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Building upon the Foundations of

Branching Space-Times

In this chapter we introduce a variety of events that are definable in BST and
discuss inwhich histories these events occur.Thiswill give rise to the concept
of the occurrence proposition for events of various kinds. We also hint at
how BST structures may be used to build semantic models for languages
with temporal and modal operators. In this way we provide the machinery
for our BST theories of causation and of propensities, and we prepare the
ground for a number of further applications.

Perhaps surprisingly, a large portion of this material is independent of the
choice between BST92 and BSTNF, so in Chapter 4.1 we remain in the com-
monBST framework.The situation changes oncewe discuss basic transitions
in Chapter 4.2, as these objects are sensitive to topology (which dictates the
pattern of branching) and need to be defined differently in the two frame-
works. We already introduced the notion of a transition in Chapter 3.4.4,
working in BST92. Here we will provide a number of additional definitions,
mostly for sets of transitions which will be used extensively in later chapters.
We also provide some details about basic transitions in BSTNF.

4.1 A variety of events and their occurrence propositions

Webeginwith the notion of a proposition. In linewith a prominent tradition,
propositions are identified with sets of histories:

Definition 4.1 (Basics of propositions). H is a proposition⇔df H ⊆ Hist. H
is defined as true or false in a history h according to whether or not h ∈ H . H
is consistent ⇔df H ̸= /0. H is universal ⇔df H = Hist, and H is contingent
⇔df H is consistent but not universal.
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We define the notion of a necessary and of a sufficient condition in the
standard way.1

Definition 4.2 (Necessary and sufficient conditions). For propositions X
and Y , we say that X is a sufficient condition for Y ⇔df X ⊆ Y ; we also say
that X implies Y , or that Y is a necessary condition for X .

Although BST starts with the meagre primitive notion of a point event, it
permits the introduction of a number of more complex event-like concepts.
We define these together with their respective occurrence propositions. We
start with initial and outcome events. The distinction is especially important
for the representation of indeterministic processes. Typically, such a process
can be conceived as containing an initial event and one of its multiple
possible outcomes. A radioactive particle’s decay or a measurement process
can serve as illustrations. Our definition below reflects the intuition that for
an initial event to have occurred, it needs to have come to an end. Thus, in
a measurement, before an outcome occurs, the whole measurement initial
event (e.g., the preparation of the apparatus in the ‘ready’ state) needs to
have come to completion. In contrast, for an outcome to occur it is enough
that it has just begun: to say that a particle has decayed, we need to witness
just some arbitrarily small part of the world after the decay. Although the
intuition is perhaps not crystal clear, the definitions below turn out to be
fruitful in many later developments.

Definition 4.3 (Initial and outcome events and occurrence propositions).

1. I is an initial event ⇔df I is a consistent nonempty set of point events
(i.e., a set of point events all ofwhich aremembers of someone history).
The occurrence proposition for I is H[I] =df {h ∈ Hist | I ⊆ h}. Equiv-
alently, H[I] =

∩
e∈I He.

2. O is an outcome chain⇔df O is a non-empty and lower-bounded chain.
The occurrence proposition for O is H⟨O⟩ =df {h ∈ Hist | h∩O ̸= /0}.

3. Ô is a scattered outcome event ⇔df Ô is a set of outcome chains all of
which overlap some one history (i.e., there is one history that contains
an initial segment of each of the chains).
The occurrence proposition for Ô is H⟨Ô⟩ =df

∩
O∈Ô H⟨O⟩.

1 As we proceed to develop the BST account of causation in Chapter 6, we will need the related
notion of a non-redundant part of a sufficient condition for a proposition. As it will turn out,
however, this notion is subtle and not univocal. We will therefore discuss it only after we develop the
framework within which this subtlety plays a role.
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4. Ŏ is a disjunctive outcome event⇔df Ŏ is a set of pairwise incompatible
scattered outcomes (a set of sets of sets), where ‘pairwise incompatible’
means that for any Ô1, Ô2 ∈ Ŏ, if Ô1 ̸= Ô2, then H⟨Ô1⟩∩H⟨Ô2⟩ = /0.
The occurrence proposition for Ŏ is H⟨Ŏ⟩ =df

∪
Ô∈Ŏ H⟨Ô⟩.

According to this definition, there is a hierarchy of outcome events,
which differ in their complexity. Starting with an outcome chain, it is a
part of a world-line that is bounded from below. A scattered outcome is
a more complex spatiotemporal affair. A given result, say ‘side 1 up’, 1 ,
of a particular rolling of a die, is a scattered outcome. That outcome is
composed of a huge number of lower bounded segments of the world-
lines of the particles involved. It does not matter that, realistically speaking,
no single history will contain sizable segments of all these world-lines. To
constitute a scattered outcome, however, there should be at least one history
in which all these segments begin. Next in the hierarchy come disjunctive
outcomes, which are more complex, as they combine different possibilities.
As an illustration, consider a set of two possible results of a particular rolling
of a die, say { 1 , 3 }. Clearly, this disjunctive outcome occurs if 1 occurs
or 3 occurs. Thus, a disjunctive outcome, in contrast to an outcome chain
and a scattered outcome, can be realized in a number of different ways, as
its elements belong to alternative possibilities. We thus say that disjunctive
outcomes are multiply realizable. To return to our die, note that the set of all
possible results of rolling the die, { 1 , 2 , . . . , 6 }, counts as a disjunctive
outcome as well. This disjunctive outcome has the peculiar feature that it is
bound to occur once the rolling of the die occurs. Later, we will capture such
cases via the concept of a deterministic transition to a disjunctive outcome:
although theworld is as indeterministic as you like, a deterministic transition
to the disjunctive outcome including all possible outcomes is bound to occur
once the initial event has occurred.

One may wonder what the initial of a particular process of rolling a die
consists of. To describe a concrete happening: you put a particular die in a
dice cup, give it a shake, and roll it onto a flat surface. That complex affair
needs to be over before a particular result shows up. As this example makes
clear, an initial event I may be extended in space and time—there are no
restrictions except for consistency. As I ⊆ h for some history h, H[I] ̸= /0. In
a similar vein, occurrence propositions for outcomes are never the empty
set. Since a chain O is a directed subset of W , it can be extended to a full
history, hence O ⊆ h for some h ∈ Hist, and thus H⟨O⟩ is non-empty. With
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this observation it is easy to see that H⟨Ô⟩ and H⟨Ŏ⟩ are non-empty as well,
and thus consistent in the sense of Def. 4.1.

We next turn to transition events, to be understood as a liberalized notion
of change. Following von Wright (1963), we take it that a transition is of
the form “something and then something”, but not necessarily “…something
else”. “Then” has to be spelled out to mean that the beginning of a transition
is appropriately below its final part. We insist, moreover, that the parts of a
transition are categorically different: its beginning is to be an initial event,
while its final part—an outcome event.

A paradigm example of a transition event is a choice. Before the choice
there is no choice, and after the choice there is no choice. So when is the
choice? Bad question: a choice, like any transition event, has no ‘simple
location’ (Whitehead, 1925, Ch. 3). You can locate its initial in the causal
order, and you can locate its outcome in the causal order; and having done
that, you have done all that you can do. When a choice is made, something
happens, but ‘when’ it happens can only be described by giving separate
‘whens’ to its initial and to its outcome. Exactly the same holds for any other
transition event. (This thought will be applied to measurements in quantum
mechanics in Chapter 8.)

