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Genetic Algorithm (GA) with different logic structures for price breaks has been developed and imple-
mented for a multi-item inventory control system of breakable items like the items made of glass, mud,
porcelain, etc. with all unit discount (AUD), incremental quantity discount (IQD) and a combination of
these discounts. Here, AUD and IQD on purchasing price with two price breaks are allowed. Also, demand
and breakability of the items are stock-dependent. Shortages are not allowed. Replenishment is instanta-
neous. Selling price is a mark-up of the purchasing cost. For storage, warehouse capacity is limited. For
the present model, GA has been developed in real code representation using Roulette wheel selection,
arithmetic crossover and uniform mutation. This algorithm has been implemented successfully to find the
optimum order quantities for the above inventory control system to achieve the maximum possible profit.
The algorithm and the inventory model have been illustrated numerically and some sensitivity analyses
with respect to breakability and demand are presented.

Keywords: inventory; breakability; all unit discount; incremental quantity discount; genetic algorithm
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1. Introduction

In the classical deterministic inventory models different types of demand are considered e.g.,
constant, dependent on time, selling price, stock, etc., It has been acknowledged that displayed
inventory has an effect on sale for many retailers. This means that the demand rates of these items
may be dependent on displayed stock level. This type of demand in different forms was considered
by Baker and Urban [4], Mandal and Phaujder [27], Datta and Pal [9, 10], Urban [35], Mandal
and Maiti [25, 26], Zhou [38, 39], Maiti and Maiti [19, 23] and others.

Generally, classical inventory models are developed under the basic assumption that the
management purchases or produces a single item. However, in many real-life situations, this
assumption is not correct. Instead of a single item, many companies or enterprises or retail-
ers are motivated to store several items in their showrooms for more profitable business affairs.
Another cause of their motivation is to attract the customers to purchase several items in one
showroom/shop. Multi-item classical inventory models under different resource constraints such
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1342 A.K. Maiti and M. Maiti

as available floor space/shelf space, capital investment and average number of inventory, etc.,
are presented in the well-known books by Churchman [8], Silver and Peterson [33] and others.
Padmanabhan and Vrat [30] developed a multi-item multi-objective inventory model of deteri-
orating items with stock dependent demand by a goal programming method. Considering two
constraints on available space and budget, Ben-Daya and Raouf [5] discussed a multi-item inven-
tory model with stochastic demand. Recently, Guria et al. [16] studied multi-item EOQ model
with two-storage facilities for uniform demand. Kar et al. [18] solved two-shop inventory model of
deteriorating multi-items with constraints on space and investment. Normally, decision-making
problems are formulated as unconstrained/constrained nonlinear optimization problem, which
are solved by traditional direct and gradient-based optimization method. Among the limitations
of these methods, one is that the traditional nonlinear optimization methods very often stuck to
the local optimum. To overcome some of these limitations, a soft computing method, genetic
algorithm (GA) is very popular. GAs have been applied in different areas like neural networks
(c.f. Pal et al. [31]), scheduling (Davis [11]), numerical optimization (Michalewicz [28]), pat-
tern recognition (Gelsema [14]), etc. There are very few papers where GAs have been applied
in the field of inventory control system [32]. Disney et al. [12] solved classical inventory con-
trol systems using GA optimization, Mondal and Maiti [29] developed a multi-item fuzzy EOQ
model using GA, Gaafar [13] studied GA to dynamic lot-sizing with batch ordering, Altiparmak
et al. [3] solved multi-objective supply chain networks via GA, Smith [34] applied GA on multiple
inventory problem. Recently, Maiti and Maiti [19] did work on damageable items in imperfect
production process via GA. Also Maiti and Maiti [22, 23] developed two-warehouse problem
in fuzzy environment, Maiti et al. [20, 21] applied GA respectively in two-warehouse inventory
model with discount and with random planning horizon.

In inventory, there is a number of research papers dealing with deteriorating items. But, the
inventory of breakable goods, that is the items made of glass, ceramic, china clay, etc., is different
from that of deteriorating items and did not get much attention from the O.R. scientists. Recently
Mandal and Maiti [24–26] did some works on these items. These items break more in numbers
as the stock increases.

