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 Carnap’s Structuralist Thesis

Georg Schiemer

1.   Introduction

Rudolf Carnap’s philosophy of mathematics of the 1920s and 1930s is usually 
identified with his work on Fregean or Russellian logicism and with the prin-
ciple of logical tolerance first formulated in his Logical Syntax of Language 
(Carnap 1934).1 However, recent scholarly work has shown that Carnap also 
made significant contributions to the logical analysis of modern axiomatics and 
its (meta-​)theory, in particular in his unpublished manuscript Untersuchungen 
zur allgemeinen Axiomatik, written between 1927 and 1929. While the early 
metalogical work presented there has been investigated in detail (e.g., Awodey 
and Carus 2001; Reck 2007), no closer attention has so far been paid to the 
structuralist account of mathematics underlying Carnap’s “general axiomatics” 
project.

This chapter investigates Carnap’s mathematical structuralism in his work on 
formal axiomatics as well as in related contributions from the time. As will be 
shown, his account is based on a genuinely structuralist assumption, namely that 
axiomatic theories describe abstract structures or the structural properties of the 
objects in their domains. A central motivation for his work in the 1920s and early 
1930s was to give a logical analysis and explication of this structural content of 
theories. I will dub this assumption Carnap’s structuralist thesis.

The aim in the present chapter is twofold: first, to show that Carnap, in his 
various contributions to the philosophy of mathematics from the time, pro-
posed different ways to characterize the notion of mathematical structure. Three 
approaches will be analyzed in detail here. According to the first one, structure 
is what can be specified axiomatically, that is, in terms of “implicit definitions” 
expressed in a formal axiom system. Second, mathematical structures are also 
characterized in Carnap’s work in terms of “logical constructions,” more specifi-
cally, in terms of explicit definitions in a purely logical type-​theoretical language. 

	 1	 See, e.g., Carnap (1930, 1931), as well as Bohnert (1975) for a detailed study of Carnap’s account 
of logicism. Compare, e.g., Friedman (1999) and Wagner (2009) for surveys of Carnap’s contributions 
in his Logical Syntax.
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Finally, again in the context of his general axiomatics project, Carnap proposes a 
way to think about the structures shared by isomorphic models of a given theory 
in terms of the notion of structural abstraction. Thus, so-​called model structures 
are explicitly specified in Untersuchungen as isomorphism types that can be spe-
cified by means of “definitions by abstraction.” The chapter will survey Carnap’s 
different approaches to characterize the structuralist thesis and point out several 
connections between them.

The second aim is to re-​evaluate Carnap’s early contributions to the philos-
ophy of mathematics in light of current work on mathematical structuralism. 
Specifically, I will discuss two connections between his approaches to charac-
terize mathematical structures and present philosophical debates. The first point 
of contact concerns his attempt to specify structures in terms of definitions by 
abstraction, or equivalently, by abstraction principles. The general idea here is to 
specify an identity criterion for structures based on the notion of isomorphism 
between mathematical systems that instantiate these structures. As we will see, 
different versions of this type of structural abstraction have also been introduced 
in recent work on structuralism.2

Another point of contact with the present debate concerns the notion of 
“structural properties” of mathematical objects. Informally speaking, struc-
tural properties are characterized as those properties not involving the intrinsic 
nature of objects, but rather their interrelations with other objects in a given 
system. In Carnap’s work from the late 1920s, one can find two suggestions how 
to specify such properties, namely (i) in terms of the notion of logical definability 
and (ii) in terms of the notion of invariance under isomorphic transformations 
of a given system. As will be shown, a similar duality between two ways to think 
about structural properties is also discussed in contemporary work on structural 
mathematics.

The chapter is organized as follows: section 2 will provide a brief overview 
of Carnap’s work on the philosophy of mathematics before the publication of 
his Logical Syntax. Section 3 will then focus on Carnap’s structuralist account of 
mathematics, in particular on three ways to characterize the structuralist thesis, 
namely in terms of axiomatic definitions (section 3.1), logical constructions (sec-
tion 3.2), and definitions by abstraction (section 3.3). Given this, section 4 will 
then compare Carnap’s position with modern mathematical structuralism. The 
comparison will focus on the notion of structure abstraction (section 4.1) and 
the duality between definability-​and invariance-​based approaches to thinking 
about structures (section 4.2). Section 5 will contain a brief summary.

