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Modal Funny Business

In this chapter we deal with a type of correlation that is not much discussed
and which only becomes properly analyzable by means of BST’s focus on
possibilities that are localized in both space and time.

There is much interest in correlations, and for good reasons. Correlations
are often a good guide to causal dependencies, and we are naturally inclined
to look for explanations behind observed correlations. To give a trivial
example, the light is on in this room 20% of the time, and the light switch
in this room is thrown 20% of the time. And these events are correlated
perfectly: the probability of the switch being thrown, given that the light
is on, is 100%, as is the probability of the light being on given that the
switch is thrown.The explanation for this correlation is a simple direct causal
connection: the throwing of the switch causes the light to turn on. Famously,
not all correlations are due to direct causation between the correlated events.
Sometimes we can explain a correlation conceptually. For example, it is day
50% of the time, and it is night 50% of the time, but whenever it’s day it’s
not night, and vice versa, whereas if day and night were uncorrelated, it
should be day half of the time that it is night. This correlation is just due
to the fact that day is when it’s not night, by the very concept of day. No
causal link is involved here. In other cases, there is a causal link, but not
a direct one. The standard example is a barometer falling and the coming
of a storm: these events are highly correlated, but neither causes the other.
Rather, there is a common cause, low atmospheric pressure, which causes
both the barometer’s fall and the storm.

Such probabilistic correlations have been much discussed. BST allows us
to dig one level deeper and to unearth and analyze an unspoken assumption
behind most talk of probabilistic correlations. As we will discuss at length
in Chapter 7, probabilities need to be analyzed on the basis of possibilities;
probabilities are graded possibilities. So to understand to what to assign
a probability in the first place, we need to understand the underlying
possibilities. Standard expositions of probability theory usually assume
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that one can combine probability spaces smoothly by forming Cartesian
products. Behind this construction there is the assumption that the
underlying possibilities combine smoothly such as to form Cartesian
products—but this is not always the case. BST has the resources to analyze
this issue: The spatio-temporal anchoring of possibilities in BST structures
allows us to make sense of what we will call modal correlations. Roughly, a
modal correlation is present whenever possibilities do not combine in the
simplest imaginable way. It turns out, interestingly, that BST can distinguish
two types of modal correlations.Manymodal correlations are to be expected
upon a simple reflection on the fact that possiblities in BST are concrete
possibilities in space and time. Paying attention to these modal correlations
is crucial for the theory of causation and of probabilities that we will build
up in Chapters 6 and 7. But these modal correlations are not by themselves
strange at all. Pointing to their existence is just highlighting an important
lacuna in the general discussion of combining possibilities. The other type
of modal correlations for which BST makes conceptual room is strange, and
we do not take it to be a settled matter that such modal correlations exist in
our world. BST does, however, provide a formally precise picture of what
our world would have to be like in order for such strangemodal correlations,
which we call modal funny business, to exist.

We will use the term “modal correlation” in exact analogy with the notion
of a probabilistic correlation: some joint occurrences are not independent.
In probabilistic terms, dependence is expressed in terms of the probability of
the joint occurrence vis-à-vis the individual occurrences. Thus, given events
A and B in a probability space with probability measure pr, a correlation
between A and B means that

pr(A∩B) ̸= pr(A) · pr(B).

Such correlated individual events do not combine smoothly in the proba-
bilistic sense of independence.

In the modal case, there are no probabilities assigned to the occurrences
(yet), so a correlation has to be expressed solely in terms of the presence
and absence of combined possibilities. Our main idea is the following: a
modal correlation is present whenever two individually possible outcomes
do not combine to yield a possible joint outcome. In terms of transitions, the
simplest case of a modal correlation consists of two basic transitions that are
individually possible, but not jointly possible. That is:
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Definition 5.1. Two basic transitions τ1 = e1 � H1 and τ2 = e2 � H2 con-
stitute a case ofmodal correlation of the simplest kind iff they are individually
possible but not jointly so; that is, iff H1 ̸= /0 and H2 ̸= /0, but H1 ∩H2 = /0.
In terms of the histories admitted by (sets of) transitions (see Def. 4.11), we
can also write this as: H(τ1) ̸= /0, H(τ2) ̸= /0, H({τ1,τ2}) = /0.

5.1 Motivation for being interested in modal correlations

Earlier we said that somemodal correlations are to be expected, while others
would be strange. It is “scientifically natural” to be puzzled by modally
correlated transitions whose initials are space-like related—in a way, that is
the gist of the famous “EPR” argument against the completeness of quantum
mechanics (Einstein et al., 1935, see Chapters 5.2 and 8). On the other hand,
we can show that if the initials of two transitions are not space-like related,
then there is no deeper interest in their modal correlation.

As usual, we work in BST92 for concreteness, deferring a discussion of
BSTNF to Chapter 5.4. Consider then two basic transitions e1 � H1 and
e2 � H2, where Hi ∈ Πei (i = 1,2). There are three ways (1)–(3) in which
their initials can fail to be space-like related. In each of these cases, we
indicate why the question of modal correlation is obviously uninteresting.

1. If the initials e1 and e2 are incompatible, there is an inevitable and
indeed rampant modal correlation, since every member of H1 must
contain e1, whereas in virtue of the inconsistency of e1 and e2, no
member of H2 can contain e1. So in this case, modal correlation is
trivially inescapable. Since the existence of incompatible point events
is a direct consequence of indeterminism (that is, it follows from the
bare existence of more than one history), such modal correlations do
not by themselves warrant our interest.

2. If e1 = e2, then intuitively we might not even speak of “correlation”.
But it is illuminating to spell out the two equally uninteresting cases.
Case (a). If H1 ̸= H2 (where H1,H2 ∈ Πe1 because Πe1 = Πe2), then
H1 ∩H2 = /0 as Πe1 partitions He1 , and modal correlation cannot be
avoided. It is a conceptual truth that different immediate outcomes of
the same event are incompatible and cannot occur together. Case (b).
On the other hand, if H1 = H2, then the absence of modal correlation
is vacuous and of equal lack of interest.
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3. If e1 is in the causal past of e2 (e1 < e2), then according to BST92 theory,
the very occurrence of e2 is consistent with one and only one basic
outcome of e1, viz., Πe1⟨e2⟩—see Fact 4.7.There are two cases. Case (a):
Perhaps e1 has He1 as its single vacuous basic outcome.This is evidently
a case of uninteresting absence of modal correlation. Case (b): e1 has
more than one basic outcome.We know that e2 is compatible with only
one of them, so that each of the other outcomes of e1 is incompatible
with all of the outcomes of e2; which is equally uninteresting. So if
e1 < e2, “modal correlation” is in either case uninteresting. And, of
course, the case is the same if e2 lies in the causal past of e1.

What happens when one eliminates these three uninteresting cases? In
BST92 that is exactly to say that e1 and e2 are “space-like related”: A modal
correlation between transitions e1 � H1 and e2 � H2 is puzzling only if e1

is space-like related to e2. In our view, such correlations are interesting in
precisely the same way that EPR-like phenomena are, which is why we call
such modal correlations a kind of “funny business”, an opinion built into the
wording of the following definiendum.

Definition 5.2. Two basic transitions τ1 = e1 � H1 and τ2 = e2 � H2

constitute a case of space-like-relatedmodal funny business of the simplest kind
⇔df e1 SLRe2 and H1 ∩H2 = /0.