In what follows, we will use a generic notation for outcomes to define
transitions: we will write O∗ for an outcome event from Definition 4.3, that
is, an outcome chain O, a scattered outcome Ô, or a disjunctive outcome Ŏ.
We obtain thus three kinds of transitions; we refer to them all by the generic
notation, I � O∗. Clearly, a singleton {e} of a point event is an initial. We
simplify the unwieldy {e}� O∗ as e � O∗.

In Chapter 3.4.4 we already introduced a basic transition in BST92 as a pair
⟨e,H⟩ with H ∈ Πe, written e � H . In this representation, one element of a
transition is an event and the other is a proposition. In contexts in which the
spatio-temporal location of outcome events is irrelevant, we will often use
such a “quasi-propositional notation”, writing e � H⟨O⟩ instead of e � O,
and analogously for transitions to scattered outcomes and to disjunctive
outcomes. While such hybrid objects are often handy, it is also natural to
represent transitions in terms of events only, as in the following definition.
It will turn out that for basic transitions, both representations are equivalent;
see Fact 4.3 in Chapter 4.2. Here is how we spell out that the initial of a
transition of one of the kinds we consider is appropriately below the outcome:
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Definition 4.4 (Transition events). For I and O∗ an initial event and a
generic outcome event, respectively, a transition is the pair ⟨I,O∗⟩, written
I � O∗, where I is appropriately below O∗, I <i O∗. “Appropriately below”
is defined as follows:

e <1 O ⇔df ∀e′[e′ ∈ O → e < e′]

I <2 O ⇔df ∀e[e ∈ I → e <1 O]

e <3 Ô ⇔df ∃O[O ∈ Ô∧ e <1 O]

I <4 Ô ⇔df ∀e[e ∈ I → e <3 Ô]

e <5 Ŏ ⇔df ∀Ô[Ô ∈ Ŏ → e <3 Ô]

I <6 Ŏ ⇔df ∀e[e ∈ I → e <5 Ŏ].

A welcome consequence of our definitions is that for any transition I �O∗,
the occurrence of the initial is a necessary condition for the occurrence of
the outcome:

Fact 4.1. For a generic transition I � O∗, H⟨O∗⟩ ⊆ H[I].

Proof. We consider the six cases of Def. 4.4 in turn. (1) Since histories are
downward closed, e<1 O impliesH⟨O⟩⊆He. (2) I <2 O implies that for every
e ∈ I: H⟨O⟩ ⊆ He, and hence H⟨O⟩ ⊆

∩
e∈I He = H[I]. (3) Next, e <3 Ô implies

H⟨O⟩ ⊆ He for some O ∈ Ô, and hence H⟨Ô⟩ =
∩

O∈Ô H⟨O⟩ ⊆ He. (4) For I <4

Ô, since H⟨Ô⟩ ⊆ He for every e ∈ I, we get H⟨Ô⟩ ⊆
∩

e∈I He = H[I]. (5) And, if
e <5 Ŏ, then for all Ô ∈ Ŏ: H⟨Ô⟩ ⊆ He, and hence H⟨Ŏ⟩ =

∪
Ô∈Ŏ H⟨Ô⟩ ⊆ He;

thus, (6) for I <6 Ŏ we have H⟨Ŏ⟩ ⊆ He for every e ∈ I, which entails H⟨Ŏ⟩ ⊆∩
e∈I He = H[I].

A transition event, like any event, can occur or not occur. What, then, is
the occurrence proposition for a transition event? A good guess would be
that it should be an and then proposition: first the initial occurs, and then
the outcome occurs. It turns out, however, that in BST, it is more appropriate
to take the occurrence proposition for a transition event to be the material
implication: if the initial occurs, then the outcome occurs.

Definition 4.5. Let I �O∗ be a transition event of one of the types allowed
by Definition 4.4, and let H[I] and HO∗ be the occurrence propositions
defined for I and O∗ respectively. Then HI�O∗ ⇔df (Hist \H[I])∪HO∗ is
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the occurrence proposition for I � O∗, true in h iff h ∈ HI�O∗ , hence iff, if
h ∈ H[I], then h ∈ HO∗ .

The final ‘if – then’ must be truth-functional. Usually, in ordinary lan-
guage applications, the negation of a material implication ‘if A then B’
seems wrong; this is of course one of the motivations for various theories
of counterfactual conditionals, to say nothing of relevance logic. Here,
however, there is a better fit: for the transition I �O∗ not to occur is for the
initial to occur and then for some other outcome of I to occur instead. It is not
merely for the outcome O∗ not to occur. The non-occurrence proposition
of O∗ is simply Hist \ HO∗ ; the non-occurrence of the transition I � O∗

is more specific. For instance, if you understand a particular choice as a
transition from a particular occasion of indecision to a settled state of having
selected the tuna sandwich, then for that transition event not to occur is
for the chooser to have chosen otherwise from that very same occasion of
indecision. For the non-occurrence of the transition event, it does not suffice
that the chooser was never born—although that would certainly be sufficient
for the non-occurrence of the tuna-selection outcome. Furthermore, we
naturally say that a transition I � O∗ is (historically) ‘noncontingent’ when
the initial already deterministically guarantees the outcome; that is, when
H⟨O∗⟩ is not merely a subset of H[I] (as must always be the case, see Fact 4.1),
but identical to H[I]. In that case, the transition-event occurrence proposition
rightly turns out to be the universal proposition: (Hist \ H[I]) ∪ H⟨O∗⟩ =

(Hist\H⟨O∗⟩)∪H⟨O∗⟩ = Hist, which signals historical noncontingency. One
should not be deeply interested in transition events whose occurrence in h
is merely a matter of the initial not occurring in h, and so it is good to mark
this by saying that the transition event occurs vacuously in h if h ̸∈ H[I].

As we mentioned earlier, there are deterministic (historically non-
contingent) transitions to disjunctive outcomes even in an indeterministic
context. To return to our example of die casting, the set of all possible results,
Ŏ =df { 1 , 2 . . . 6 }, of a particular act of die casting is the exhaustive
disjunctive outcome. (We exclude weird cases, such as the die landing on its
edge.) The particular act of casting the die is an initial event I. Given their
location, I and Ŏ form the transition I � Ŏ. By Fact 4.1, we have H⟨Ŏ⟩ ⊆H[I],
and by exhaustiveness, H[I] ⊆ H⟨Ŏ⟩, i.e., H[I] = H⟨Ŏ⟩, which means that if I

occurs, so does Ŏ. Moreover, by Definition 4.5, I � Ŏ occurs in every
history, as HI�Ŏ = (Hist\H[I])∪H⟨Ŏ⟩ = (Hist\H[I])∪H[I] = Hist.
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For the record, here we define transitions to deterministic disjunctive
outcomes:

Definition 4.6. Let I be an initial event, Γ some index set, |Γ| > 1. We
call 1I = {Ôγ | γ ∈ Γ} a deterministic disjunctive outcome of I iff (1) each
Ôγ is above I in the sense of Def. 4.4, (2) for γ,γ ′ ∈ Γ, H⟨Ôγ ⟩ ∩H⟨Ôγ ′ ⟩

= /0

if γ ̸= γ ′, and (3)
∪

γ∈Γ H⟨Ôγ ⟩ = H[I]. We call I � 1I a transition to a
deterministic disjunctive outcome.

By this definition, if I occurs, some Ôγ occurs, and hence 1I occurs as
well. Despite indeterminism, witnessed by multiple transitions to different
scattered outcomes, I � 1I is a deterministic transition.

We end this section by noting the following simple relations between the
occurrence propositions of different types of transitions:

Fact 4.2. (1) HI�Ô =
∩

O∈Ô HI�O. (2) HI�Ŏ =
∪

Ô∈Ŏ HI�Ô.