	 2	 See, in particular, Linnebo and Pettigrew (2014), Leach-​Krouse (2017), and Reck (2018).
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2.  Pre-​Syntax Philosophy of Mathematics

Carnap made central contributions to the philosophy of mathematics throughout 
his intellectual career. For the purpose of the present chapter, it makes sense to 
distinguish between two phases in his engagement with modern mathematics, 
namely a “structuralist” phase in his work from the 1920s and early 1930s and the 
subsequent turn to a “syntactic” period leading to the publication of his Logical 
Syntax of Language in 1934.3 Our focus here will be limited to Carnap’s pre-​
Syntax work on the philosophy of mathematics.4

His research on mathematics from this period mainly focuses on three areas 
that, on closer inspection, are connected with each other in interesting ways. 
Carnap’s most well-​known work is foundational in character and concerns 
a Fregean or Russellian logicism, that is, the reduction of mathematics to 
higher-​order logic. Carnap was a central proponent of the logicist program 
and published a number of articles on the topic.5 Logicism is described in these 
works as based on two main assumptions, namely (i) that all mathematical prim-
itive terms can be explicitly defined in a purely logical language and (ii) that all 
mathematical axioms (such as the axioms of Peano arithmetic) can be derived 
from purely logical principles (see, e.g., Carnap 1931).

While Carnap does not specify in detail the logical system to be used for such 
a logicist reduction in his work, he indicates at several places that it should be a 
simplified version of Russell and Whitehead’s type theory (henceforth TT) first 
presented in Principia Mathematica (Russell and Whitehead 1962). Logicism is 
thus understood as the general project of interpreting mathematical theories in 
a logical type theory. More specifically, according to Carnap, the logicist thesis 
consists of several interpretability results according to which the language of a 
given mathematical theory (such as Peano arithmetic) can be translated into a 
purely logical language such that all mathematical axioms and theorems become 
deducible from certain definitions and the logical principles of TT alone.6

	 3	 Compare Awodey (2017) for a similar distinction in Carnap’s work on the philosophy of 
mathematics. See Awodey and Carus (2007) for a study of Carnap’s transition to a purely syntac-
tical approach in the philosophy of logic and mathematics. Compare the articles contained in Part 2 
of Wagner (2009) for more detailed discussions of Carnap’s account of mathematics in his Logical 
Syntax.
	 4	 This should not suggest that that Carnap has made no interesting contributions on the topic 
in Logical Syntax or in later work. The present focus on Carnap’s early work is due to the fact that 
his structuralist understanding of mathematics is formulated in most detail here. See, for instance, 
Goldfarb and Ricketts (1992) for a more general discussion of Carnap’s philosophy of mathematics. 
Compare also Awodey (2007) for a study of Carnap’s post-​syntactic philosophy of mathematics and 
logic developed in his later work on semantics.
	 5	 See, in particular, Carnap (1930, 1931), and also Carnap (1929).
	 6	 Compare Carnap on this understanding of the logicist thesis:  “Every provable mathematical 
statement can be translated into a statement that consists only of logical primitive signs and that is 
provable in logic” (1931, 95).
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Given this type-​theoretic version of classical logicism, it should be noted that 
Carnap’s approach differed in several respects from earlier accounts of the logi-
cist thesis. Most importantly, logicism was not developed by him in strong op-
position to other foundational programs such as Hilbert’s formalism. Rather, at 
least from 1931 onward, his work on the foundations of mathematics can be seen 
as the attempt to “reconcile” Frege’s logicism with the emphasis on the formal ax-
iomatic method in the Hilbert school.7

A second field of Carnap’s research on mathematics concerns the foundations 
of geometry and the nature of space. While this work precedes his contributions 
to type-​theoretic logicism by a number of years, one can nevertheless iden-
tify several interesting thematic connections or continuities between the two 
fields. One such connection will be discussed in detail in section 3.2. It concerns 
Carnap’s use of logical or set-​theoretic constructions (also of central importance 
for the logicist program) in the representation of geometrical structures such as 
the structure of topological or projective space.