Again, quantity discount is of growing interest due to its practical importance in purchasing
and control of an item. Normally, one derives the better marginal cost of purchase/production
availing the opportunities of cost savings through bulk purchase/production. Therefore, a retailer
reacts to more stock during the period of discount offered from several sources. Now-a-days,
in the third-world countries, with the introduction of the open market system and the advent of
multi-nationals, there is stiff competition among the companies to win over the maximum possible
market. They allure the customers by giving quantity discounts in different forms. The popular
discounts are all unit discount (AUD) and incremental quantity discount (IQD). Under AUD,
the unit price of ‘all units’ decreases as the order size increases according to the price schedule
offered by the supplier. In AUD, the discounts are offered to every unit purchased whereas in
IQD, discounts are offered only to the additional units ordered beyond a specified quantity over
which the discount is given.

In the literature of discounted inventory problems, Benton [6] considered an inventory sys-
tem with quantity discount for multiple price breaks and alternative purchase lotsizing policy,
Abad [1, 2] for selling price and lot size when suppliers offer AUD and IQD, Chakraborty and
Martin [7] allowing discount pricing policies for inventory subject to declining demand, Wee [36]
for economic production lot-size model for deteriorating items with partial backordering, Wee
and Yu [37] for deteriorating inventory model with temporary price discount, Mandal and Maiti
[24] for inventory models of breakable items with AUD, IQD and stock-dependent demand. In a
discounted system of breakable items, a retailer faces a conflicting situation. A retailer is tempted
to go for large purchase to avail the advantage of price discount, but he risks an increased number
of damaged units due to large inventory. Hence the retailer tries to opt for an optimum decision
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International Journal of Computer Mathematics 1343

balancing the above two factors. Till now, all the works on discounted inventory control systems
are confined to a single item only. For multi-items problems with AUD having a resource con-
straint, the usual solution algorithm for the single item becomes useless, as possible solutions may
exist in different price intervals for different items. For the optimum one, the solutions are tried
satisfying the resource constraints, say space constraint for multi-items. Hence, it is almost impos-
sible to apply the conventional price-break algorithm in the case of a multi-item inventory system
having number of price-breaks on each item. But use of GA removes all these complexities and
makes the decision-making problem much simpler. As, in GA, the decision variables, that is the
quantities of different items are selected randomly, the respective prices are accordingly selected
from the logic structure of the algorithm for price-breaks and the corresponding profit function is
evaluated satisfying the required space constraint. Out of the evaluated profits for different chro-
mosomes in different iterations, the maximum one is selected using genetic operators-selection,
crossover and mutation.

In this paper, a multi-item inventory model is developed for breakable items with price discount.
Here demand and damage functions are both stock-dependent. For this model, AUD, IQD and a
combination ofAUD and IQD in the form of two price breaks are allowed. The items are stored in a
limited storage space. To use general form of shape and scale parameters of breakability function,
the integrals are computed numerically by Simpson’s 1/3rd rule. GA is developed in real code
representation using Roulette wheel selection, arithmetic crossover and uniform mutation. This
algorithm with some logic structures connecting the price-break values has been implemented
to solve the above inventory models and the optimum order quantities are determined in order
to have maximum possible profit satisfying the space constraint in equality sense. To illustrate
the model along with the proposed algorithm, numerical examples are presented and sensitivity
analyses are performed for some parameters of demand and damage functions.

2. GA algorithm

Genetic algorithm (GA) approach was first developed in 1975 by Holland [17] using the name
‘genetic plan’, and it attracted considerable attention as a methodology for search, optimization
and learning after Goldberg’s [15] publication. GAs are stochastic search methods for optimization
problems based on the mechanics of natural selection and natural genetics that is the principle of
evolution –‘survival of the fittest’.

GA uses the following three genetic operators – reproduction, crossover and mutation. To
solve a decision–making problem, the above genetic operations are performed sequentially and
repeatedly.