5.2 Modal funny business

The basic message of our discussion of modal correlations so far is this:
Quite a number of modal correlations are to be expected, but given the
BST framework, there is a class of modal correlations that constitute funny
business. Empirically, such funny business appears to be present (at least
ideally) in EPR-like scenarios,1 in which an entangled two-partite quantum

1 So-called because such a scenario figures prominently in the famous 1935 article by Einstein,
Podolsky, and Rosen (EPR), “Can quantum-mechanical description of reality be considered com-
plete?” (Einstein et al., 1935). In that paper the authors argue that space-like correlations need
an explanation in terms of an expanded description of reality that goes beyond the quantum
mechanical formalism. John Bell (1964) showed a way of deriving empirical predictions from this
assumption of (certain forms of) quantum-mechanical incompleteness (the existence of so-called
hidden variables), and the predictions of a number of hidden variable theories have been found to
be empirically violated, providing an argument for the completeness of quantum mechanics pace
Einstein et al. These issues will be discussed in more detail in Chapter 8.



modal funny business 107

system shows perfect correlations of outcomes for space-like separated
measurements. For example, the maximally entangled singlet state of two
spin-1/2 particles, |ψ⟩ (written in the basis |±,±⟩= |±⟩1 ⊗|±⟩2)

|ψ⟩= 1√
2
(|+,−⟩−|−,+⟩)

is such that upon measuring the first particle in the ± basis, the result of a
measurement on the second particle in that basis is already determined, even
if the measurement events are space-like separated. In modal terms, while
for the measurement on the first particle, both the outcomes + and − are
possible, and the same holds for the measurement on the second particle,
it is impossible that the measurements give the same results, and the only
possible joint outcomes are (+,−) and (−,+). The outcomes (+,+) and
(−,−), which appear to be combinatorially possible given the individual
possibilities, aremissing from the set of joint possibilities.The large literature
on quantumcorrelations and their possible causal interpretation iswitness to
the fact that people find such phenomena strange or funny, or even “spooky”
(to use the common translation of Einstein’s phrase, “spukhaft”).2

h1

e1

+

e2

−

O1

h2

e1

−

e2

+

O2

Figure 5.1 BST diagram for the EPR scenario. Choice points e1 and e2 represent
themeasurement events. O1 and O2 are outcome chains that represent measure-
ment results. Note that there are only two rather than four histories, even though
there are two binary choice points.

The scenario discussed so far has just two binary choice points, thus
constituting the simplest possible case in which modal funny business can
occur. There are a number of ways of generalizing the notion of modal
funny business from this base case to arrive atmore encompassing notions of

2 The phrase occurs in a letter from Einstein to Max Born dated March 3, 1947; see Einstein et al.
(1971, p. 158). We defer a discussion of the literature to Chapter 8.
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modal funny business. We present the two most general definitions in what
follows.3 With a view to the prominence of possibilities described via sets of
basic transitions, esp. in Chapters 6 and 7, we phrase our definitions in terms
of sets of basic transitions.

5.2.1 Expected inconsistencies in sets of basic transitions

Modal correlations, generally speaking, are present whenever there is a set of
transitions that are individually possible but jointly inconsistent in the sense
of Def. 4.12 (i.e., not admitting a joint outcome). The individual consistency
of a single basic transition is guaranteed as a matter of definition: A basic
transition in BST92 is of the form

τ = e � H, H ∈ Πe,

and as e is always a member of some histories (He ̸= /0) and Πe partitions He

into non-empty subsets, we have that H(τ) = H ̸= /0.
Accordingly, we link the notion of modal correlation to the inconsistency

of a set of transitions:

Definition 5.3. A set of transitions

T = {τi = ei � Hi | i ∈ Γ}, where Γ is some index set

constitutes a case of modal correlation iff it is inconsistent, i.e., iff H(T ) =
∩i∈ΓHi = /0.

Our preceding discussion has shown that certain cases of modal correla-
tions are to be expected once one acknowledges the spatio-temporal nature
of individual possibilities (transitions). Thus, to mention the simplest case,
a set T containing two different transitions from the same initial has to
be inconsistent. Such an inconsistency is of the clearest and most easily
discernible variety: the set T runs together different local alternatives. We
call such an inconsistency “blatant inconsistency”:

3 Four different notions of modal funny business were initially introduced by Belnap (2002,
2003c). They all turn out to be special cases of the definitions given here, as shown in Müller et al.
(2008). Note that while Theorem 2 in the latter paper is indeed correct as stated, its proof is faulty,
as kindly pointed out to us by Leszek Wroński. See Theorem 5.1 for a corrected version.
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Definition 5.4 (Blatant inconsistency). A set T = {τi = ei � Hi | i ∈ Γ} of
transitions is blatantly inconsistent iff there are τ1,τ2 ∈ T such that e1 = e2,
but H1 ̸= H2.

Apart from blatant inconsistency, there are two other forms of inconsis-
tency that are not surprising, as the above discussion in Chapter 5.1 has
shown. The first form is that the initials of two transitions τ1,τ2 ∈ T , e1 and
e2, are incompatible to beginwith, that is, that these initials are incomparable
and do not belong to any one history. In that case, no outcomes of e1 and e2

can share a history as the initials do not share a history to begin with (i.e.,
H1∩H2 = /0 because He1 ∩He2 = /0). This is not surprising. The second form
of unproblematic inconsistency can occur when the initials e1 and e2 of two
transitions τ1 and τ2 are consistent and in fact comparable (let us assume
e1 < e2 for concreteness). In that case, there is exactly one outcome of e1 that
is compatible with the occurrence of e2, namely, Πe1⟨e2⟩ (see Fact 4.7(1)).
So if we have τ1 = e1 � H1 ∈ T , where H1 ̸= Πe1⟨e2⟩, the transition τ1

excludes the occurrence of τ2 by already excluding the occurrence of its
initial e2. Again, it is obvious why the whole set T is inconsistent; the blame
is on τ1 selecting the wrong outcome. Interestingly, this case can be linked
to blatant inconsistency in the following way, and which we will make use of
later in Chapter 5.2.3. In BST, the occurrence of any point event implies the
previous occurrence of its complete spatio-temporal past; histories are closed
downward.We thus do not add anythingmodally substantial (we do not add
new choices) if we complete a transition set toward the past. But given that
τ2 ∈ T and e1 < e2, any history h ∈ H2 contains e1 and fixes the outcome
of e1 to be Πe1⟨h⟩ = Πe1⟨e2⟩, a superset of H2. So adding the transition
τ ′1 =df e1 � Πe1⟨e2⟩ to T should be an innocuous downward extension that
just adds a part of the story that was implied by the downward closure of
histories anyway.⁴ Yet it turns out that the set of transitions T ′ =df T ∪{τ ′1}
is not just inconsistent (as was T ), but even blatantly inconsistent, containing
now two different transitions τ1 and τ ′1 with the same initial e1. In this
way, we see that inconsistency due to consistent, order-related initials with
incompatible outcomes is quite close to blatant inconsistency.⁵

Pulling together the various strands of the discussion so far, we can repeat
the observation from Chapter 5.1 that the only surprising cases of modal

⁴ The case for the term “downward extension” is further strengthened by noting that in terms of
the ordering of transitions (Def. 3.10), τ ′1 ≺ τ2.