Carnap’s central contribution in this respect is Der Raum:  Ein Beitrag zur 
Wissenschaftslehre of 1922, a monograph based on his 1920 dissertation written 
under the supervision of the neo-​Kantian Bruno Bauch (Carnap 1922). Carnap’s 
aim in the book is to settle the long-​term debate on the nature of space by dis-
tinguishing between three types of geometrical space, namely formal, intuitive, 
and physical space, and by studying their respective interrelations. These dif-
ferent notions of space can be investigated by different types of geometrical the-
ories: formal space presents an abstract “order-​configuration” whose properties 
can be specified in terms of a formal axiomatic theory. Intuitive space, in turn, 
is described by geometrical principles grounded in some form of a priori intui-
tion (or a Husserlian Wesenserschauung). Physical space is described in applied 
or physical geometry, based on conventions concerning its metrical properties.8

This novel philosophical analysis of geometrical space was clearly motivated 
by several fundamental developments in 19th-​century geometry as well as by a 
long-​standing debate on the status of geometrical axioms. The immediate math-
ematical background of Carnap’s book includes Grassmann’s Ausdehnungslehre, 
Riemann’s theory of formal manifolds presented in his Habilitationsschrift, 
Klein’s and Sophus Lie’s algebraic study of different geometries in terms of trans-
formation groups, and Hilbert’s axiomatization of Euclidean geometry presented 
in his Grundlagen der Geometrie of 1899, to name only some. On the philo-
sophical side, Carnap’s book engages with work on the reception of the Kantian 

	 7	 See Awodey and Carus (2001), Reck (2004), and Schiemer (2012b) on Carnap’s attempted syn-
thesis of the different foundational approaches in mathematics.
	 8	 See Carus (2007) for a detailed discussion of the neo-​Kantian background of Carnap (1922). See 
Friedman (1999) and Mormann (2007) for different analyses of Carnap’s philosophy of geometry, in 
particular, on his account of the role of conventions in the book.
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account of geometrical knowledge in works by Natorp and Cassirer, Poincare’s 
geometrical conventionalism, as well as with contributions by Helmholtz and 
others on the status of geometrical axioms.

Carnap’s philosophical investigation of the nature of space and its axiomatic 
description in 1922 is closely connected to a third area of research, namely his 
subsequent work on formal axiomatics. The axiomatic method in mathematics is 
investigated in detail in several publications from the late 1920s and early 1930s. 
A main contribution is the second part of his logic textbook Abriss der Logistik 
(Carnap 1928) entitled “Applied Logicistic.” Carnap discusses here the logic of 
axiomatic definitions as well as the formalization of different axiomatic theories 
(including arithmetic, set theory, projective geometry, and topology).

A second important source is Carnap’s already-​mentioned Untersuchungen 
zur allgemeinen Axiomatik.9 In this unpublished manuscript, he develops a 
general study of the methodology of axiomatic mathematics and a logical ex-
plication of several metatheoretic concepts. This includes different notions of 
(relative) consistency, independence, and completeness of axioms or axiom sys-
tems that were discussed informally in preceding mathematical work. Carnap’s 
immediate mathematical background comprises work by Hilbert, the Italian 
“Peanists,” the American postulate theorists, as well as Richard Dedekind’s 
proto-​axiomatic study of arithmetic (Dedekind 1888). Moreover, regarding the 
study of different completeness properties of axiom systems, Carnap frequently 
refers to Fraenkel’s influential Einleitung in die Mengenlehre (1928) as an impor-
tant background for his own more systematic contributions.10

Given these thematic fields in Carnap’s early philosophy of mathematics, 
one comment concerning his general structuralist thesis is in order here. His 
analysis of the nature of formal geometry in 1922 and, more importantly, of ge-
neral axiomatics from the late 1920s clearly shows that Carnap was not only a 
“foundationalist,” but also an early proponent of a version of philosophical struc-
turalism. Interestingly, his structuralism was not an isolated position at that time, 
but shared by several other prominent philosophers, including Russell, Cassirer, 
and Quine.11 What clearly distinguishes Carnap’s account from that of his con-
temporaries is that the structuralist thesis for him was not just an informal posi-
tion regarding the nature of mathematics. On the contrary, a central motivation 

	 9	 Related articles written by Carnap on modern axiomatics are Carnap (1929, 1934), and Carnap 
and Bachmann (1936).
	 10	 See Awodey and Carus (2001) and Schiemer, Zach, and Reck (2017) for surveys of Carnap’s 
early metatheoretic work. Compare, in particular, Awodey and Reck (2002) for a detailed study of the 
development of metatheoretic notions in 19th-​ and early 20th-​century mathematics.
	 11	 See the articles on these philosophers in the present volume for detailed studies of their respec-
tive structuralist accounts of mathematics.
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underlying his work was to characterize in logical terms the structural content of 
formal theories. So what precisely is Carnap’s mathematical structuralism?