The generalized GA procedure using the above components is given below.

begin
t → 0
initialize Population (t)

evaluate Population (t)

while (not terminate condition)
{
t → t + 1
select Population (t) from Population (t − 1)
alter (crossover and mutation) Population (t)
evaluate Population (t)
}
print optimum result
end
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1344 A.K. Maiti and M. Maiti

2.1. Constraints handling in GA

The main idea of handling constraints lies in (i) an elimination of equalities and (ii) careful design
of special genetic operators which guarantee to keep all chromosomes within the feasible solution
set. To ensure that the chromosomes are feasible, we have to check all the new chromosomes gen-
erated by genetic operators. We suggest that a function is designated for each target optimization
problem, the output value 1 means that the chromosome is feasible, 0 infeasible. For example,
we can make an objective function

Z(Q) = ∑n
i=1 Zi (Qi ) where Q = (Q1 , Q2 , . . . , Qn) and Q1, Q2, . . . , Qn are decision

variables.
subject to (gj (Q1 , Q2, . . . , Qn ) ≤ bj )

as follows:
for j = 1 to m do
if (gj (Q1 , Q2 , . . . , Qn ) ≤ bj )

continue;
else

return 0;
endfor

return 1

2.2. Notations and assumptions

The following notations are used in the proposed model:
n = number of items,
W = total storage area or volume available.

Parameters for the i-th item (i = 1, 2, . . ., n)

qi(t) = inventory level at any time t (decision variable),
Hi = inventory carrying cost per item per unit time,
Pi = selling price,
Ti = time length for each cycle,
C3i = set-up cost per cycle,
Qi = maximum inventory level,
Di = demand rate,
bi1, bi2 = first and second price break points of the i-th item respectively,
pi(= pi1, pi2, pi3) = unit purchasing price,
mi1, mi2 = discount rates (0 < mi1, mi2 < 1) for the i-th item,
wi = space required by one unit of i-th item,
Q∗

i = optimum value of Qi ,
Z(Q1, Q2, . . .Qn) = profit function.

The inventory model is developed under the following assumptions.

(i) Shortages are not allowed.
(ii) The replenishment is infinite.

(iii) The lead time is zero.
(iv) The selling price is fixed on the basis of purchasing cost. Let si fraction on the purchasing

cost be made as profit and then the selling price is fixed as

Pi = pi(1 + si), 0 ≤ si < 1 (1)
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International Journal of Computer Mathematics 1345

(v) Demand Di(qi) depends directly on the current inventory level and is of the form

Di(qi) = αi + βiqi

where αi, βi > 0 are called scale and shape parameters of the demand function.
(vi) Breakable units Bi(qi) is a known function of current inventory level and is of the form

Bi(qi) = aiq
γ i

i

where γi(0 < γi < 1) and ai(0 < ai < 0) are scale and shape parameters of the breakage
function.

(vii) The unit carrying cost Hi are xi percentage of the unit purchasing cost.
(viii) The purchasing price is offered under the following AUD scheme:

pi =

⎧⎪⎨
⎪⎩

$pi1, 0 < qi < bi1

$pi2, bi1 ≤ qi < bi2

$pi3, qi ≥ bi2

(2)

(ix) The purchasing price under IQD is:
The unit-purchasing price under IQD system is pi for 0 < qi < bi1, pi(1 − mi1) for

additional quantity over bi1 but less than bi2 and pi(1 − mi2) for any additional quantity
over bi2. Thus the total purchase cost becomes

piqi for qi < bi1

pibi1 + pi(1 − mi1)(qi − bi1) for bi1 ≤ qi < bi2 and

pibi1 + pi(1 − mi1)(bi2 − bi1) + pi(1 − mi2)(qi − bi2) for qi ≥ bi2

Therefore the general unit price becomes

pi1 = $pi, 0 < qi ≤ bi1

pi2 = $pi(1 − mi1) + pimi1bi1/qi, bi1 < qi ≤ bi2

pi3 = $pi(1 − mi2) + pi(mi2 − mi1)bi2/qi + pimi1bi1/qi, qi > bi2

(3)

For both systems, pi1 > pi2 > pi3 for i = 1, 2.