⁵ See Chapter 5.2.3 for more details on downward extensions and the related idea of explanatory
funny business as absence of blatant inconsistency in all downward extensions.
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correlations—the ones whose presence has no immediate explanation—are
those linked to space-like related initials which have incompatible outcomes.

5.2.2 Combinatorial funny business

Summing up the discussion of the expected inconsistencies of sets of basic
transitions above, we can say that transition sets of the following form
are well-behaved in the sense of not containing a direct case of obvious
inconsistency. We call such sets combinatorially consistent:

Definition 5.5 (Combinatorial consistency). A set T = {τi = ei � Hi | i ∈
Γ} of basic transitions is combinatorially consistent iff for any τi,τ j ∈ T :

1. if ei = e j, then Hi = H j (i.e., τi = τ j);
2. if ei < e j, then He j ⊆ Hi (i.e., τi ≺ τ j);
3. if e j < ei, then Hei ⊆ H j (i.e., τ j ≺ τi);
4. if ei and e j are incomparable, then ei SLRe j.

Thus, in a combinatorially consistent set of transitions, there is no blatant
inconsistency (1), there is no order-related inconsistency (2, 3), and there is
no inconsistency related to inconsistent initials (4). It is indeed the last clause
(4) that relies on combinatorics, as it suggests that the compatibility of two
SLR initials should be enough for a pair of transitions starting with these
initials to be consistent.

A combinatorially consistent set looks well behaved. One aspect of this
well-behavedness is that any two initials from transitions from such a set T
share some history—so T is, in some sense, almost consistent:

Fact 5.1. If T = {τi = ei � Hi | i ∈ Γ} is combinatorially consistent, then for
any two initials ei and e j (i, j ∈ Γ), there is a history h containing them both.

Proof. Let i, j ∈ Γ. We argue by cases. (1) If ei = e j, then any history h from
Hei serves as awitness. (2) If ei < e j, any history h fromHe j serves as awitness
(note that h ∈ Hi, and thus in particular, ei ∈ h). (3) If e j < ei, then similarly,
take any history h from Hei . (4) The fact that ei SLRe j implies, by definition,
that there is a history h containing them both.

So there is no apparent reason why a combinatorially consistent set of
transitions should not be consistent. To support this idea, we can note that
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sets of transitions that are in fact consistent are also well-behaved according
to the definition:

Lemma 5.1. If a set of basic transitions T is consistent, then it is also
combinatorially consistent.

Proof. Assume that T is not combinatorially consistent. Thus, there are
τ1,τ2 ∈ T (τi = ei � Hi, i = 1,2) constituting a counterexample to one
of the four clauses from Def. 5.5. For each of these cases, the discussion of
Section 5.2.1 has shown that H1 ∩H2 = /0, so that T is not consistent.

The other direction does not hold in general but, if it fails, something
at least mildly counterintuitive is going on: The set T is well-behaved, but
the combinatorics do not work out as expected. Some histories that should
witness the consistency of T are, as it were, missing. Thus we define:

Definition 5.6 (Combinatorial funny business). A set of basic transitions T
constitutes a case of combinatorial funny business (CFB) iff T is combinato-
rially consistent (Def. 5.5), but inconsistent (H(T ) = /0).

It should be reassuring that the simplest EPR-like case of funny business
modal correlations, discussed earlier, falls under this definition.

Fact 5.2 (The EPR scenario exhibits CFB). The EPR scenario of Figure 5.1,
discussed at the beginning of Section 5.2, constitutes a case of combinatorial
funny business according to Definition 5.6.

Proof. Let e1, e2 denote the two binary choice points in the EPR scenario
(measurement in the left and right wing of the experiment, respectively).
Each of these choice points has two basic scattered outcomes, Ω+

ei
and Ω−

ei
,

so that for i = 1,2, there are two transitions each, τ+i = ei � Ω+
ei

and τ−i =

ei � Ω−
ei
. The scenario thus contains four basic indeterministic transitions

in total, τ+1 , τ−1 , τ+2 , and τ−2 . The measurement outcomes Ω±
ei

are correlated
to allow only the combination of one + outcome with one − outcome.
Thus, out of the four (2 × 2) histories one would combinatorially expect,
only two, h1 = h+− (containing the transitions τ+1 and τ−2 ) and h2 = h−+

(containing τ−1 and τ+2 ), are possible. Thus, in particular, the joint ++

outcome cannot happen, meaning that the set of transitions T =df {τ+1 ,τ+2 }
is inconsistent.This set is, however, combinatorially consistent, as the initials
of the two transitions, e1 and e2, are SLR : they are incomparable, and their
compatibility is witnessed, for example, by the history h+− featuring the+−
joint outcome.
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5.2.3 Explanatory funny business

According to the preceding discussion, an instance of modal correlations
constitutes funny business iff the spatio-temporal layout of the possibilities
(transitions) that are combined does not provide a reason for the inconsis-
tency of the whole set of transitions. On the face of it, such a set T looks
consistent, and it is a raw additional fact that it is nevertheless inconsistent.

Another line of looking at inconsistency and funny business is opened
up by not just looking at the transition set T as given, but by attempting to
come up with a satisfactory explanatory account of the inconsistency. As we
said earlier, an immediately understandable form of inconsistency is blatant
inconsistency (i.e., the running together of incompatible local alternatives).
This form of incompatibility is also acknowledged in standard probability
theory: If we have two members A,B of the event algebra of a probability
space and A∩B = /0, then we know that pr(A∩B) = 0 even if pr(A) ̸= 0 and
pr(B) ̸= 0.

In probabilistic contexts, correlations are often interesting, and an account
for a correlation can often be found by looking at circumstances in the past
of the correlated events. Thus, in the case of the correlation between the
falling barometer and the impeding storm described at the beginning of
this chapter, we find a previous event, the advent of a low pressure weather
system, that explains the correlation. Technically, we often assume that given
two correlated contemporaneous events A and B,

pr(A∩B) ̸= pr(A) · pr(B),

there is an additional past event C such that conditional on the occurrence
of C, A and B become probabilistically independent, i.e.,

pr(A∩B |C) = pr(A |C) · pr(B |C).

In this spirit, Reichenbach (1956) proposed his common cause principle,
which has been the subject of much recent research and discussion.⁶ When
transferred to the context of modal correlations in sets of transitions in
BST, we cannot, of course, expect the whole idea of the common cause
principle to carry over, but the idea of “explaining a surprising phenomenon

⁶ See, e.g., Hofer-Szabó et al. (2013) and Wroński (2014).
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by looking in the past” generalizes in a useful way. Earlier, in Section 5.2.2,
we already pointed out that in case a set of transitions T = {τ1,τ2} (with
τi = ei � Hi, i = 1,2) is inconsistent (H(T ) = /0) and e1 < e2, we can
provide a local account of that inconsistency by adding in the seemingly
innocuous downward extension τ ′1 =df e1 � Πe1⟨e2⟩, which, lying in the
past of e2, has to have occurred for the initial of τ2 to occur. The extended
set T ′ =df T ∪{τ ′1} is blatantly inconsistent, which readily explains why it is
inconsistent.