3.  Three Structuralist Ideas

Carnap’s work on the philosophy of mathematics from the 1920s and 1930s 
contains three distinct but interrelated proposals on how to characterize the 
structuralist thesis, that is, how to specify the structural content of mathematics:

	 (i)	 Structures via axiomatic definitions: a mathematical structure is what can 
be defined in terms of an axiom system.

	 (ii)	 Structures via logical constructions:  a mathematical structure is what is 
logically constructible in terms of explicit definitions in a purely logical 
language.

	(iii)	 Structures via definitions by abstraction: a mathematical structure is what 
can be specified in terms of definitions by abstraction (or by abstraction 
principles).

In the following section, I will give a more detailed discussion of these approaches 
as well as of Carnap’s understanding of their relations. Moreover, I will also dis-
cuss how the different methods of thinking about mathematical structure are 
connected to his generalized logicism.

3.1.  Formal Axiomatics

Carnap’s early writings on the philosophy of mathematics are strongly moti-
vated by the development of modern axiomatics in work by Hilbert, Dedekind, 
the Peanists, and the American postulate theorists (among others).12 What 
characterizes their contributions is a novel conception of the nature of mathe-
matical theories. Axiomatized theories were no longer understood descriptively, 
that is, as organizing our knowledge about a pre-​theoretically given system such 
as physical space or the natural numbers. Rather, they came to be understood 
prescriptively, as definitions of abstract mathematical structures.13

	 12	 Compare, e.g., Torretti (1978), Grattan-​Guinness (2000), and Gray (2008) for historical ac-
counts of the development of modern axiomatics.
	 13	 See Schlimm (2013) for a more detailed discussion of this development and the distinction be-
tween a descriptive and prescriptive account of axiomatic theories.
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Interestingly, this new account of the axiomatic method was applied not only 
in the case of algebraic theories such as the theory of groups, but also to theo-
ries traditionally viewed as descriptive in character. Hilbert’s axiom system for 
Euclidean geometry in his Grundlagen der Geometrie (1899) is a case in point 
here. Compare Paul Bernays’s apt characterization of the abstract character of 
Hilbert’s approach:

A main feature of Hilbert’s axiomatization of geometry is that the axiomatic 
method is presented and practiced in the spirit of the abstract conception of 
mathematics that arose at the end of the nineteenth century and which has gen-
erally been adopted in modern mathematics. It consists in abstracting from 
the intuitive meaning of the terms  .  .  .  and in understanding the assertions 
(theorems) of the axiomatized theory in a hypothetical sense, that is, as holding 
true for any interpretation . . . for which the axioms are satisfied. Thus, an axiom 
system is regarded not as a system of statements about a subject matter but as 
a system of conditions for what might be called a relational structure. (Bernays 
1967, 497)

Two issues are particularly noteworthy about Bernays’s account of the “abstract 
conception of mathematics” characteristic of modern axiomatics. (As we will see, 
both issues also play a significant role in Carnap’s own work on the topic.) The 
first one is a methodological point: the meaning of primitive mathematical terms 
is not supposed to be specified independently of the axiomatic theory, for in-
stance, by reference to some form of empirical or a priori intuition. Instead, their 
meaning is determined solely through their occurrence in the axioms in terms 
of implicit definitions. Second, this change is related to a new understanding of 
the very subject matter of an axiomatic theory. As is highlighted by Bernays, the 
axiomatic approach of Hilbert is characterized by the assumption that relational 
structures form the real content of mathematical theories.14

The idea that axiomatic theories deal with abstract structures also forms a 
central assumption in Carnap’s work on the philosophy of mathematics. One of 
his earliest works on the topic, Der Raum of 1922, already contains a specifica-
tion of this structuralist account of theories. As mentioned previously, Carnap 
distinguishes here between three different concepts of space, namely “formal,” 
“intuitive,” and “physical space.” The former type of space is the one investigated 
in pure or formal geometry. It is characterized by Carnap in the introduction to 
the book in terms of the concept of an “order system” (Ordnungsgefüge):

