal distribution).
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often observed that a wholesaler needs a large amount of investment capitals to meet all the retailers demand. In fact it is
difficult for him to arrange such a large amount from bank-loan (due to lack of mortgage property). In this situation, he offers
some opportunity to his retailers by giving some discount from his profit, if retailers deposit some extra amount of advance
payment. Retailer takes this opportunity to make some extra profit if he has some mortgage property to take loan from bank.
This phenomenon is observed in Figs. 2 and 3.

Results are obtained for different n for both the Examples 1 and 3 and are plotted in Fig. 4. It is observed in both the cases
that as n increases, initially profit increases and attains maximum value (Z ¼ 294:3584 at n ¼ 7 for example-3 and
Z ¼ 160:8284 at n ¼ 7 for Example 1). If n is further increases then profit gradually decreases. Since planning horizon is fixed
Z will be maximum for optimum T , i.e., for optimum n. If n is below or above this optimum value then profit is less. This
phenomenon is verified by this study.

6. Conclusion

A realistic inventory problem for a retailer is developed when retailer give some advance payment to wholesaler. Many
research papers relating to permissible delay in payments has been published in different journals. But, till now none has
considered the inventory model with advance payment incorporating stochastic lead-time. In a particular case, closed form
of solution is obtained when the demand is constant. Here, benefit of the advantage of advance payment over the advance
payment is illustrated. Moreover, here an algorithm in C for GA is developed and is used to verify the results obtained by
GRG. GA algorithm has been implemented in C-language and executed with different seeds of random number generators.
It is observed that all these executions leads to the same optimum solution. From this it may be concluded that the present
solution is global optimum. These models are applicable in the factory like bricks, tiles etc. The said model can be formulated
in fuzzy, fuzzy-stochastic environments. Two types of discounts can also be formulated to the proposed inventory model.
Moreover, consideration of a fixed time horizon inventory model of this type will be more realistic one. All these may be
the topics of future research.
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Appendix 1. Expressions of FðQ r=DðPÞÞ, I11, I21 and I22 for normal distribution of X is presented below.

When X is normally distributed:
f ðxÞ ¼ 1ffiffiffiffiffiffiffi
2p
p

r
exp �ðx�mÞ2

2r2

( )
; ð22Þ
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where
K1 ¼ �
m
r ; K2 ¼ �

Q r=DðPÞ �m
r ; A1 ¼

ffiffiffiffi
2
p

r
; A2 ¼ 0:044715:
This approximate form due to Page [28] and Tocher [29] is used to find the integrals. So
I11 ¼
Z Q r=DðPÞ
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Expressions of FðQ r=DðPÞÞ, I11, I21 and I22 for exponential distribution of X is given below.
When X is exponentially distributed:
f ðxÞ ¼ k expð�kxÞ; ð27Þ

FðQ r=DðPÞÞ ¼
Z Q r=DðPÞ

0
f ðxÞdx ¼ 1� exp � kQ r

DðPÞ

	 
	 

: ð28Þ
So
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0
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