It is interesting to inquire as towhetherwe can always explanatorily extend
a given inconsistent transition set such that the blame for the inconsistency
is ultimately on some blatant inconsistency (i.e., such that the extended set
is blatantly inconsistent). It turns out that the answer is no. The EPR-like
example of Figure 5.1 that was discussed in the context of Fact 5.2 already
suffices as an illustration: In this structure, there are only two choice points,
e1 and e2, so that the inconsistent set of transitions T =df {τ+1 ,τ+2 } cannot be
extended to the past in any way. And that set is inconsistent, but not blatantly
inconsistent. So we can have cases of modal correlations that do not have a
(local) explanation. We call such cases of modal correlations, accordingly,
explanatory funny business.

To make this notion formally precise, we start with the notion of down-
ward extension. The idea is that, in searching for the explanation of the
inconsistency of a given set of transitions T , we may add transitions in the
past, as these cannot get in the way modally speaking (their occurrence is
implied by the occurrence of a later transition), and they may add explana-
tory detail.

Definition 5.7 (Downward extension). The set of basic transitions T ∗ is a
downward extension of T iff (1) T ⊆ T ∗ and (2) for any (new) τ∗ ∈ (T ∗ \T ),
there is some τ ∈ T for which τ∗ ≺ τ .

We can prove the following facts about downward extensions:

Lemma5.2. Let T ∗ be a downward extension of a given set of basic transitions
T . Then the following holds: (1) T ∗ is consistent iff T is consistent. (2) T ∗ is
combinatorially consistent iff T is combinatorially consistent.

Proof. (1) “⇒” Let T be inconsistent, i.e., H(T ) = ∩τ∈T H(τ) = /0. Then we
have

H(T ∗) = ∩τ∈T ∗H(τ) = H(T )∩ (∩τ∗∈T ∗\T H(τ∗)) = /0,

so that T ∗ is also inconsistent.
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“⇐” Let T be consistent, i.e., H(T ) = ∩τ∈T H(τ) ̸= /0. Again we can write

H(T ∗) = ∩τ∈T ∗H(τ) = H(T )∩ (∩τ∗∈T ∗\T H(τ∗)).

Now take some τ∗ ∈ T ∗ \ T . By definition of downward extension, there
is some τ ∈ T for which τ∗ ≺ τ , and this implies that H(τ∗) ⊇ H(τ). So
(as H(T ) ⊆ H(τ)) we have for any of the new τ∗ that H(τ∗) ⊇ H(T ). This
implies that

H(T ∗) = ∩τ∈T ∗H(τ) = H(T )∩ (∩τ∗∈T ∗\T H(τ∗)) = H(T ) ̸= /0,

establishing the consistency of T ∗.
(2) “⇒” Let T ∗ be combinatorially consistent, which means that for

any two τ1 = e1 � H1,τ2 = e2 � H2 ∈ T ∗, one of the four clauses from
Definition 5.5 applies. This implies in particular that for any two transitions
from T ⊆ T ∗, one of the four clauses applies, so that T is also combinatorially
consistent.

“⇐” Let T be combinatorially consistent, which means that for any two
transitions from T , one of the four clauses from Definition 5.5 applies. We
have to show that that feature transfers to T ∗, which is a downward extension
of T . Thus, take some τ1 = e1 � H1,τ2 = e2 � H2 ∈ T ∗. There are three
cases, depending on whether or not τ1 and τ2 already belong to T .

Case 1. If both τ1,τ2 ∈ T , then the combinatorial consistency of T alone
suffices to show that one of the four clauses holds for τ1 and τ2.

Case 2. Assume that τ1 ∈ T , but τ2 ∈ T ∗ \ T . (The case with τ1 and τ2

reversed is exactly analogous.) As τ2 is part of a downward extension of T ,
there is some τ3 = e3 � H3 ∈ T for which (∗) τ2 ≺ τ3 (i.e., e2 < e3 and
He3 ⊆ H2; see Fact 3.11). As τ1,τ3 ∈ T and T is combinatorially consistent,
by Fact 5.1 there is h ∈ Hist such that e1,e3 ∈ h, and since e2 < e3, (†)
h ∈ He1 ∩He2 ∩He3 . We show that one of four clauses applies for τ1 and τ2.
(1) It cannot be that e1 = e2. Assume otherwise, then τ2 ∈ T ∗ \ T implies
that H1 ̸= H2. Now e1 < e3 (as e1 = e2), so the combinatorial consistency
of T implies He3 ⊆ H1. But by τ2 ≺ τ3, we also have He3 ⊆ H2. This is a
contradiction, because H1 and H2 are by assumption different elements of
the partition Πe1 , and He3 ̸= /0. (2) If e1 < e2, we have to show that He2 ⊆ H1.
By combinatorial consistency of T , we have τ1 ≺ τ3 as e1 < e3, so for the h
witnessing (†), we have H1 = Πe1⟨e3⟩= Πe1⟨h⟩. Pick an arbitrary h′ ∈ He2 .
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As e2 > e1, we have h′ ≡e1 h, i.e., h′ ∈ H1. (3) If e2 < e1, we have to show that
He1 ⊆ H2. Analogously to case (2), we have H2 = Πe2⟨e3⟩= Πe2⟨h⟩. Pick an
arbitrary h′ ∈ He1 . Since h,h′ ∈ He1 and e2 < e1, we have h ≡e2 h′, and hence
h′ ∈ H2. Finally, (4) if e1 and e2 are incomparable, then e1 SLRe2 by (†).

Case 3. Assume that τ1,τ2 ∈ T ∗\T .Then there are τ ′1,τ ′2 ∈ T , τ ′i = e′i �H ′
i

such that (i) τi ≺ τ ′i (i = 1,2). Hence by Fact 5.1, there is h ∈ Hist such that
e′1,e

′
2 ∈ h, and hence (ii) h ∈ H1 ∩H2 by (i). We show that τ1,τ2 satisfy one

of the four clauses (1)–(4). (1) If e1 = e2, then (ii) implies that H1 = H2. (2)
If e1 < e2, then for any h′ ∈ He2 we have h ≡e1 h′ since e2 ∈ h and e1 < e2, so
h′ ∈ H1. Case (3) follows analogously. And (4) if e1 and e2 are incomparable,
since by (ii) e1,e2 ∈ h, it follows that e1 SLRe2.

If a given set T is inconsistent, one can hope that it will be possible to find
a downward extension of T that is blatantly inconsistent. This would plainly
make the inconsistency intelligible. If that hope is frustrated, something
funny is going on. Thus we define:

Definition 5.8 (Explanatory funny business). A set T of transitions is a case
of explanatory funny business (EFB) iff (1) T is inconsistent (H(T ) = /0) and
(2) there is no downward extension T ∗ of T that is blatantly inconsistent.

Note that the verdict of explanatory funny business can be checked by
considering a single structure, viz., the maximal downward extension of a
given transition set. The maximal downward extension of T is the set

T ∗max =df {τ ′ ∈ TR(W ) | ∃τ ∈ T [τ ′ 4 τ]},

where TR(W ) is the set of basic indeterministic transitions introduced in
Chapter 3.4.4, TR(W ) = {e � H | e ∈W,Πe ̸= {He},H ∈ Πe}.

Obviously, if some downward extension T ∗ of T is blatantly inconsistent,
then so is T ∗max, which is a superset of any T ∗, and if no downward extension
of T is blatantly inconsistent, then this excludes T ∗max from being blatantly
inconsistent as well.