	 14	 Compare Torretti (1978) as well as the articles on Hilbert, Bernays, Dedekind, and Cassirer 
contained in the present volume for more detailed accounts of this structuralist understanding of 
modern axiomatics.
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Formal space is a general order-​system of a certain kind. By “general order-​
system” we mean a system of relations—​not between certain objects of a sen-
sible or nonsensible domain, but between entirely indeterminate relata about 
which we only need to know that one kind of link entails a different kind of link 
in the same domain. So formal space deals not with the figures usually con-
sidered spatial, such as triangles or circles, but with meaningless relata whose 
place may be taken by an enormous variety of things (numbers, colors, degrees 
of kinship, judgments, people, etc.). (Carnap 1922, 5–​6)

Notice the emphasis on the purely relational character of a formal space and on 
the fact that the nature of the primitive elements is irrelevant for its geometrical 
study. In fact, as Carnap points out, these objects are left “indeterminate” in the 
sense that only their interrelations to other objects are specified by the theory in 
question.

The first section of the book contains a closer specification of the character-
istic properties of a formal space. It is here that the background of Carnap’s un-
derstanding, namely modern axiomatics in the spirit of Hilbert’s work, becomes 
most explicit. Compare the following remark on the role of axiomatic definitions:

Only relations among the elements . . . are specified by the axioms. . . . Theorems 
are then derived from the axioms with no regard whatever for the intuitive 
meaning of these elements and relations.  .  .  . If we think of all the theorems 
as put into this more general form, then instead of geometry proper (that of 
points, lines, and planes) we have a “pure theory of relations” or “theory of or-
ders,” i.e., a theory of indefinite objects and of the equally indefinite relations 
holding among them. (Carnap 1922, 7–​8)

An axiom system (such as Hilbert’s axiomatization of Euclidean geometry) is 
described here as a “pure theory of relations,” that is, roughly as a formal theory in 
the modern sense of the term. The primitive terms of a theory are not interpreted 
but understood schematically. Axioms and theorems derived from the former 
are, in turn, not assertoric statements about a concrete space, but reinterpretable 
relative to different systems of the specified structure.

Interestingly, formal space itself is identified by Carnap with this abstract 
structure shared by the different models of the theory in question. Compare 
again Carnap on this characterization of the subject matter of formal geomet-
rical theories:

The object of this discipline is not space, i.e., the system of points, lines, 
and planes determined by geometrical axioms (which we call “intuitive 
space” to distinguish it), but a “relational or order system” [Beziehungs-​ oder 



Carnap’s Structuralist Thesis  391

Ordnungsgefüge] determined by the formal axioms. As this represents the 
formal design of the spatial system, and turns into the spatial system again 
when spatial elements are substituted for indeterminate relata, it too will be 
called “space”: “formal space.” (Carnap 1922, 8)

Notice that, in 1922, Carnap does not yet use the term “structure” to label such 
abstract forms or order systems. This use of terminology changes in the course 
of the 1920s, however, and Carnap eventually comes to introduce the notion of 
structure in his work on axiomatics. An early instance of this can be found in 
Carnap’s lecture notes for a course entitled “Philosophy of Space; Foundations 
of Geometry” held at the mathematical department of the University of Vienna 
in 1928 and 1930 as well as in Prague in 1932.15 The subject matter of a formal 
axiom system of pure geometry is sketched here as follows:

The AS [axiom system] is about undetermined objects. It determines only a re-
lational structure between them. . . .

Implicit definition: but more precisely: definition of a class of systems of 
objects, that is the shared “structure” of these systems. . . .

An AS determines (defines) one (or several) structure[s]‌ of a relational 
system, the “theorems” [Lehrsatze] determine structural properties of that 
system that follow from this definition, the AS; therefore analytic. (RC 
089-​62-​02)

These brief comments highlight Carnap’s general conception of axiomatics at the 
time: a theory can define one or several abstract structures shared by different re-
lational systems satisfying the axiom system in question. How is the notion of an 
axiomatically defined structure understood here?

This issue as well as the method of implicit definition is first addressed in 
closer detail in Carnap’s “Eigentliche und uneigentliche Begriffe” of 1927 as well 
as in his logic textbook Abriss der Logistik of 1929. The article contains a number 
of interesting observations regarding the axiomatic method, in particular on so-​
called definitions through axiom systems. Carnap illustrates this type of defini-
tion based on the example of a theory of basic arithmetic.16 According to him, 
this theory can either be understood as describing the properties of the intended 