Proof. (1) This follows by Def. 4.3(3), noting that (Hist\H[I])∩H⟨O⟩ = /0 by
Fact 4.1. (2) Observe that (Hist \H[I])∪

∪
Ô∈Ŏ H⟨Ô⟩ =

∪
Ô∈Ŏ((Hist \H[I])∪

H⟨Ô⟩).

4.2 Basic transitions

In this section we develop further the theory of basic transitions that we
started in Chapter 3.4.4. Our discussion in Chapter 4.1 has been phrased
in the framework of common BST structures, but basic transitions look dif-
ferent in BST92 and BSTNF, as they are sensitive to the topology of branching.
Moreover, the proof of the interchangeability of two representations of basic
transition below (Fact 4.3) appeals to the prior choice principle, whichworks
differently in BST92 than in BSTNF. So in this section we cannot work in the
common BST framework. In line with our general approach of working with
BST92 in the main text in cases where the choice matters, we will discuss
basic transitions in BST92 structures. We will, however, also provide some
details that lead to the definition of two representations of basic transitions
in BSTNF (see Chapter 4.2.2).

4.2.1 Basic transitions in BST92

Basic transitions are the irreducible local elements of indeterminism in a
BST92 structure, consisting of a point event e and one of its immediate
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possible outcomes. We introduce two alternative views of basic transitions
in BST92, based on the observation that the outcome of a basic transition can
be represented in either of two (equivalent) ways: as a proposition defined
in terms of undividedness, or as a scattered outcome event consisting of
outcome chains all of which begin immediately after e:

1. In Chapter 3.4.4, we introduced a basic transition as a transition from
a single point event e to one of its elementary possibilities understood
propositionally. The outcome of a basic transition is then a proposition
H ∈ Πe, where Πe is the partition of the set of histories containing e,
He, induced by the equivalence relation of undividedness-at-e,≡e. We
write e � H for a basic transition, so understood.

2. In line with Def. 4.4, we can understand a basic transition as a tran-
sition from an initial point event e to a particular scattered outcome
event Ô that we call an immediate (basic scattered) outcome of e. What
makes the scattered outcome event Ô an immediate outcome of e is that
for every outcome chain O ∈ Ô, infO = e and e ̸∈ O. There are many
such chains. In the definition below, we consider maximal chains, and
we divide them up to form a particular scattered outcome event via a
given history, as follows:

Definition 4.7 (Basic scattered outcomes of e). Let h ∈ Hist, and let e ∈ h.
We define Ωe⟨h⟩ =df {O | O is a chain maximal with respect to infO =

e ∧ e ̸∈ O ∧ h ∩ O ̸= /0}. Ωe =df {Ωe⟨h⟩ | h ∈ He}. Each member Ωe⟨h⟩
of Ωe is a basic scattered outcome of e.

The members of Ωe⟨h⟩ evidently begin in the immediate future of e, so
that between e and members of Ωe⟨h⟩ there is no room for influences from
the past. Since Ωe⟨h⟩ is a scattered outcome event, which can occur or not
occur, H⟨Ωe⟨h⟩⟩ makes sense as a proposition. That proposition equals the
propositional basic outcome of e determined by h:

Fact 4.3 (Interchangeability of Ωe⟨h⟩ and Πe⟨h⟩). Theoccurrence proposition
H⟨Ωe⟨h⟩⟩ for Ωe⟨h⟩ is the same proposition as Πe⟨h⟩.

Proof. Let h′ ∈ H⟨Ωe⟨h⟩⟩. This implies that every O ∈ Ωe⟨h⟩ intersects non-
emptily with h′, O∩h′ ̸= /0. Since O ∈ Ωe⟨h⟩, we get O∩h ̸= /0 as well. Since
infO = e and e ̸∈ O, there is some e′ ∈ h∩ h′ such that e < e′, so we have
h ≡e h′, hence h′ ∈ Πe⟨h⟩.
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In the opposite direction, let h′ ∈ Πe⟨h⟩ and suppose for reductio that
h′ ̸∈H⟨Ωe⟨h⟩⟩, which implies that for some O∈Ωe⟨h⟩, h′∩O= /0. Hence there
would be an initial segment O′ of O such that O′ ⊆ h\h′. Since e = infO =

infO′ , by PCP92 we have that for some c < O′: h ⊥c h′. This contradicts
h ≡e h′, as c 6 e by the definition of the infimum.

Occurrence propositions do not in general determine outcome events.
For the special outcome events of the form Ωe⟨h⟩, however, when we are
not only given the proposition but also e, we can recover the event from the
proposition:

Fact 4.4. Let e ∈ W , and let h1,h2 ∈ He. We have H⟨Ωe⟨h1⟩⟩ = H⟨Ωe⟨h2⟩⟩ iff
Ωe⟨h1⟩= Ωe⟨h2⟩.

Proof. The direction from right to left is trivial. For the other direction,
assume that H⟨Ωe⟨h1⟩⟩ = H⟨Ωe⟨h2⟩⟩. By Fact 4.3, H⟨Ωe⟨hi⟩⟩ = Πe⟨hi⟩ (i = 1,2),
so in particular, h1 ≡e h2. Now assume for reductio that there is O ∈ Ωe⟨h1⟩
while O ̸∈Ωe⟨h2⟩ (the case with h1 and h2 reversed is exactly analogous). Let
h ∈ Hist be such that O ⊆ h. By Def. 4.7, O ∈ Ωe⟨h1⟩ implies that O∩h1 ̸= /0,
and as e < O, we have h ≡e h1. By transitivity of ≡e, h ≡e h2 as well. On the
other hand, O ̸∈ Ωe⟨h2⟩ implies that O ⊆ h \ h2, so that by PCP92, there is
c < O for which h ⊥c h2. As c 6 e by infO = e, this contradicts h ≡e h2.

So there is a natural one-to-one correspondence between the set of basic
scattered outcomes Ωe of e and the set of basic propositional outcomes Πe

of e.2 As a further consequence of Fact 4.3, in the same way in which Πe

partitions the set He of histories containing e, Ωe partitions the future of
possibilities of e:

Fact 4.5. Let e ∈W , and let Fe =df {e′ ∈W | e < e′}.ThenΩe is a partition of
Fe: (1) the union of all the chains that make up all the basic scattered outcomes
of e cover the whole future of possibilities of e, i.e.,

∪∪
Ωe = Fe, and (2) the

basic scattered outcomes of e do not overlap, i.e., for Ô1, Ô2 ∈ Ωe, if Ô1 ̸= Ô2,
then Ô1 ∩ Ô2 = /0.

2 It by nomeans follows that for two different e1 and e2, if H⟨Ωe1 ⟨h1⟩⟩ = H⟨Ωe2 ⟨h2⟩⟩, then Ωe1 ⟨h1⟩=
Ωe2 ⟨h2⟩. You must hold e constant.
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Proof. If e is amaximal element ofW , there is nothing to prove. Sowe assume
that e is not maximal.

(1) “⊆”: Let e′ ∈
∪∪

Ωe, i.e., e′ ∈
∪

Ωe⟨h⟩ for some h ∈ He. As Ωe⟨h⟩ is
a set of outcome chains, there must be some outcome chain O ∈ Ωe⟨h⟩ for
which e′ ∈ O. By Def. 4.7, e < O, so that e < e′, i.e., e′ ∈ Fe.

“⊇”: Let e′ ∈ Fe, i.e., e < e′. The set {e,e′} can be extended to a maximal
chain l that begins at e and contains e′. As l is directed, there is a history h⊇ l.
Now by Fact 3.3, O =df l\{e} is an outcome chain with infimum e, so that
by Def. 4.7, O ∈ Ωe⟨h⟩. As e′ ∈ O, this means e′ ∈

∪
Ωe⟨h⟩, i.e., e′ ∈

∪∪
Ωe.