5.2.4 On the interrelation of combinatorial and explanatory
funny business

Given the result about the preservation of (combinatorial) consistency and
inconsistency from Lemma 5.2, it turns out that in any case in which there
is combinatorial funny business, there is also explanatory funny business:
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Lemma 5.3 (Combinatorial funny business implies explanatory funny busi-
ness). If a set of transitions T is an instance of combinatorial funny business
(i.e., if T is inconsistent, but combinatorially consistent), then T is also an
instance of explanatory funny business (i.e., no downward extension of T is
blatantly inconsistent).

Proof. Let T be an instance of combinatorial funny business (i.e., inconsis-
tent but combinatorially consistent), and let T ∗ be some downward exten-
sion of T . By Lemma 5.2(1), T ∗ is also inconsistent. By part (2) of that
Lemma, T ∗ is also combinatorially consistent. Thus, for any τ1 = e1 �
H1,τ2 = e2 � h2 ∈ T ∗, if e1 = e2, then by clause (1) of Definition 5.5, we
have H1 = H2, i.e., τ1 = τ2. So T ∗ is not blatantly inconsistent. As T ∗ was an
arbitrary downward extension of T , we have established that T is an instance
of explanatory funny business.

The other direction of Lemma 5.3, however, fails to hold.The reason is that
the notion of combinatorial funny business cannot detect funny business in
cases in which transitions with inconsistent initials are present: by Def. 5.6,
a transition set that includes inconsistent initials cannot be combinatorially
consistent, and therefore cannot be a case of combinatorial funny business.
For a relevant example, consider the two structures shown in Figure 5.2.

In each of these two BST92 structures, the possible point events e3 and
e4 are incompatible; they are not order related and do not share a history.
Therefore, the set of transitions T =df {e3 � Ω+

e3
,e4 � Ω+

e4
} is inconsistent,

but it is also combinatorially inconsistent—the initials e3 and e4 fail clause
(4) of Definition 5.5. So the definition of combinatorial funny business
in both cases gives the verdict that there is nothing funny going on. The
notion of explanatory funny business, however, requires us to consider the
downward extensions of the transition set T , and these lead to different
verdicts. In case (a), the maximal downward extension of T is Ta = {e3 �
Ω+

e3
,e4 � Ω+

e4
,e1 � Ω+

e1
,e1 � Ω−

e1
}, and this set is blatantly inconsistent as

it combines different basic outcomes of e1. So for case (a), the verdict of the
definitions of explanatory and combinatorial funny business agree—nothing
funny going on. In case (b), however, the maximal downward extension of
T is Tb = {e3 � Ω+

e3
,e4 � Ω+

e4
,e1 � Ω+

e1
,e2 � Ω−

e2
}, and this set is not

blatantly inconsistent. So the definition of explanatory funny business sig-
nals, correctly, that something funny is going on—the outcomes of the SLR
initials e1 and e2 are, after all, correlated. The definition of combinatorial
funny business does not signal anything funny, however, as the initials e3
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(a) h1

e1

+

e3

+

h2

e1

−

e4

+

(b) h1

e1

+

e2

−

e3

+

+−
−+

+−
−+

h2

e1

−

e2

+

e4

+

Figure 5.2 Two BST structures with four histories each and with inconsistent
initials e3 and e4. (Histories h3 and h4 are not shown; they correspond to copies
of h1 and h2 with the “−” outcome of e3 and e4, respectively.) Upper panel (a):
no funny business, lower panel (b): explanatory funny business.

and e4 are incompatible, which is enough of a combinatorial reason for the
inconsistency of T . We can describe the upshot of this discussion as a useful
fact:

Fact 5.3. In the BST structure of Figure 5.2(b), the transition set T =df {e3 �
Ω+

e3
,e4 � Ω+

e4
} exhibits explanatory funny business, but no combinatorial

funny business.

We sum up our results about the interrelation of combinatorial and
explanatory funny business so far:

Lemma 5.4. The notion of explanatory funny business properly extends the
notion of combinatorial funny business. That is: (1) If a set of transitions T
is an instance of combinatorial funny business, then T is also an instance
of explanatory funny business. (2) There are instances of transition sets T
exhibiting explanatory funny business that are not instances of combinatorial
funny business.

Proof. (1) is the content of Lemma 5.3. (2) has been shown via Fact 5.3.
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Does this mean that the notion of combinatorial funny business is too
narrow and therefore inadequate? It would be good if we could salvage
the notion of combinatorial funny business in some way, as it captures an
important intuition behind the notion of funny business, viz., puzzlement
over SLR correlations. In the example of Figure 5.2 (b), starting with the
given transition set T , we can exhibit such underlying SLR correlations by
downward extending T and then stripping away unnecessary transitions
with inconsistent initials. That is: in the given transition set T , there is only
explanatory, not combinatorial funny business, but in the BST92 structure
from which T is taken, there is an instance of combinatorial funny business
to be found. We will show that this idea generalizes in a useful way: we can
show that at the level of BST structures rather than transition sets, our two
notions of funny business agree.

Theorem 5.1 (There is combinatorial funny business iff there is explanatory
funny business). Let ⟨W,<⟩ be a BST92 structure. For its set of basic indeter-
ministic transitions,TR(W ), the following holds:There is a subsetT1 ⊆TR(W )

exhibiting combinatorial funny business iff there is a subset T2 ⊆ TR(W )

exhibiting explanatory funny business.

Proof. The “⇒” direction has been established via Lemma 5.3: we can take
T2 = T1. The proof of the “⇐” direction is rather lengthy, so we provide
full details in Appendix A.3. The main idea of that proof direction is to
work under the assumption that there is no combinatorial funny business
in the given structure. We then assume for reductio that there is a set
of transitions T that witnesses explanatory funny business. Its maximal
downward extension T ∗ thus contains no instance of blatant inconsistency.
Given that there is no combinatorial funny business by assumption, T ∗

must be inconsistent, but combinatorially inconsistent.The bulk of the proof
consists in using T ∗ to construct a transition set TC that, contrary to ourmain
assumption, exhibits combinatorial funny business. This proves that our
reductio assumption (the existence of explanatory funny business in T )must
be false, so that from the assumption of no combinatorial funny business in
a given BST92 structure, we can show that there can be no explanatory funny
business either.

The two notions of explanatory and combinatorial funny business are thus
equivalent at the level of BST92 structures. We take this result to support the
view that we have thereby provided a stable explication of the notion of a
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puzzling modal correlation, or modal funny business, in branching space-
times.⁷ In the rest of the book,wewill therefore always speak of “modal funny
business” as a unified concept. Here is our official definition, for which we
use CFB—which can be replaced by EFB if one so wishes.

Definition 5.9. A BST92 structure ⟨W,<⟩ exhibits modal funny business
(MFB) iff among its set of basic indeterministic transitions TR(W ) there is a
set T ⊆ TR(W ) that constitutes combinatorial funny business according to
Def. 5.6.