	 15	 See documents RC 089-​62-​02 of the Rudolf Carnap Papers at the Archive of Scientific 
Philosophy (Hillman Library, University of Pittsburgh).
	 16	 The axiom system presented here is based on Russell’s theory of arithmetical progressions 
presented in Russell (1919). Compare section 15.3.3 for a more detailed discussion of the theory. 
A second paradigmatic example discussed in the text is again Hilbert’s axiomatization of Euclidean 
geometry in Hilbert (1899).
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or standard model of the natural numbers. Alternatively, it can also be viewed as 
a formal theory in the following sense:

We take the words “number” and “successor” as new terms that have not yet 
been given a meaning, and we stipulate that they are to refer to those concepts 
with the character specified by the AS. Thus here the AS makes no initial 
assumptions, but rather only through it is a class determined, which will then 
be called “the numbers,” and a relation, which will be called “successor.” In con-
trast to the determination of a concept by explicit definition, as discussed ear-
lier, here the new concepts are not connected to old ones, but are specified by 
the formal characteristics they inherently possess; hence the terminology “im-
plicit definition” for the determination of a concept by an AS. (Carnap 1927, 
360–​361)

As Carnap makes clear, this account of the implicit definition of primitive 
terms implies that theories so construed can be interpreted relative to different 
models. As will be shown in section 3.3, Carnap developed a detailed account of 
the model theory of axiomatic theories in his manuscript Untersuchungen zur 
allgemeinen Axiomatik, also written around the same time.

More important in the present context is how these models are related to the 
general structure defined by an axiom system. In the case of elementary arith-
metic, this relation between the possible interpretations of the axiom system (in-
cluding the standard or intended model) and their shared structure is described 
as follows:

The first model, the sequence of cardinal numbers, is that for the sake of which 
the AS was set up. As we see, however, the AS, and therefore the implicit defini-
tion it expresses, applies not only to that case, but also to infinitely many others, 
namely all those that agree with it with respect to the specified formal proper-
ties, i.e., the structure. In the theory of relations, the sequences with these prop-
erties are called “progressions.” . . . The implicit definition of the sequence of 
numbers therefore does not uniquely determine the number sequence, but only 
the unique class of all progressions. (Carnap 1927, 362)

Given this model-​theoretic account of axiom systems and their interpretations, 
what does Carnap mean by the structure of a theory? In addressing this issue, 
his distinction between “improper” and “proper” concepts plays a central role. 
Briefly put, an axiom system provides an implicit definition of several improper 
concepts whose meaning remains indeterminate. In the case of arithmetic, these 
are the concepts expressed by the primitive terms “natural number,” “zero,” and 
“successor” respectively. In addition, an axiom system can also be understood as 
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an explicit definition of a proper concept whose meaning is in turn fully deter-
mined by the definition.

According to Carnap, this “explicit concept” of an axiom system closely cor-
responds to the class of models or realizations satisfying the axioms in question. 
In fact, in the case of elementary arithmetic discussed in his 1927 article, the rel-
evant explicit concept (i.e., the “Peano number concept”) is simply defined as the 
“class” of all arithmetical progressions (see Carnap 1927, 368). This insight that 
an axiom system not only provides an implicit definition of its primitive terms, 
but also an explicit definition of a higher-​level mathematical concept, was not 
new at the time. In fact, it is likely that Carnap adopted the idea from his teacher 
Frege and the latter’s critical discussion of Hilbert’s work.17

Carnap’s reformulation of the Fregean understanding of axiom systems 
as definitions of higher-​level concepts is left informal in the 1927 article. This 
changes in Carnap’s Abriss der Logistik of 1929, where the topic is taken up again. 
In Part II of the book, titled “Applied Logistic,” Carnap gives a type-​theoretic 
explication of the notion of axiomatic theories and their content. Roughly put, 
axiom systems are formalized here in a language of simple type theory in the 
following way: the primitive terms of a theory are expressed by free variables (of 
a given order and type) X1, . . ., Xn. Axioms and theorems are expressed as prop-
ositional functions Φ(X1, . . . , Xn), that is, as open formulas in the modern sense 
of the term.18

Given this formalization of mathematical theories, Carnap reiterates the point 
that an axiom system not only provides an implicit definition of the primitive 
terms occurring in the axioms, but also an explicit definition of a higher-​order 
concept, the “explicit concept” of an axiom system. He gives the following formal 
account of the notion in the Abriss:

For instance, if x y P Q, ,... , ,... , ,...α β  are the primitive variables of the AS 
and if we name the conjunction of axioms (that is a propositional function)
AS(x,y, , , P,Q, )... ... ...α β  , then the definition of the explicit concept of this 
AS is

x̂, ̂y, ... ̂α,β, ... ̂P, ̂Q,{AS (x, y, ... α,β, ... P, Q, ... )}  (Carnap 1929, 72)

	 17	 Frege’s view of formal axiom systems as definitions of higher-​level concepts is first expressed 
in his famous exchange with Hilbert. It is also presented in Frege’s lecture “Logic in Mathematics” 
presented in Jena in 1914. Compare Carnap’s notes of the lecture as well as Gottfried Gabriel’s intro-
duction, both published in Awodey and Reck (2004).
	 18	 This convention to express primitive mathematical terms as variables and axioms as propo-
sitional functions has a rich mathematical prehistory and is discussed more extensively in Carnap 
(1927).
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The formula in this passage stands for a class of n-​tuples of possible interpret-
ations of the primitive variables of a given axiom system AS. Put in modern 
terms, an explicit concept is thus understood purely extensionally here, as deter-
mined by the class of models defined by the theory.19 Carnap’s notion of the ex-
plicit concept of an axiom system can thus be reconstructed in modern terms as 
a genuinely model-​theoretic notion, namely as the model class of a given theory. 
Regarding the previous example of elementary arithmetic, Carnap holds that

The explicit concept of Peano’s AS of the numbers, e.g., is the class of number 
sequences that satisfy the AS; this is the logical concept prog (class of the 
progressions). (Carnap 1929, 72)

The central point to note here is that this notion of explicit concepts can be un-
derstood as Carnap’s first attempt of a formal specification of the informal notion 
of “structure” (or “order system”) used previously to describe the subject matter 
of a theory. To put it in Howard Stein’s words, “A Fregean ‘second-​level concept’ 
simply is the concept of a species of structure” (1988, 254).

3.2.  Logical Construction

A significant part of Carnap’s pre-​Syntax work on the philosophy of mathematics 
was dedicated to foundational issues, in particular, to the further articulation of 
Frege’s and Russell’s logicist program. In the relevant publications on this topic, 
Carnap’s understanding of concept formation in mathematics seems to be at 
odds with his structuralist thesis.20 In particular, he states a strong preference 
here for the “logical construction” of mathematical concepts based on explicit 
definitions compared to the mere “postulation” of them in terms of axiomatic 
conditions. This clearly echoes Russell’s preceding discussion of the genetic and 
the axiomatic method and his well-​known remark on “theft over honest toil” in 
Russell (1919).

Logicism for Carnap too is based on a constructivist account of mathematics 
that distinguishes it from the axiomatic tradition of Hilbert and Dedekind. 
Compare Carnap on this general difference in his discussion of impredicative 
definitions:

	 19	 One should add here that, strictly speaking, the explicit concept of a theory cannot be identi-
fied with its class of models. Rather, what Carnap seems to suggest here is more of a “methodological 
identification” in the sense that one can study the one by studying the other. I would like to thank 
Erich Reck for emphasizing this point to me.
	 20	 See, e.g., Carnap (1930) and Carnap (1931).
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The essential point of this method of introducing the real numbers is that they 
are not postulated but constructed. The logicist does not establish the existence 
of structures that have the properties of the real numbers by laying down ax-
ioms or postulates; rather, through explicit definitions, he produces logical 
constructions that have, by virtue of these definitions, the usual properties of 
the real numbers. As there are no “creative definitions,” definition is not crea-
tion but only name-​giving to something whose existence has already been es-
tablished.  .  .  . This “constructivist method” forms part of the very texture of 
logicism. (Carnap 1931, 94)

The logicist approach to the formation of concepts in analysis (as well as in 
other mathematical fields) stated here is clearly incompatible with Hilbert’s un-
derstanding of axiom systems as implicit definitions of the primitive terms of a 
theory.21 How did Carnap address the apparent conflict between the two founda-
tional approaches, namely logicism and formal axiomatics?

Interestingly, the two traditions are usually not treated separately in his work. 
In fact, Carnap’s writings from the time have been described as a systematic at-
tempt to “reconcile” Frege’s logicist constructivism with Hilbert’s structuralist 
understanding of mathematics.22 One approach relevant here has to do with 
Carnap’s own characterization of the structuralist thesis. According to him, 
mathematical structures can be specified not only through axiomatic definitions, 
but also as those entities characterizable in purely logical terms. Thus, a princi-
pled way to think about mathematical structures for Carnap is to say that struc-
ture is what is logically definable in higher-​order logic (where higher-​order logic 
is usually taken to be a system of simple type theory).