(2) Let Ôi = Ωe⟨hi⟩ (i = 1,2), and assume that Ô1 ̸= Ô2. By Fact 4.4
and 4.3, this implies Πe⟨h1⟩ ̸= Πe⟨h2⟩. Assume for reductio that there is
some outcome chain O with infimum e for which O ∈ Ô1∩ Ô2, and let h be a
history containing O.Then, as in the proof of Fact 4.4, we have h1 ≡e h≡e h2,
which contradicts Πe⟨h1⟩ ̸= Πe⟨h2⟩.

The results above show that it makes sense to extend Def. 3.9 and to
define two varieties of basic transitions, Πe-based and Ωe-based, which are
equivalent:

Definition 4.8 (Basic transitions in BST92). For e ∈ h, e � Ωe⟨h⟩ is a basic
transition event, and e � Πe⟨h⟩ is a basic propositional transition. Both
e � Ωe⟨h⟩ and e � Πe⟨h⟩ may be called basic transitions.

Fact 4.6. Let e ∈ W and h ∈ He. The basic transitions e � Ωe⟨h⟩ and
e � Πe⟨h⟩ are equivalent in the sense of having the same occurrence proposi-
tion, i.e.,

He�Ωe⟨h⟩ = He�Πe⟨h⟩.

Proof. Obviously e � Ωe⟨h⟩ and e � Πe⟨h⟩ have the same initials, and
therefore Fact 4.3 implies that

(Hist\He)∪H⟨Ωe⟨h⟩⟩ = (Hist\He)∪Πe⟨h⟩.

We can extend the outcome selection notation for propositions given a
history, Πe⟨h⟩, to point events and to outcome chains: Given some initial e1,
an outcome H ∈ Πe1 of e1 is not just uniquely determined by some h ∈ He1

(which motivates the notation Πe1⟨h⟩), but also by any later event e2 in the
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future of possibilities of e1, or by any outcome chain O for which e1 < O.
Therefore, we can introduce the notation “Πe1⟨e2⟩” and “Πe1⟨O⟩”:

Fact 4.7. (1) Let e1 < e2. Then there is exactly one basic outcome of e1 that is
compatible with e2, which we denote byΠe1⟨e2⟩. (2) Let e1 <O for an outcome
chain O. Then there is exactly one basic outcome of e1 that is compatible with
O, which we denote by Πe1⟨O⟩. (3) Let e < O, h1 ⊥e h2, and h2 ∈ H⟨O⟩. Then
h1 ⊥e H⟨O⟩.

Proof. (1) Let h ∈ He2 . By the downward closure of histories, e1 ∈ h, so that h
determines the element Πe1⟨h⟩ of the partition Πe1 of He1 . And for any h′ ∈
He2 , we have h ≡e1 h′, as witnessed by e2 ∈ h∩h′. So we can set Πe1⟨e2⟩=df

Πe1⟨h⟩.
The proof for (2) is exactly parallel, and is left as Exercise 4.2.
For (3), as e < O, for all h,h′ ∈ H⟨O⟩, we have h ≡e h′. The claim follows

from the transitivity of ≡e on the set He.

A similar construction for extending the notation Ωe1⟨h⟩ for basic scat-
tered outcomes to Ωe1⟨e2⟩ and Ωe1⟨O⟩ is left as Exercise 4.3.

In order to extend our results to disjunctive outcomes, we first need to
extend our propositional notation somewhat. In analogy with the notation
Ŏ for disjunctive outcome events, we write H̆ for disjunctive propositional
events. Typically, such disjunctive outcomes should have at least two ele-
ments. For technical reasons (see Chapter 6.4), it is useful to bemore general
and allow for one-element disjunctions as well, so that in the following, we
only require that the disjunction be non-empty.

Definition 4.9. Let e ∈W . A basic disjunctive outcome event of e, generically
written Ŏ, is any non-empty subset of Ωe (i.e., a set of some basic scattered
outcome events of e). A basic propositional disjunctive outcome of e, gener-
ically written H̆, is any non-empty subset of Πe, (i.e., a set of some basic
propositional outcomes of e). The occurrence proposition for H̆ is

HH̆ =df
∪

H̆.

Given this definition, H̆ occurs in precisely those histories in which one
of its members (one of the disjuncts) occurs. In full analogy with Def. 4.5,
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the occurrence proposition for the transition from e to a basic propositional
disjunctive outcome H̆ is

He�H̆ =df (Hist\He)∪HH̆.

If e is an indeterministic event, both Πe and Ωe are disjunctive outcomes of
e, but their occurrence propositions exhaust all of He, and, accordingly, the
occurrence propositions of the respective transitions from e are universal:

Fact 4.8. Let e ∈W . Then HΠe = H⟨Ωe⟩ = He, and He�Πe = He�Ωe = Hist.

Proof. Let h ∈ He, then h ∈ Πe⟨h⟩, and so h ∈ HΠe . In the other direction,
let h ∈ HΠe , so that h ∈ Πe⟨h′⟩ for some h′ ∈ He, which implies h ∈ He.
The claim for H⟨Ωe⟩ follows by Fact 4.3, and the claim about the occurrence
propositions of the respective transitions is an immediate consequence of
the definitions.

In a somewhat idealized fashion, we can represent the die rolling example
from the end of Chapter 4.1 as follows: the rolling of the die corresponds
to a point event e with six immediate basic scattered outcome events,
Ôi = Ωe⟨hi⟩ = i , i = 1, . . . ,6. Exhaustiveness then means that Ωe = {Ôi |
i = 1, . . . ,6}. In this representation, it is immediately clear that e � Ωe is a
deterministic transition to a disjunctive outcome, as He = H⟨Ωe⟩.

By Fact 4.3, the equivalence between basic disjunctive and basic proposi-
tional disjunctive outcomes also holds in non-extremal cases. We therefore
have two equivalent representations of basic outcomes, single or disjunctive,
and consequently, of basic transitions: in terms of propositions or sets of
propositions (Πe⟨h⟩ or H̆) and in terms of scattered outcomes or disjunctive
outcomes (Ωe⟨h⟩ or Ŏ). We will use these two equivalent representations
almost interchangeably, mostly giving preference to the propositional ver-
sion in proofs and theorems. The chief place in which we rely on the inter-
change is in the idea of a causa causans, which will be discussed extensively
in Chapter 6.

In Chapter 4.3, we will discuss sets of transitions. With a view to that
discussion, a note of caution may be useful: transitions to disjunctive out-
comes are not equivalent to sets of transitions to the disjuncts. Take, for
example, some indeterministic e ∈W and two H1,H2 ∈ Πe, H1 ̸= H2. Then
e � {H1,H2} is a transition to a basic disjunctive outcome of e, and that
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outcome occurs on H{H1,H2} = H1 ∪H2. On the other hand, {e � H1,e �
H2} is a set of two transitions that are incompatible local alternatives and
which, therefore, cannot occur together.