3. Mathematical formulation

With the above assumptions, for the i-th item the differential equation which describes the variation
of the inventory level qi(t) with respect to time t during the interval [0, Ti] is

dqi(t)

dt
= −Di(qi) − Bi(qi), 0 ≤ qi < Qi (4)

with the boundary conditions,

qi(t) =
{

Qi, at t = 0

0, at t = Ti

The time length for each cycle is

Ti =
∫ Ti

0
dt =

∫ Qi

0

dqi

Di(qi) + Bi(qi)
(5)

D
ow

nl
oa

de
d 

by
 [

In
di

an
 S

ta
tis

tic
al

 I
ns

tit
ut

e 
- 

K
ol

ka
ta

] 
at

 0
8:

17
 2

2 
Ja

nu
ar

y 
20

13
 



1346 A.K. Maiti and M. Maiti

Total holding cost for each cycle is HiGi(Qi) where

Gi(Qi) =
∫ Ti

0
qi(t)dt =

∫ Qi

0

qidqi

Di(qi) + Bi(qi)
(6)

The total damaged units per cycle is

θi(Qi) =
∫ Ti

0
Bi(qi)dt =

∫ Qi

0

Bi(qi)dqi

Di(qi) + Bi(qi)
(7)

The net revenue per cycle is

Ni(Qi) = sipi(Qi − θi(Qi)) − piθi(Qi) (8)

Hence, the average profit during Ti is given by

Z(Q) = Z(Q1, Q2, . . . , Qn) =
n∑

i=1

Zi(Qi) =
n∑

i=1

[Ni(Qi) − HiGi(Qi) − C3i]
Ti

(9)

subject to
n∑

i=1

wiQi ≤ W (10)

Now, the problem is to maximize the average profit function Z(Q1, Q2, . . . , Qn) and to find the
optimum value of Qi satisfying the constraint (10) and taking the price break (2) for AUD , price
break (3) for IQD and price breaks (2) and (3) for combined AUD and IQD systems into account.

4. Working procedure of GA with AUD, IQD, AUD and IQD

As mentioned in article 2. GA is developed as follows:

(a) Parameters

The different parameters on which this GA is developed are population size (POPSIZE), prob-
ability of crossover (Pc) , probability of mutation (Pm) and maximum number of generation
(MAXGEN). In this case, POPSIZE = 100, Pc = 0.3, Pm = 0.1 and MAXGEN = 5000.

(b) Representation

A n-dimensional real vector Q = (q1, q2, . . ., qn) is used to represent a solution where qi

represents optimum inventory: (decision variables) level for i-th item (i = 1, 2, . . ., n)

(c) Initialization

N such solutions Q1, Q2, . . ., QN are randomly generated by a random number generator such
that each solution satisfies the resource constraints of the problem.

(d) Fitness value

To evaluate the value of the objective function Z(Q) due to the potential solution Q =
(q1, q2, . . . , qn), purchase cost of qi is taken as pi1 per unit if 0 < qi < bi1, pi2 per unit if
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International Journal of Computer Mathematics 1347

bi1 ≤ qi < bi2 and pi3 per unit if qi ≥ bi2 for (i = 1, 2, . . . , n) (c.f. equations (2) and (3)).
Following this, holding costs for the items are also calculated.

(e) Selection process to create a new population

The following steps are followed for this purpose

(i) Find total fitness of the population F = ∑N
i=1 Z(Qi)

(ii) Calculate the probability of selection fi of each solution Qi by the formula fi = Z(Qi)/F .
(iii) Calculate the cumulative probability cpi for each solution Qi by the formula

cpi = ∑i
j=1 fj

(iv) Generate a random number ‘r’ in the range [0,1].
(v) If r < cp1 then select Q1 otherwise select Qi(2 ≤ i ≤ N) where cpi−1 ≤ r < cpi .

(vi) Repeat steps (iv) and (v) N times to select N solutions from the old population. Clearly one
solution may be selected more than once.