5.3 Some consequences of modal funny business

In this section, we prove some facts related to the BST92 prior choice
principle that will be used later on. Recall that PCP92 guarantees that for
any two histories h1,h2 and for any lower bounded chain O, if O ⊆ h1 \ h2,
then there is at least one choice point c for h1 and h2 that is in the past of
O, c < O. Such a choice point c is maximal in h1 ∩h2 (i.e., h1 ⊥c h2). There
can be other choice points for h1 and h2, and these may not lie in the past
of O. The existence of such choice points not in the past of O is a common
feature, independent of whether there is modal funny business in a structure
or not. Compare Figure 3.3 (p. 57), in which there are two uncorrelated SLR
choice points. In the structure depicted in that figure, the outcome chain O1

belongs to h2 but not h3, and these histories split both at the choice point e1

in the past of O1 and at the choice point e2, which is not in the past of O1. It
is not the case, however, that all histories in which O1 begins split off from
h2 at e2 (the counterexample is h1). This is different in the EPR scenario of
Figure 5.1 (p. 107), which exhibits a related, slightly different notion that is
of greater interest here: we may look at choice points at which all histories
from H⟨O⟩ (all histories in which the chain O begins to occur) split from a
given history h. As H⟨O⟩ is the occurrence proposition for O, a choice point
of this kind constitutes a decisive event as discussed in our introduction to
semantic notions in Chapter 4.5: at such a choice point, the occurrence of
O is still contingent (it is possible, but not settled, that O will occur), but
immediately after this event, in some histories such as h, the occurrence of
O is prohibited (see Fact 4.7). We call such choice points cause-like loci for

⁷ This attitude is further strengthened by noting that EFB and CFB extend the previous notions
of funny business due to Belnap (2002, 2003c). See also note 3.
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O, written cll(O). Cause-like loci will figure prominently in our discussion
of causation and probabilities and in related applications.

Definition 5.10 (Cause-like locus). Let O be a lower bounded chain in a
BST92 structure ⟨W,<⟩. The set of cause-like loci for O, written as cll(O), is
defined as:

cll(O) = {e ∈ W | ∃h [h ∈ Hist∧h ⊥e H⟨O⟩]},

where h ⊥e H⟨O⟩ ⇔df ∀h′[h′ ∈ H⟨O⟩ → h ⊥e h′]. We simplify cll({e}) to
cll(e).

It turns out that whether or not all elements of cll(O) are in the past of O
depends on the presence of modal funny business. Indeed, look at the EPR
scenario from Figure 5.1, which was already formally discussed in the proof
of Fact 5.2. There are two SLR choice points, e1 and e2, with two immediate
outcomes Ω+

ei
and Ω−

ei
each (i = 1,2), and thus the scenario contains the

four indeterministic transitions τ+1 , τ−1 , τ+2 , and τ−2 . As the initials are SLR,
one would expect there to be four histories (h++,h+−,h−+,h−−), but due
to modal funny business, there are only the two histories h+− and h−+.
That is, the only consistent two-element sets of transitions are {τ+1 ,τ−2 } and
{τ−1 ,τ+2 }. Let now O1 be a chain in h1 = h+− above e1 (in Ω+

e1
) that does

not lie above e2, as indicated in Figure 5.1. Intuitively, the occurrence of
this chain means that in the left wing of the apparatus, the outcome “+”
has been registered. The chain O1 does not occur in h2 = h−+, in which
the left measurement registers outcome “−”. It is obvious that h+− ⊥e1 h−+,
and as H⟨O1⟩ = {h+−}, we have e1 ∈ cll(O1), as is to be expected: e1 is a
decisive event for the occurrence of O1. Yet, as one can easily verify, we
have e2 ∈ cll(O1) as well, even though e2 ̸< O1. Thus, something strange
is going on.⁸ Since the notion of cll(O1) has causal connotations, it appears
that some causal factors responsible for keeping O1 possible are not in the
past of O1. For further analysis of this weird feature, see Chapter 8. Luckily,
however, we can show that this weirdness will not occur if there is no modal
funny business in a BST92 structure. The following Fact has variants for

⁸ In Belnap (2002), scenarios like this are called “Some-cause-like-locus-not-in-past funny busi-
ness”. As we said earlier (note 3), our notion of MFB generalizes this notion. Examples proving that
MFB properly extends the earlier notions are quite involved; see Müller et al. (2008) for a pertinent
construction with infinitely many SLR choice points.
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scattered outcomes and disjunctive outcomes, which are left as Exercises 5.3
and 5.4. Here we state and prove the relevant Fact for outcome chains.

Fact 5.4. Assume that in a BST92 structure ⟨W,<⟩ there is no modal funny
business. ForO⊆W a lower bounded chain, h∈Hist, and e∈W : if h⊥e H⟨O⟩,
then e < O. Thus, for every e ∈ cll(O), we have e < O.

Proof. Let (i) h⊥e hO, where hO ∈H⟨O⟩ and h ̸∈H⟨O⟩. Since O is by definition
lower bounded, there is i = inf(O), and we have i ∈ hO. We will consider the
possible ordering relations between e and i.

Consider first (ii) e 6 i; in that case it is impossible that both i ∈ O and
e = i since then e ∈ O, e ∈ h, and hence h ∈ H⟨O⟩; then (i) implies h ⊥e h,
which contradicts the reflexivity of ≡e. Accordingly, [i ̸∈ O or e ̸= i], which
together with (ii) implies e < O, so we are done. We next show that all other
order relations between e and i lead to a contradiction.

Let us then suppose that (iv) i < e. Then we claim that ∀h [h ∈ He → h ∈
H⟨O⟩], which contradicts (i). For reductio, let (v) h′ ∈ He but h′ ̸∈ H⟨O⟩, hence
h′∩O = /0. On the other hand, there is a non-empty chain O′ = O∩hO for
some hO ∈ H⟨O⟩, so O′ ⊆ hO \h′. By PCP of BST92 there is c < O′, hence (vi)
c < O, such that (vii) hO ⊥c h′. By (vi), since i is the infimum of O, c 6 i.
Together with (iv) this implies c < e, and we also have e ∈ hO ∩ h′ from (i)
and (v), which contradicts (vii). We thus established the above claim, which
proves that the option (iv) is not possible.

The remaining case is that i and e are incomparable. Since e, i ∈ hO,
we get (viii) iSLRe. Consider transitions τ1 = i � Πi⟨hO⟩ and τ2 = e �
Πe⟨h⟩. Since by (viii) the set {τ1,τ2} is combinatorially consistent, and by
assumption there is no MFB, the set cannot exhibit CFB, so is consistent as
well; that is, Πi⟨hO⟩∩Πe⟨h⟩ ̸= /0. Let (†) h∗ ∈Πi⟨hO⟩∩Πe⟨h⟩, so (ix) h∗ ≡e h.
We claim now that (x) h∗ ∈ H⟨O⟩. Otherwise there would be c′ < O such that
(xi) h∗ ⊥c′ H⟨O⟩, by PCP92 and an argument like for the case above. By the
definition of infimum, c′ 6 i; yet if c′ = i, then h∗ ⊥i H⟨O⟩, hence h∗ ⊥i hO,
which contradicts h∗ ∈ Πi⟨hO⟩, where the last follows from (†). And if c′ < i,
then since i ∈ h∗ and i ∈ hO, we have h∗ ≡c′ hO, in contradiction to (xi).
We thus established (x), which given (i) implies h ⊥e h∗, whereas (ix) says
h∗ ≡e h: a contradiction. We have thus shown that incomparability of i and e
is not a possible option either, and the only possible ordering is e < i, which
implies e < O, as required.