4.2.2 A note on basic transitions in BSTNF

We end this section with an observation concerning basic transitions in the
BSTNF framework. Recall that byDef. 3.12, Hë =

∪
e∈ë He. Read proposition-

ally, the occurrence proposition for a choice set ë is therefore Hë =H[Pe] (see
Theorem 3.1). Since in a BSTNF structure there is a minimal element in the
difference of any two histories, an element of a choice set uniquely singles out
a choice. It is therefore tempting to identify a BSTNF basic transition simply
with an element of a choice set, c ∈ c̈, where trivial choice sets c̈ = {c}would
obviously be allowed as well and would give rise to trivial basic transitions.
Thus, in this proposal, any point event of Our World counts as a transition.
Care is, however, needed when passing to propositional basic outcomes,
since the set Hc of histories by itself carries no information about the relation
of c to other point events of the structure. That is, there will generally also be
point events e ̸= c for which Hc =He. To avoid ambiguity, we could associate
the history set He with the point event e, and take the propositional basic
transition corresponding to e to be the pair of e and He, which we could
write e � He.

That is still troublesome, however, as the occurrence proposition of e �
He is universal. Recall that via Def. 4.5, we opted for an implication-like
reading of occurrence propositions for transitions. But if e occurs, then He

occurs as well. So He�He = Hist, providing no information at all.
To resolve this difficulty, we take as the initial not e, but the choice set ë,

which is still weakly before e in the sense that e ∈ ë. We define two kinds of
BSTNF basic transitions in analogy to the BST92 case, as follows:

Definition 4.10 (Basic transitions in BSTNF). For ⟨W,<⟩ a BSTNF structure
and for e ∈W , any pair ⟨ë,e⟩with e ∈ ë, written as ë � e, is a basic transition
event. The pair ⟨ë,He⟩, written as ë � He, is a basic propositional transition.
Both ë � e and ë � He are called basic transitions in BSTNF.

Basic transition events are ordered by (ë1 � e1)≺ (ë2 � e2) iff e1 < e2,
and basic propositional transitions are ordered by (ë1 � He1)≺ (ë2 � He2)

iff e1 < e2.
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The occurrence proposition for a basic transition ë � e (as well as for a
basic propositional transition ë � He) is (Hist\Hë)∪He, which provides an
analogon of Fact 4.3 about the interchangeability of basic transition events
and basic propositional transitions in BSTNF.

Note that unless ë = {e} (i.e., ë � e is deterministic), the occurrence
proposition of ë � e, (Hist \ Hë)∪ He, is contingent, not universal. And
clearly, the ordering ≺ of basic transitions is a strict partial ordering.

It turns out that a fact analogous to Fact 4.7 also holds for basic transitions
in BSTNF:

Fact 4.9. (1) Let e1 < e2. Then there is exactly one basic outcome of ë1 that
is compatible with e2. We write the corresponding basic transition as ë1 �
Πë1⟨e2⟩. (2) Let e1 < O for an outcome chain O. Then there is exactly one
basic outcome of ë1 that is compatible with O, which we denote by Πë1⟨O⟩. (3)
Let e < O, h1 ⊥ë h2, and h2 ∈ H⟨O⟩. Then for every h ∈ H⟨O⟩: h1 ⊥ë h.

Proof. (1) Since He2 ∩He1 = He2 ̸= /0, e2 and ë1 � e1 are compatible: their
occurrence propositions intersect non-emptily. Since distinct elements of ë1

must be incompatible and histories are downward closed, no other basic
transition from ë1 is compatible with e2. We have Πë1⟨e2⟩ = He1 . (2) and
(3) The arguments for these claims are analogous to the one just given.

4.3 Sets of basic transitions

In later chapters we will continue to employ a dual view of transitions
as either BST events of a spatio-temporal-modal kind, as introduced via
Def. 4.4, or as proposition-like objects as discussed in Chapter 4.2 (see
Def. 4.8). In the latter approach, the notion of a basic transition is best gener-
alized via sets of basic transitions. We introduce a number of relevant notions
here, retaining the BST92 framework for concreteness. Our definitions easily
transfer to the BSTNF framework.

As stated in Chapter 3.4.4 (Def. 3.9), there are two kinds of basic tran-
sitions, deterministic and indeterministic ones. Deterministic basic transi-
tions are trivial, from a deterministic point event e (a point event that is
not a choice point) to the only immediate outcome of e; indeterministic
transitions are from an indeterministic point event (a choice point) e to
one of the several immediate outcomes of e. For some applications, it is
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useful to look at all transitions, deterministic and indeterministic alike—
and this approach was taken to define BSTNF in Chapter 3.5. In many other
contexts, however, it is most useful to disregard the trivial deterministic
transitions, and to focus exclusively on indeterministic ones.This is the route
we will follow in our discussion of modal funny business (Chapter 5), of
causation (Chapter 6), of probabilities (Chapter 7), and inmany applications.
Accordingly, we develop our notation here with a view to later uses of sets
of indeterministic transitions.

Working in terms of propositions, an indeterministic basic transition is of
the form

τ = e � H, where e ∈W , H ∈ Πe, and Πe ̸= {He},

where the last clause implies that e, and thereby τ , is indeed indeterministic.
In order to be able to identify initials and outcomes easily, we often write sets
of such non-trivial basic transitions as

T = {τγ = eγ � Hγ | γ ∈ Γ}, where Γ is some index set.

Here are some pertinent definitions.

Definition 4.11 (Notation for sets of transitions). Let ⟨W,<⟩ be a BST92
structure.

• We denote the set of all basic indeterministic transitions in W by
TR(W ), as already announced on p. 59.

• For h ∈ Hist(W ), we write TR(h) for those basic indeterministic tran-
sitions that occur non-vacuously in h. That is, we have

TR(h) =df {τ = e � H ∈ TR(W ) | h ∈ H}.

• We write H(T ) for the set of histories admitted by the outcomes of a set
of transitions T . That is, for T = {τγ = eγ � Hγ | γ ∈ Γ} (where Γ is
some index set), we set

H(T ) =df
∩
γ∈Γ

Hγ .

We extend this notation to single transitions, writing H(τ) in place of
H({τ}). That is, for τ = e � H , we have H(τ) = H .



92 branching space-times

Given that H(T ) is a set of histories (i.e., a proposition), the notion of
consistency of Def. 4.1 naturally applies. We extend that notion to sets of
transitions in the obvious way:

Definition 4.12 (Consistency of a set of transitions). We call a set of
transitions T consistent iff H(T ) is consistent (i.e., iff H(T ) ̸= /0). A consistent
set of transitions thus admits at least one history. If H(T ) = /0, we call T
inconsistent.

The above notation, as well as Def. 4.12, naturally extends to sets of
transitions in BSTNF.

4.4 Topological aspects of BST

In the following section we describe the natural topology for common BST
structures, and we comment on some of the topological features of BST92
and of BSTNF. To recall, a topology on a set X is given by specifying a family
of subsets of X , known as “open sets”, that is closed under finite intersection
and arbitrary union, and which contains X as well as the empty set. (See, e.g.,
Munkres, 2000, for an overview.)

4.4.1 General idea of the diamond topology

BST admits a natural topology, introduced by Paul Bartha,3 which we call
the diamond topology. The topology is defined either for W , the base set of
a BST structure, or for a given history h ∈ Hist(W ). In the definitions below,
MC(e) stands for the set of maximal chains in W that contain e, whereas
MCh(e) stands for the set of maximal chains in history h that contain e.

Definition 4.13 (Diamond topology T on W ). Z is an open subset of W ,
Z ∈ T , iff Z = W or for every e ∈ Z and for every t ∈ MC(e), there are
e1,e2 ∈ t such that e1 < e < e2 and the diamond De1,e2 ⊆ Z, where

De1,e2 =df {e′ ∈W | e1 6 e′ 6 e2}.⁴

3 Cf. note 26 of Belnap (2003b), the “postprint” of the original BST paper (Belnap, 1992).
⁴ Note that the diamonds themselves are not open sets. It is possible to introduce borderless

diamonds, which are in fact open sets in the topology defined here, but they are harder to work
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Definition 4.14 (History-relative diamond topologies Th on W ). For
h ∈ Hist, Z is an open subset of h, Z ∈ Th, iff Z = h or for every e ∈ Z
and for every t ∈ MCh(e), there are e1,e2 ∈ t such that e1 < e < e2 and the
diamond De1,e2 ⊆ Z.