(vii) Selected solution set is denoted by P 1(T ) in the proposed GA algorithm.

(f) Crossover

(i) Selection for crossover: For each solution of P 1(T ), generate a random number r from the
range [0,1]. If r < Pc then the solution is taken for crossover, where Pc is the probability of
crossover.
(ii) Crossover process: Crossover takes place on the selected solutions. For each pair of coupled
solutions Y1, Y2 a random number c is generated from the range [0,1] and Y1, Y2 are replaced by
their offspring’sY11 andY21 respectively whereY11 = cY1 + (1 − c)Y2,Y21 = cY2 + (1 − c)Y1,
provided Y11, Y21 satisfied the constraints of the problem. Let the new set of solution be denoted
by P 11(T )

(g) Mutation

(i) Selection for mutation: For each solution of P 11(T ) generate a random number r from the
range [0,1]. If r < Pm then the solution is taken for mutation, where Pm is the probability of
mutation.
(ii) Mutation process: To mutate a solution Q = (q1, q2, . . ., qn), select a random integer r in the
range [1,n]. Then replace qr by randomly generated value within the boundary of rth component
of Q.

5. Logic structure for unit price and holding cost

The algorithm for price discount in the case of inventory system with two breakable items and
three price breaks is:

5.1. AUD scheme

If (q1 ≥ b12)
{
calculate revenue, holding cost and then average profit with p1 = p13

}
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1348 A.K. Maiti and M. Maiti

else if (q1 ≥ b11 and q1 < b12)
{
calculate revenue, holding cost and the average profit with p1 = p12

}
else

{
calculate revenue, holding cost and the average profit with p1 = p11

}

The above price structure is repeated for the 2nd item, q2

5.2. IQD scheme

For this system, the unit prices are given in (3) and after the calculation of the unit prices, the
same logic structure as mentioned in AUD is followed.

5.3. AUD and IQD scheme

Obviously, here AUD logic structure is used for the 1st item, say q1 and IQD structure for 2nd
item, say q2.

6. Numerical illustration

The following values of inventory parameters in Table 1 are used for AUD, IQD and combined
AUD and IQD systems to calculate optimum value of profit function Z(Qi) along with optimum
inventory level Qi by GA and results are presented in Tables 2–4. Here, the inventory model is
formulated for two items.

Table 1. Different parametric values for different systems: (input data).

Discount system i αi βi γi C3i ($) ai si xi (%) mi1(%) mi2(%)

AUD 1 45 0.25 0.75 50 0.3 0.3 4 – –
2 30 0.30 0.75 45 0.2 0.4 5 – –

IQD 1 45 0.25 0.75 50 0.3 0.3 4 0.18 0.20
2 30 0.30 0.75 45 0.2 0.4 5 0.20 0.10

AUD and IQD 1 45 0.25 0.75 50 0.3 0.3 4 – –
2 30 0.30 0.75 45 0.2 0.4 5 0.20 0.10

w1 = 2 sq mt., w2 = 3 sq. mt., W = 590 sq. mt.,

Table 2. Optimum values of ordered quantities, damaged units and
profit for different discount systems.

Discount system Q∗
1 Q∗

2 θ1 θ2 Z ($)

AUD 145.91 99.35 14.00 6.91 201.48
IQD 135.91 92.97 12.68 6.30 171.94
AUD and IQD 137.03 94.06 12.82 6.40 215.30
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Table 3. Optimum profit when βi varies in AUD, IQD, AUD and IQD systems.