We mention two helpful consequences of cll(O) being in the past of O,
which follow directly from Fact 4.7(2) and (3): First, given e < O, there is a
unique element of Πe that is consistent with H⟨O⟩, for which we write Πe⟨O⟩.
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Second, if every cause-like locus e ∈ cll(O) is in the past of O, every history
from H⟨O⟩ selects the same (unique) outcome Πe⟨h⟩= Πe⟨O⟩ of e. One may
wonder what happens to these two results if for some e ∈ cll(O), e ̸< O.
Very briefly, in such a case O might be compatible with more than one basic
outcome of e, thus singling out a basic disjunctive outcome of e. We will
return to this topic in our analysis of causation in BST in the presence of
MFB (Chapter 6.4).

Here is a further consideration that illustrates the effects of modal funny
business. Assume there is a set of point events E that consists of pairwise
compatible points (i.e., any two elements of E share some history). Does
it follow that E itself is consistent, that there is a history containing all of
E? The following Fact shows that this depends on the presence or absence
of MFB.

Fact 5.5. Let E ⊆ W be a set of events that are pairwise compatible, i.e., for
any e1,e2 ∈ E , there is some h ∈ Hist for which e1,e2 ∈ h. (For example, such
a set E could consist of pairwise SLR events.) If there is no history h for which
E ⊆ h, thenW exhibits MFB.

Proof. Let E ⊆ W be as above, and assume for reductio that no history
contains all of E while there is no MFB. Let C =df

∪
e∈E cll(e) be the set of

cause-like loci for all members of E . As by assumption no history contains
all of E , the set C is non-empty: Let E = E1 ∪ E2 for non-empty subsets
E1,E2 ⊆ E such that E1∩E2 = /0 and such that for some history h1, E1 ⊆ h1,
while E2∩h1 = /0. Then for any e2 ∈ E2, He2 splits off from h1 at some choice
point c < e2, and c ∈ cll(e2)⊆C (see Fact 3.8).

Consider now the set of transitions

T =df {c � Πc⟨e⟩ | e ∈ E ∧ c ∈ cll(e)∧ c < e}.

We can show that this set is combinatorially consistent: Let τi = ci �
Πci⟨ei⟩ ∈ T (i = 1,2). As E consists of pairwise compatible events, there
is some history h12 containing both e1 and e2. It is easy to check that that
history serves as a witness for the relevant clause from the definition of
combinatorial consistency (Def. 5.5): (1) If c1 = c2, then h12 ∈ Πc1⟨e1⟩ ∩
Πc1⟨e2⟩, which implies Πc1⟨e1⟩= Πc1⟨e2⟩. (2, 3) If c1 < c2, we have to show
that Hc2 ⊆ Πc1⟨e1⟩. We have h12 ∈ Πc1⟨e1⟩∩Πc2⟨e2⟩. Let now h′ ∈ Hc2 ; as
c2 > c1, we have h′ ≡c1 h12, so h′ ∈ Πc1⟨e1⟩, which implies τ1 ≺ τ2. (4) In
case c1 and c2 are incomparable, h12 witnesses their being SLR.
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So, given our assumptions, T is combinatorially consistent. We can now
use our assumption that there is no MFB to show that there must be some
history containing all of E , which is a contradiction, and thus finishing our
proof.

As there is no MFB, the combinatorially consistent set T is in fact
consistent: there is some history h ∈ H(T ). We claim that E ⊆ h. Assume
for reductio that for some e ∈ E , e ̸∈ h, and let he ∈ He. Then by PCP92, there
is a choice point c < e for which h ⊥c he, and indeed h ⊥c He (Fact 3.8).
So c ∈ cll(e), and by the definition of T , we have c � Πc⟨e⟩ ∈ T . But this
implies h ∈ Πc⟨e⟩ ⊆ H(T ), contradicting h ⊥c He.

5.4 OnMFB in BSTNF

In this section we outline an account of MFB in BSTNF structures. A
full account of this kind requires one to formulate counterparts of the
proofs from Section 5.2 in BSTNF. By focusing on BST92 structures without
maximal elements, however, we can use our powerful translatability results
between BSTNF and BST92 (see Chapter 3.6.2) to prove formal results con-
cerning MFB-related notions in BSTNF much more easily.

Let us thus begin by recalling the format of basic indeterministic transi-
tions in BSTNF: an event-type basic indeterministic transition is a pair ⟨ë,e⟩,
written as ë � e, where ë is a choice set and e ∈ ë. On the other hand, a
proposition-type basic indeterministic transition is a pair ⟨ë,He⟩, written as
ë � He, where again ë is a choice set and e ∈ ë. The set Hë is defined as
Hë =

∪
e∈ë He, andΠë is the partition ofHë whose elements are the individual

He, e ∈ ë, so that He ∈ Πë. We define an ordering of choice sets by

ë1 < ë2 iff ∃e′1 ∈ ë1∃e′2 ∈ ë2 [e1 < e2],

so that we need only small modifications to formulate a parallel to our
Definition 5.5 of combinatorial consistency:

Definition 5.11 (Combinatorial consistency in BSTNF). A set T = {τi =

ëi � Hi | i ∈ Γ} of basic transitions is combinatorially consistent iff for any
τi,τ j ∈ T :

1. if ëi = ë j, then Hi = H j (i.e., τi = τ j);
2. if ëi < ë j, then Hë j ⊆ Hi (i.e., τi ≺ τ j);
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3. if ë j < ëi, then Hëi ⊆ H j (i.e., τ j ≺ τi);
4. if ëi and ë j are incomparable (i.e., if neither ëi = ë j nor ëi < ë j nor

ëi > ë j), then Hëi ∩Hë j ̸= /0 (i.e., for some e1 ∈ ë1 and some e2 ∈ ë2,
e1 SLRe2).

Thus, in a combinatorially consistent set of transitions, there is no blatant
inconsistency (1), there is no order-related inconsistency (2, 3), and there
is no inconsistency related to inconsistent initials (4). Having modified the
definition of combinatorial consistency for BSTNF, the remaining definitions
of this chapter remain intact. That is, combinatorial funny business (CFB)
is defined as in Def. 5.6, downward extensions are defined as in Def. 5.7,
explanatory funny business (EFB) is defined as in Def. 5.8, and at the level
of BSTNF structures, MFB is defined exactly as in Def. 5.9.

Importantly, thanks to our translatability results (see Chapter 3.6.2 and
Appendix A.2, esp. A.2.5), the BSTNF analogues of all MFB-related results
investigated in Section 5.2 hold. As the use of the translatability results is
rather mechanical, we illustrate their working by proving just the BSTNF
analogon ofTheorem 5.1.This should illustrate how to produce counterparts
of the remaining (and less difficult) proofs.

Theorem 5.2. Let ⟨W,<⟩ be a BSTNF structure without maximal elements.
For its set of basic indeterministic transitions, TR(W ), the following holds:
There is a subset T1 ⊆ TR(W ) exhibiting combinatorial funny business iff there
is a subset T2 ⊆ TR(W ) exhibiting explanatory funny business.

Proof. “⇒” For reductio, assume that there is a T1 ⊆ TR(W ) that is a case
of CFB, but no set of transitions is a case of EFB. By Lemma A.3(4–5), in
W ′ =df Λ(W ), which is a BST92 structure, there is some T ′

1 = Λ̃(T1) that
is a case of EFB, but no set of transitions is a case of CFB (Λ̃ is introduced
in Def. A.1). This is, however, impossible by Theorem 5.1, which proves the
claim.