It is not too difficult to check that T and Th are indeed topologies; that
is, both the empty set and the base set (W or h, respectively) are open, the
intersection of two open sets is open, and the union of countably many open
sets is open (see Exercise 4.4). The claim of the naturalness of the diamond
topology is based on the observation that for an important class of BST
structures, this topology coincides with the standard open-ball topology
on T (Rn) (to be described in Def. 4.16 on p. 95) and that the notion
of convergence it induces coincides with the order-theoretic notions of
infima and suprema.⁵ As one can see from the definition, the history-relative
topologies are the so-called subspace topologies induced by the diamond
topology on W , by taking a history as a subspace of W . This means that
A ∈ Th iff there is A′ ∈ T such that A = A′∩h.

In BST92, the global topology and the history-relative topologies have
different features. As we will show, this fact reflects a problem with local
Euclidicity.

4.4.2 Properties of the diamond topology in BST92

We review here some facts about the diamond topology in BST92. The first
observation is that unless ⟨W,<⟩ is a one-history structure, the history-
relative and the global topologies disagree with respect to a topological
separation property called the Hausdorff property. That property is defined
as follows:

Definition 4.15 (Hausdorff property). A topological space ⟨X ,T (X)⟩ is
Hausdorff iff for any distinct x,y ∈ X there are disjunct open neighborhoods
of x and of y (i.e., there are Ox,Oy ∈ T (X) for which Ox ∩Oy = /0).

Putting aside BST92 structures that are pathological in the sense that
they prohibit the construction of light-cones, it can be proved that the

with technically (Placek et al., 2014, Def. 23). Simply removing e1 and e2 from the definition does
not help, as the borders of the respective space-time region will then be retained.

⁵ For a discussion of the naturalness of the diamond topology, see Placek et al. (2014, §6). See also
Fact 9.13 in Chapter 9.
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history-relative topologies Th on a BST92 structure have the Hausdorff
property.⁶ This fact stands in sharp contrast with the properties of the global
diamond topology T : if a BST92 structure has more than one history, its
global topology is non-Hausdorff (again, ignoring pathological structures);
see Figure 3.1. In fact, the non-Hausdorffness of the global topology is related
to the existence of upper-bounded chains that have more than one history-
relative supremum. As one might expect, a pair of distinct history-relative
suprema of a chain provides a witness for non-Hausdorffness: if any two
open sets inT each contain a distinct supremum, theymust overlap because
they share some final segment of the chain in question.

These results about Hausdorffness in the diamond topology in BST92
appear encouraging as far as the relation to physics in concerned. In physics
it is standardly required that individual space-times be Hausdorff (see,
e.g., Wald, 1984, p. 12). As individual space-times are represented by sin-
gle histories in a BST92 structure, we take it that BST92 structures are
not in conflict with the Hausdorffness requirement of space-time physics.
The non-Hausdorffness of the global topology of a BST92 structure simply
reflects the fact that such a structure brings together more than one history
(space-time), explicitly representing a number of alternative spatio-temporal
developments.

There is, however, another difference between the history-relative and the
global topologies in BST92 that is more problematic: again, putting aside
trivial one-history structures, a history h is not open in the global topology
T , whereas it is open by definition in its own history-relative topology Th.
Generally, if an open set A from a history-relative topology Th contains a
choice point, then A ̸∈ T :

Fact 4.10. Let ⟨W,<⟩, h ∈ Hist(W ) and A ∈ Th. Then, if A contains a choice
point, A ̸∈ T . This implies that unless Hist has only one member, for any
h ∈ Hist, h ∈ Th, but h ̸∈ T .

Proof. Let A ∈ Th, and let e ∈ A be a choice point, so that h ⊥e h′ for some
h′ ∈ He. Thus, e is not maximal in W , and hence, not maximal in h′ (by
Fact 2.1(9)). Now pick a maximal chain t ∈ MCh′(e), so that e ∈ t and t ⊆ h′.
By Fact 3.4, t ∈ MC(e). As e is not maximal in h′ and t is a maximal chain in
h′, t extends above e in h′. For A to be open in T , by Def. 4.13 there needs
to be e2 ∈ t, e < e2, such that e2 ∈ A ⊆ h. But, since e is a choice point for h

⁶ For the proofs, see Placek et al. (2014).Thementioned pathological BST92 structures violate one
of the conditions C1–C4 discussed in that paper.
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and h′, which is maximal in the intersection of h and h′, there is no such e2.
Thus, A ̸∈ T . Note that in a BST92 structure with more than one history, by
PCP92, any history contains at least one choice point.

There is thus a systematic discrepancy between the global and the history-
relative notions of openness. This result spells trouble for an important
topological property called local Euclidicity. Technically, this property is
defined as follows:

Definition 4.16 (Local Euclidicity). A topological space ⟨X ,T (X)⟩ is locally
Euclidean of dimension n iff for every x ∈ X there is an open neighborhood
Ox ∈ T (X) and a homeomorphism φx that maps Ox onto an open set Rx ∈
T (Rn). Here, T (Rn) is the standard so-called open ball topology of Rn,
which has as a basis open balls of the form B(x,ε) =df {y ∈Rn | d(x,y)< ε}
according to the standard Euclidean distance d.

In Chapter 3.6.1 we already noted that local Euclidicity is standardly
presupposed, often without mentioning the condition by name, when the
notion of a space-time manifold is introduced. On such a manifold, local
coordinates are defined via so-called charts (see, e.g., Wald, 1984, pp. 12f.),
and the existence of charts is guaranteed by local Euclidicity: at each point
of the manifold, one can find a neighborhood that is homeomorphic to
some open set ofRn. In this way (additionally assuming some compatibility
requirements between charts), coordinates can be introduced. If a topolog-
ical space is not locally Euclidean, it is not possible to assign coordinates in
this way.

We also noted that given the frugality of the BST92 postulates, BST92
structures can differ widely. It would not be realistic to hope that their global
topology will always be locally Euclidean—but one can reasonably require
that local Euclidicity should transfer from the individual histories to the
whole global structure. More precisely, if for each history h of ⟨W,<⟩, Th is
locally Euclidean, then the global topology T should be locally Euclidean as
well. If we have some collection of physically reasonable space-times, each
with an assignment of coordinates, then a BST analysis of indeterminism
should not destroy the coordinate assignment. Unfortunately, in BST92 local
Euclidicity is not preserved as onemoves from the history-relative topologies
to the global topology. As a case in point, in Chapter 3.6.1 we already
discussed the simple example from Figure 3.1 (p. 44).
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4.4.3 The diamond topology in BSTNF

The situation of BST92 is unfortunate with respect to local Euclidicity. It
would be better if we could have a BST framework for local indeterminism
that preserves local Euclidicity: if each history (space-time) is locally
Euclidean of dimension n, then the global topology should be locally
Euclidean of dimension n as well. As we saw in §4.4.2, the diamond topology
on BST92 structures does not preserve local Euclidicity when moving from
the history-relative topologies to the global topology. In contrast, we can
prove that the diamond topology on BSTNF structures preserves local
Euclidicity. Working toward Theorem 4.1 about the preservation of local
Euclidicity, we first need an auxiliary Lemma, which is also of interest on
its own. Recall the disturbing feature of BST92 discussed as Fact 4.10 in
Chapter 4.4.2: a set that is open in a history-relative topology need not be
open in the corresponding global topology. The Lemma below states that
this problem cannot occur in the diamond topology on BSTNF structures:

Lemma 4.1. Let a BSTNF structure ⟨W,<⟩ be given, let h ∈ Hist(W ), and let
Z ⊆ W be such that Z ∈ Th, i.e., Z is an open set with respect to the history-
relative topologyTh. Then Z ∈T , i.e., Z is also open with respect to the global
topology onW .