(β1, β2) Q∗
1 Q∗

2 θ1 θ2 Ti Z ($)

AUD
(0.3, 0.35) 140.60 96.78 12.62 6.32 2.03 220.30
(0.35, 0.4) 142.34 97.25 12.21 6.07 1.96 239.38
(0.40, 0.45) 145.00 99.35 11.95 5.96 1.92 258.73
(0.45, 0.50) 145.90 99.00 11.52 5.68 1.85 276.34
(0.50, 0.55) 144.03 99.70 10.86 5.49 1.79 293.46

IQD
(0.3, 0.35) 126.28 86.59 10.88 5.44 1.88 186.92
(0.35, 0.4) 127.18 86.95 10.49 5.28 1.82 201.33
(0.40, 0.45) 129.58 89.05 10.29 5.16 1.78 215.83
(0.45, 0.50) 129.46 99.60 9.85 4.93 1.75 227.92
(0.50, 0.55) 129.01 88.64 9.42 4.73 1.66 242.93

AUD and IQD
(0.3, 0.35) 141.06 96.79 12.67 6.33 2.02 234.94
(0.35, 0.4) 142.04 100.15 12.18 6.30 1.99 253.28
(0.40, 0.45) 142.04 100.15 11.63 6.02 1.92 272.20
(0.45, 0.50) 140.83 98.30 11.00 5.62 1.83 290.38
(0.50, 0.55) 139.10 95.45 10.39 5.20 1.74 307.76

Table 4. Optimum profit when ai varies in AUD, IQD, AUD and IQD systems.

(β1, β2) Q∗
1 Q∗

2 θ1 θ2 Ti Z ($)

AUD
(0.3, 0.35) 137.48 94.25 14.77 7.88 2.03 179.90
(0.35, 0.40) 134.59 93.05 16.11 9.12 1.99 158.60
(0.4, 0.45) 130.00 89.19 16.98 9.86 1.92 138.71
(0.45, 0.50) 130.54 92.35 18.68 11.61 1.90 117.44
(0.50, 0.55) 128.00 87.69 19.68 11.97 1.83 98.61

IQD
(0.3, 0.35) 130.89 90.14 13.79 7.41 1.98 154.27
(0.35, 0.40) 132.70 91.62 15.79 8.93 1.96 135.98
(0.4, 0.45) 132.70 91.62 17.48 10.23 1.94 117.99
(0.45, 0.50) 133.00 89.53 19.17 11.14 1.93 99.14
(0.50, 0.55) 133.26 95.36 20.81 13.41 1.91 81.12

AUD and IQD
(0.3, 0.35) 134.59 93.05 14.34 7.74 2.02 193.15
(0.35, 0.40) 130.00 90.25 15.35 8.75 1.95 172.17
(0.4, 0.45) 130.80 90.95 17.13 10.13 1.93 150.69
(0.45, 0.50) 130.27 90.95 18.62 11.38 1.90 129.58
(0.50, 0.55) 132.16 89.92 20.57 12.39 1.87 107.72

6.1. AUD system

Let, for the 1st item

cp1 =

⎧⎪⎨
⎪⎩

$12.00, 0 < q1 < 100

$11.25, 100 ≤ q1 < 200

$10.00, q1 ≥ 200

For the 2nd item

cp2 =

⎧⎪⎨
⎪⎩

$13.00, 0 < q2 < 50

$12.00, 50 ≤ q2 < 100

$11.00, q2 ≥ 100
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For this price structure, the optimum values of the decision variables and the profit function are
evaluated by GA maximizing (9) with (10) and presented in Table 2.

6.2. IQD system

Following equation (3), the following unit prices are assumed.
For the 1st item

p11 = $10, 0 < q1 ≤ 50

p12 = $p11(1 − m11) + p11m11b11/q1, 50 < q1 ≤ 100

p13 = $p11(1 − m12) + p11(m12 − m11)b12/q1 + p11m11b11/q1, q1 > 100

For the 2nd item:

p21 = $13, 0 < q2 ≤ 40

p22 = $p21(1 − m21) + p21m21b21/q2, 40 < q2 ≤ 100

p23 = $p21(1 − m22) + p21(m22 − m21)b22/q2 + p21m21b21/q2, q2 > 100

For this price structure, maximizing (9) with (10) , the optimum values of the decision variables
and the maximum profit function are evaluated and presented in Table 2.