“⇐” For reductio, we assume that there is a T2 ⊆ TR(W ) that is a case
of EFB, but no set of transitions is a case of CFB. By Lemma A.3(4–5), in
W ′ =df Λ(W ), which is a BST92 structure, there is some T ′

2 = Λ̃(T2) that is
a case of EFB, but no set of transitions is a case of CFB. This is impossible by
Theorem 5.1, so the claim is proved.

Turning to the implications of MFB, the absence of MFB in a BSTNF
structure again has a welcome consequence for the location of cause-like
loci. These are defined as follows:
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Definition 5.12 (Cause-like locus in BSTNF). Let O be a lower bounded
chain in a BSTNF structure ⟨W,<⟩. The set cll(O) is:

cll(O) = {ë ⊆ W | ∃h [h ∈ Hist∧h ⊥ë H⟨O⟩]},

where h ⊥ë H⟨O⟩ ⇔df ∀h′[h′ ∈ H⟨O⟩ → h ⊥ë h′].

Note that in BSTNF, a chain O may begin at a member of ë ∈ cll(O), so
that in place of the strict ordering relation <, we have to work with the
weak ordering relation, 6, in what follows. As in the BST92 case, PCPNF
guarantees that some elements of cll(O) are (weakly) below O, but this
does not necessarily hold for all of them—consider again the EPR scenario
depicted in Figure 5.1, which indicates a cause-like locus e2 that is not in
the past of the chain O1. If the EPR scenario is reconstructed as a BSTNF
structure, it is clearly an example of MFB, now witnessing Def. 5.11. Again,
in all cases inwhich there is noMFB, each element of cll(O) lies in the (weak)
past of O, so we have Fact 5.7, a parallel of Fact 5.4. For the proof, we need
an additional Fact about outcome chains in BSTNF:

Fact 5.6. Let O be a lower bounded chain and let i =df infO. In BSTNF, for
any history h ∈ Hist, if i ∈ h, then h ∈ H⟨O⟩.

Proof. Assume for reductio that i ∈ h, but h ̸∈ H⟨O⟩. Let hO ∈ H⟨O⟩, and
consider O′ =df O∩ hO, which is non-empty by the definition of H⟨O⟩. As
O′ is an initial segment of O, we have i = infO′ as well. By our assumption,
O′ ⊆ hO \h, so by PCPNF, there is some choice set c̈ with c ∈ c̈, c 6 O′, and
for which hO ⊥c̈ h. We have c̈∩hO = {c} ̸= c̈∩h = {c′}. As c 6 O′, it must
be that c 6 i (i being the infimum of O′), so as i ∈ h, we have c ∈ h. But then
{c,c′} ⊆ h, which contradicts Fact 3.13(1) about the unique intersection of
choice sets with histories.

Fact 5.7. Assume that in a BSTNF structure ⟨W,<⟩ there is no MFB. Let O
be a lower-bounded chain. Then for every ë ∈ cll(O), we have e 6 O for some
unique e ∈ ë.

Proof. If cll(O) = /0, the claim holds vacuously. Let us thus assume
cll(O) ̸= /0, and pick some ë ∈ cll(O). Then there is h∗ ∈ Hist such that
(∗) h∗ ⊥ë H⟨O⟩, which means that h∗ ∩ ë = {e∗} while for any h ∈ H⟨O⟩,
h∩ ë ̸= /0 and h∩ ë ̸= {e∗}.
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Since O is lower bounded, it has an infimum i 6 O. If there is e ∈ ë for
which e 6 i, then e 6 O, and that member of ë is unique (take some h ∈ Hi

and apply Fact 3.13(1)), and so we are done.
We can show that given no MFB, this is in fact the only consistent option.

So, assume for reductio that there is no such e ∈ ë. It cannot be that all e ∈ ë
are incompatible with i, due to (∗), which implies that any h ∈ H⟨O⟩ (which
contains i) is compatible with some member of ë. So there has to be some
e ∈ ë and some history h such that {e, i}⊆ h, and as e ̸6 i by our assumption,
either (1) e > i or (2) eSLRi.

Case (1) leads to a contradiction: Given that e > i, there is a chain l ∈ Ce

for which i ∈ l, and so by the definition of a choice set, i < e∗ as e∗ ∈ ë. Thus
for the history h∗ witnessing (∗), i ∈ h∗, whence by Fact 5.6, h∗ ∈H⟨O⟩, which
contradicts (∗).

Case (2) is also excluded. Given that eSLRi, consider the transitions
τ1 =df ë � He∗ and τ2 =df ı̈ � Hi. The set T =df {τ1,τ2} is combinatorially
consistent (see clause 4 of Def. 5.11), and so, by the assumption that there
is no MFB, T is consistent. This means in particular that there is a history
h′ ⊇ {e∗, i}. Again, by Fact 5.6, h′ ∈ H⟨O⟩, which contradicts (∗), because as
e∗ ∈ h′, it must be that h′∩ ë = {e∗}.

An analogous fact is true for scattered outcomes—see Exercise 5.5.

5.5 Exercises to Chapter 5

Exercise 5.1. Let O be an outcome chain. Prove that if for all e ∈ cll(O), we
have e < O, then H⟨O⟩ =

∩
e∈cll(O) Πe⟨O⟩.

Hint: The “⊆” direction is simple. For the other direction, argue indirectly.
An explicit proof is given in Appendix B.5.

Exercise 5.2. Suppose that not all elements of cll(O) are in the past of O.
Will there still be some formula analogous to the identity established in
Exercise 5.1?

Hint: Assume that e ∈ cll(O). Instead of a basic propositional outcome
Πe⟨O⟩, use the basic disjunctive propositional outcome of e that is consistent
with O, i.e., the set H̆ =df {H ∈ Πe | H ∩ H⟨O⟩ ̸= /0}. Note the extra set-
theoretic layer.
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Exercise 5.3. Prove a version of Facts 5.4 and 4.7(2) for Ô a scattered
outcome. That is, prove the following facts:
Let Ô be a scattered outcome. (1) If there is no MFB, then for all e ∈ cll(Ô),
we have e < Ô. (2) If e < Ô, then there is a unique basic outcome of e that is
consistent with H⟨Ô⟩, which we denote Πe⟨Ô⟩.

Hint: For (1), use Fact 5.4 and Exercise 5.1. For (2), invoke Fact 4.7(2) for
O ∈ Ô. An explicit proof for (1) is given in Appendix B.5.

Exercise 5.4. Formulate and prove a version of Facts 5.4 and 4.7(2) for Ŏ a
disjunctive outcome.

Hint: Use Exercise 5.3 for the disjuncts Ô ∈ Ŏ.

Exercise 5.5. Prove the following parallel to Exercise 5.3 in BSTNF:
Let Ô be a scattered outcome in a BSTNF structure W . (1) If there is no MFB
inW , then [if h ⊥ë H⟨Ô⟩, then e 6 Ô for a unique e ∈ ë]. (2) If e 6 Ô for some
e ∈ ë, then no other e′ ∈ ë is consistent with H⟨Ô⟩.

Hint: Use the BSTNF versions of the Facts that are useful for Exercise 5.3,
(i.e., Fact 5.7 for (1) and Fact 4.9(2) for (2)).
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