Proof. Let Z ∈ Th for some h ∈ Hist. Let e ∈ Z, and let t ∈ MC(e). In
order to establish the openness of Z with respect to T , we need to show
that there is an e-centered diamond with vertices on t wholly contained in
Z. The openness of Z with respect to Th gives us such a diamond for any
th ∈ MCh(e), but not necessarily for our given t ∈ MC(e).

We show that the given t has a segment both below and above e that is
contained in some th ∈ MCh(e). The segment below e is contained in h by
downward closure of histories. For the segment above e, we proceed in two
steps. First, we claim that t contains some e′ ∈ h for which e′ > e. Assume
otherwise, i.e., the chain t+ =df {e∗ ∈ t | e∗ > e} contains no element of h.
Note that by construction, inf t+ = e. As t+ is a chain, it is directed, and thus
wholly contained in some history h2. Pulling these facts together, t+ ⊆ h2\h,
and by the maximality of t and the construction of t+, we have that t+ is a
maximal chain in h2 \ h. The PCPNF gives us a choice set c̈ such that (†)
h ⊥c̈ h2, and for the unique c′ ∈ c̈∩h2, we have c′ 6 t+. We observe next that
from the fact that t+ is a maximal chain in h2 \h, it follows that c′ = inf t+.
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Otherwise, for i = inf t+ we would have c′ < i 6 t+. By (†) we have c′ ̸∈ h,
so {c′}∪ t+ ⊆ h2 \h. As this chain extends t+, it contradicts the maximality
of t+ in h2 \ h. Thus, c′ = inf t+, whence c′ = e. It follows that e ∈ h2 \ h,
which contradicts our initial assumption that e ∈ h. So indeed, t contains
some e′ ∈ h for which e′ > e.

Second, we construct th by starting with an initial segment of the given
t, as follows: Let t− =df {e∗ ∈ t | e∗ 6 e′}; we have t− ⊆ h and e ∈ t−.
By the Hausdorff maximal principle we can extend t− with elements of h
to form a chain th that is maximal in h, so that th ∈ MCh(e). The chains t
and th share the initial segment t−. We can now invoke the openness of Z
with respect to Th for e and th, which gives us a diamond Deh

1,e
h
2
⊆ Z for

which eh
1,e

h
2 ∈ th and eh

1 < e < eh
2. We set e1 =df eh

1 and e2 =df min{e′,eh
2}.

We thus have e1 < e < e2 with e1 = eh
1 ∈ t, and also e2 ∈ t because e′ ∈ t.

And as the diamond De1,e2 ⊆ Deh
1,e

h
2
, we have De1,e2 ⊆ Z. So we have found

the witnessing e-centered diamond with vertices on t, which establishes the
openness of Z with respect to T .

The above Lemma immediately implies a fact about histories in BSTNF
that shows that the consequences of Fact 4.10 are avoided in BSTNF:

Fact 4.11. Let ⟨W,<⟩ be a BSTNF structures. Then for every h ∈ Hist(W ):
h ∈ T .

Proof. By Lemma 4.1, since h ∈ Th.

It is easy to see that the converse of Lemma 4.1 holds as well, that is, if
A∈T , then A∩h∈Th (see Exercise 4.5).More interestingly,T has a handy
basis, the elements of which are subsets of histories:

Lemma4.2. Let ⟨W,<⟩ be a BSTNF structurewith diamond topologyT .Then
the set B, defined as

B =df ∪h∈Hist(W ){O∩h | O ∈ T },

is a basis of T .

Proof. We have to show two things: (1) Any element O ∈ T is a union of
elements of B, and (2) the elements b ∈ B are in fact open in T .

For (1), let O ∈ T . Then, since ∪h∈Histh =W , we have O = ∪h∈HistO∩h,
and any O∩ h ∈ B by construction of B. For (2), let b ∈ B be given, so that
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there is O ∈T and h ∈ Hist(W ) for which b = O∩h. By Fact 4.11, h ∈T , so
that the openness of b follows by the finite intersection property of T .

With Lemma 4.1 in hand, we can prove the sought-for theorem about the
transfer of local Euclidicity from histories to the whole structure in BSTNF:

Theorem 4.1. Let ⟨W,<⟩ be a BSTNF structure. If there is an n ∈ N such
that for every h ∈ Hist(W ), the topological space ⟨h,Th⟩ is locally Euclidean
of dimension n, then the topological space ⟨W,T ⟩ is also locally Euclidean of
dimension n.

Proof. We need to show that each e ∈W has a neighborhood Oe ∈T that is
mapped by some homeomorphism φe to an open set Re ∈T (Rn). Let e∈W ,
and pick some h ∈ He. Since h is locally Euclidean with respect to Th, there
is a Th-open neighborhood Oh

e ⊆ h of e, an open set ofRn, Rh
e ∈T (Rn), and

a homeomorphism φh
e such that φh

e [O
h
e ] = Rh

e . By Lemma 4.1, from Oh
e ∈Th

it follows that Oh
e ∈ T . We thus let Oe =df Oh

e , Re =df Rh
e , and we can use

φe =df φh
e as our homeomorphism between the T -open neighborhood Oe

of e and the open set Re ∈ T (Rn).

BSTNF thus vindicates the idea that if one starts with locally Euclidean
histories (space-times) that allow for the assignment of spatio-temporal
coordinates, one does not destroy that feature by analyzing indeterminism
within the framework of Branching Space-Times.

4.5 A note on branching-style semantics

As we have shown in Chapters 4.1 and 4.2, BST—both in the form of
BST92 and in the form of BSTNF—can be developed to provide a theory
of events as well as a theory of propositions, and both approaches will
be used in later chapters. When we introduce the notion of a cause-like
locus for an outcome (Chapter 5.3, Def. 5.10) and, more generally, for a
transition (Chapter 6.3.1, Def. 6.1), we will describe a cause-like locus as
a risky juncture for the occurrence of some event. We will motivate the
notion of a cause-like locus in part through some claims about the truth
at such a locus of certain sentences with temporal and modal operators. We
will say, for instance, that a cause-like locus for an outcome O is the last
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event at which both the sentences “it is possible that O will occur” and “it
is possible that O will not occur” are true. These claims need not be left
on a merely intuitive level, as branching structures can be used to provide
formal semantics for languages with temporal and modal operators. Here
we recall a few definitions and facts pertaining to how semantic models on
branching structures can be constructed and how temporal-modal sentences
are evaluated in the resulting models. Where the difference matters, we stick
to BST92 for simplicity’s sake.

Historically, branching structures for the combination of temporal and
modal information and for the formal analysis of indeterminism were first
discussed in a now famous exchange between Saul Kripke and Arthur Prior
in the late 1950s (see Ploug and Øhrstrøm, 2012). Roughly, such branching
structures, which became known under the name ‘Branching Time’ (BT),⁷
use a tree-like ordering to depict the difference between an open future
of possibilities and a fixed past: such an ordering is backwards-linear, thus
allowing for branching toward the future, but not toward the past. Branching
Time provides the formal basis formany applications in computer science, in
logic, and in philosophy, including the stit (‘seeing to it that’) formal theory
of agency in BT (Belnap et al., 2001). In a BT structure, a history is amaximal
chain (a maximal linear subset). There is a direct connection to the notion
of a history as a maximal directed set in BST; see Belnap (2012). In fact,
BT structures are BST structures of a particularly simple kind, namely, BST
structures without SLR elements.