6.3. AUD and IQD system

Here, AUD scheme is allowed for the 1st item and IQD scheme for the 2nd item. Following the
price structure of equation (2) for AUD scheme and equation (3) for IQD scheme, we have
For the 1st item

p1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

$13.00, 0 < q1 < 40

$11.75, 40 ≤ q1 < 100

$10.75, q1 ≥ 100

For the 2nd item

p21 = $15, 0 < q2 ≤ 50

p22 = $p21(1 − m21) + p21m21b21/q2, 50 < q2 ≤ 100

p23 = $p21(1 − m22) + p21(m22 − m21)b22/q2 + p21m21b21/q2, q2 > 100

For this price structure, as before, the optimum values of the decision variables and the maximum
profit are calculated and presented in Table 2.

7. Sensitivity analysis

For the above-mentioned general models, two types of sensitivity analyses are performed. We
evaluate the effect of changes in the parameters ‘ai’ (the coefficient of damaged units) and ‘βi’
(the shape parameter of the demand function) on the average profit, taking these changes one at a
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Table 5. Optimum profit when γi varies in AUD system.

(γ1, γ2) Q∗
1 Q∗

2 θ1 θ2 Z ($)

(0.45, 0.45) 139.43 97.45 4.07 2.24 280.88
(0.50, 0.50) 139.43 97.45 4.91 2.70 273.67
(0.55, 0.55) 139.43 97.45 5.99 3.24 264.81
(0.60, 0.60) 139.43 97.45 7.32 3.89 253.64
(0.65, 0.65) 139.43 97.45 8.92 4.67 239.39
(0.70, 0.70) 145.23 98.98 11.46 5.73 222.20
(0.75, 0.75) 145.23 98.98 13.91 6.87 201.54

time and holding all other parameters at their optimal values. The results are presented graphically
for AUD, IQD and AUD and IQD systems.

(a) Effect of changing the shape parameter (βi) of demand function on total average profit:
Here, the assumed demand function is Di = αi + βiqi . Increasing βi by 0.05 successively, the

optimum order quantities and total average profit are calculated and presented in Table 3.
From Table 3, it is evident that the model is more sensitive to the shape parameters βi . It is

also observed that as βi increase, profit increases. When βi is increased by 20% for the AUD,
IQD and (AUD and IQD) systems, the profit is increased approximately by 8.66%, 7.7% and
7.8% respectively. As βi increase, obviously demand increases and to meet the increased demand,
either initial stock level has to be increased or the time period for each replenishment is reduced.
Here, it is observed that for increased demand, T ′

i s have been successively decreased as there is
only marginally change in Q∗

i ’s. Moreover, there is no specific trend of behaviour in Q∗
i ’s.

(b) Effect of changing the scale parameter (ai) of breakability function on total average profit:
Here, in each case, as expected, the increase in the co-efficient of damage function, ai decreases

the profit. When ai is changed by 20%, the profit goes down approximately by 11.84%, 11.85%
and 10.86% for AUD, IQD and (AUD and IQD) systems respectively. For all systems, the amount
of breakable items increases and this brings down the total profit. Here, the system by itself tries
to minimize the loss due to increased breakability by reducing the time periods for each cycle.
It is supported by the fact that for each discount system values of T ′

i s decrease successively. As
before, there is not much change and no specific trend in the values of Q∗

i ’s.
(c) Effect of changing the shape parameter (γi) of breakability function on total average profit:
From Table 5, it is seen that profit decreases with the increase of shape parameter of breakage

function. As the items are more damaged when γi increases. Similar phenomenons are observed
for the case of IQD and combination of these two.

8. Conclusion

In this paper, for the first time, a realistic multi-item inventory model with AUD, IQD and com-
bination of these two has been formulated with a resource constraint and successfully solved by
GA, the stochastic optimization process. Due to the complexities, till now, none has attempted
this type of multi-item problem with space constraint by conventional price-break methodology.
Though the model has been illustrated with only three price breaks, the GA developed here can
be easily extended to include more than the three price-break points. Some interesting results
relevant to this research paper have been presented in different discount forms. This model can
be extended to include the finite time horizon, variable demand, etc. This problem can also be
formulated in fuzzy, probabilistic and mixed environments.
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