It is not easy to fulfill all our intuitive requirements for the notion of an
open future as incorporated in natural language expressions, let alone for the
subtle natural-language interaction between tenses and modals. Faced with
these problems, Prior developed two different BT-based approaches to the
formal semantics for a temporal-modal language, which he called ‘Peircean’
and ‘Ockhamist’ (Prior, 1967, pp. 126ff.). It is generally acknowledged that
the Peircean approach, which is less expressive than the Ockhamist one,
faces such serious difficulties that the Ockhamist approach is usually taken
as default. That approach was formally precisified by Thomason (1970). For
a comprehensive introduction to Ockhamist semantics for BT, see Belnap

⁷ As alreadymentioned in note 3 on p. 27, the terminology is unfortunate, suggesting perhaps that
time itself is branching, while the theory clearly pictures branching histories before the background
of a linear order of temporal instants (see also Belnap et al., 2001, p. 29).
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et al. (2001, Ch. 8). Inwhat follows, wewill stick to theOckhamist approach.⁸
TheOckhamist language L based on BT has temporal operators for the past
(“it was the case that”, P) and for the future (“it will be the case that”, F) as well
as the dual modal operators of settledness (“it is settled that”, Sett), which is
sometimes also called “historical necessity”, and real possibility (“it is really
possible that”, Poss).

Note that in generalizing from BT to BST, the addition of space-like
related events in BST permits the introduction of additional spatio-temporal
operators. It is challenging to work out how these new operators should be
defined and especially how they should interact with the mentioned tempo-
ral andmodal operators.This is a large topic that will not be discussed in this
book.⁹ Our explicit motivational claims that refer to semantics concern only
the combination of tenses and possibilities, and therefore we focus on the
BT-based Ockhamist language only. That is, we work with BST structures,
but we assume that the formal language L that we are dealing with contains
only the usual propositional connectives (written ∧, ∨, ¬, →, ↔) and the
temporal andmodal operatorsmentioned above, P, F, Sett, and Poss. In later
applications we will need to consider sentences of the form “At st-location
x it is φ”, like “The value of electromagnetic field at x is such-and-such.” The
truth conditions for such sentences (i.e., with Atx as the main operator) can
only be formulatedwith respect to a BSTmodel with set S of spatio-temporal
locations (see Definition 2.9), so that x ∈ S.

Themost salient feature of Ockhamist logic is that sentences are evaluated
as true or false at an index of evaluation that specifies an event and a history
containing that event. To have a handy notation, we will write e/h to stand
for a pair of exactly this kind, i.e., e ∈W , h ∈ Hist(W ), and e ∈ h. A semantic
model M based on a BST structure W = ⟨W,<⟩ for our language L is a
pair M = ⟨W ,Ψ⟩, where Ψ is an interpretation function from the set Sent
of sentences of L to the set of sets of indexes of evaluation, i.e., Ψ : Sent →
℘(E/Hist), where E/Hist =df {e/h | e ∈W ∧h ∈ He}.

⁸ Recently, a more general framework for BT semantics, the so-called transition semantics, has
been proposed by Rumberg (2016a), building upon, but going far beyond earlier work of Placek
(2011) and Müller (2014). For a more thorough investigation of formal semantics based on BST, the
transition framework would be the ideal starting place, and we strongly encourage its use. Here we
only provide a brief introduction of simple BT semantics for purely motivational purposes, so that
a detailed introduction to transition semantics seems unwarranted at this point.

⁹ For an approach to alternative space-times that centers on operators, see Strobach (2007).
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The interpretation function Ψ is required to satisfy the following semantic
clauses, where e/h |= φ means that e/h ∈ Ψ(φ), to be read as “φ is true at
e/h”.

e/h |= φ iff e/h ∈ Ψ(φ), for φ an atomic sentence of L ;

e/h |= ¬φ iff it is not the case that e/h |= φ;

e/h |= (φ ∨Ψ) iff e/h |= φ or e/h |= ψ
(and similarly for the other propositional connectives);
e/h |= F : φ iff for some e′ ∈ h such that e < e′ : e′/h |= φ;

e/h |= P : φ iff for some e′ ∈ h such that e′ < e : e′/h |= φ;

e/h |= Poss : φ iff for some h′ ∈ He : e/h′ |= φ;

e/h |= Sett : φ iff for all h′ ∈ He : e/h′ |= φ;

e/h |= Atx : φ iff ∃e′ : e′ ∈ h∩ x∧ e′/h |= φ, where x ∈ S.

Note that, generally, the truth of a sentence depends on both parameters,
the event e and the history h ∈ He. However, since in the clauses for modal
operators one quantifies over histories, a sentence beginning with a modal
operator is evaluated the same on any history h ∈ He, so that we may set:

e |= Sett : φ ⇔df ∃h ∈ He [e/h |= Sett : φ];
e |= Poss : φ ⇔df ∃h ∈ He [e/h |= Poss : φ].

Having provided the background for the semantics, let us return to the
motivational use of the semantics in the definition of a cause-like locus later
on. Let e ∈ W , and let O be an outcome chain for which e < O. We need
to explain why e appears to be decisive for the occurrence of O, given that
at e, all histories h on which O remains possible (h ∈ H⟨O⟩) split from some
history h′ on which O does not occur. Given such e and O, by the clauses
above, we have both

e |= Poss : F : (O is occurring) and
e |= Poss : ¬F : (O is occurring),

where the proposition “O is occurring” is formally represented as H⟨O⟩.
Furthermore, these two sentences are true at any e′ below e. In contrast, for
any e′ > e, we have:
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e′ |= Sett : ¬F : (O is occurring) or
e′ |= Sett : F : (O is occurring).

This justifies our later claim that a cause-like locus e for O such that e < O
is decisive for the occurrence of O in the following sense: e is the last event
at which both the future occurrence as well as the future non-occurrence of
O is possible. At each event in the future of possibilities of e, depending on
its location, it is either settled that O will occur, or it is settled that O will not
occur.

4.6 Exercises to Chapter 4

Exercise 4.1. Prove that H[I] =df {h ∈ Hist | I ⊆ h}=
∩

e∈I He.

Exercise 4.2. Provide an explicit proof of Fact 4.7(2).

Exercise 4.3. Prove a variant of Fact 4.7 for basic scattered outcomes; that
is, show that given e1 < e2 [e1 < O], there is exactly one basic scattered
outcome of e1 that is compatible with e2 [with O], which we therefore denote
by Ωe1⟨e2⟩ [Ωe1⟨O⟩].

Exercise 4.4. Prove that the diamond topology of Def. 4.13 and the history-
relative diamond topologies ofDef. 4.14 are indeed topologies for bothBST92
and BSTNF, i.e., prove that both (1) the base set (W or h, respectively) and
(2) the empty set are open, (3) arbitrary unions of open sets are open, and
(4) finite intersections of open sets are open.

Hint: For intersection (4), identify the relevant maximal chains and appro-
priate limits on them. (A full proof is given in Appendix B.4.)

Exercise 4.5. Let ⟨W,<⟩ be a BST92 or BSTNF structure. Then for every
h ∈ Hist(W ), if A ∈ T , then A∩h ∈ Th.

Hint: This establishes that Th is a subset topology of T . For the proof,
consider the respective maximal chains in W and in h.
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