A closer look at his writings from the 1920s helps to see how this “logicist” ac-
count of the structuralist thesis and its relation to the axiomatic approach were 
understood by him. A first formulation of the former approach can be found al-
ready in Der Raum. In the first chapter of the book and based on the discussion 
of Hilbert’s axiomatic approach, Carnap introduces a second way to specify a 
formal space (understood again as an abstract “order system”):

The construction of formal space can also be undertaken by a different path, 
however, not just by the above way of setting up certain axioms about classes 
and relations: by deriving (ordered) series and, as a special case, continuous 

	 21	 Compare again Carnap on the constructivism underlying Frege’s logicism: “A concept may not 
be introduced axiomatically but must be constructed from undefined, primitive concepts step by step 
through explicit definitions” (Carnap 1931, 105).
	 22	 Compare Awodey and Carus (2001), Reck (2004), and Schiemer (2012a) for more detailed 
discussions of this point.
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series from formal logic, the general theory of classes and relations. (Carnap 
1922, 8)

This logical construction of formal space is specified as follows: based on work by 
Russell (in particular Russell 1903), Carnap first introduces the notion of order 
relations and order systems, so-​called series. Special types of such order systems 
are series of the natural numbers, that is, arithmetical progressions in the sense 
specified in the previous section as well as continuous series of the real numbers. 
Given the latter, Carnap argues, one can set-​theoretically construct continuous 
series of higher levels, that is, sets of ordered tuples of real numbers. A formal 
space (of n dimensions) is then defined as a “continuous series of n-​th level (a 
series of series)” (Carnap 1922, 14). Put in modern terms, this is a manifold of 
n-​ary tuples of real numbers.

Given this general notion of a formal space—​also called a topological space Rnt 
here—​one can construct other spaces such as projective space or different met-
rical spaces by imposing “more restrictive conditions on the order relations in 
these series” (Carnap 1922, 14). Now, Carnap does not specify in detail how these 
restrictive conditions are to be understood. It becomes clear from his remarks, 
however, that they should not be identified with axiomatic conditions.23 More 
important to note here is that each of the resulting spaces remain formal in the 
sense specified above. Compare again Carnap on this point:

We are here still dealing with merely formal relations, without any assumptions 
about what sort of objects have these relations to each other. The different R’s 
are therefore also called systems of order-​relations (systems of ordinal rela-
tions), briefly, order-​systems. (Carnap 1922, 17)

Given this set-​theoretical construction of formal spaces as manifolds of real 
numbers, two points of commentary are in order here. The first point concerns 
the relation between Carnap’s logicist account of geometrical structures and the 
axiomatic approach discussed in the previous section. How precisely does the 
specification of structure in terms of entities characterizable in purely logical 
terms correspond to the one in terms of axiomatic definitions?

	 23	 In fact, in an interesting passage, Carnap mentions the axiomatic method as an alternative ap-
proach to the specification of such a formal space: “Now, it has emerged that the resulting order-​
structures (e.g., R3p), if they are to be investigated on their own (i.e., without reference to R3t or Rnt), 
are simpler to construct if they are presented directly as structures of certain simple relations whose 
formal properties are given—​rather than taking the circuitous route by way of continuous series of 
the first, and then of the third level subject to certain limiting conditions” (Carnap 1922, 15). See 
Mormann (2007) and Carus (2007) for more detailed discussions of Carnap’s approach.
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Interestingly, we saw that at least in Carnap (1922), Carnap viewed the two 
approaches as essentially equivalent ways to think about formal space. More spe-
cifically, as pointed out by Friedman in his editorial notes in Carnap (2019), the 
axiomatic approach gives implicit definitions of the primitive terms of a theory, 
whereas the logicist approach consists in “explicitly defining a model for such an 
axiom system within . . . set theory.” One could therefore think of the connection 
between the axiomatic and the logicist approach in the following way: a formal 
space, conceived of as an “order system,” is treated here as a concrete model of an 
axiomatic theory that is representable in set theory.24 It thus forms a particular 
instance falling under the higher-​level “explicit concept” defined by the theory.

It should be noted however that, strictly speaking, Carnap does not iden-
tify the subject matter of a formal geometry with a particular order system 
(conceived as a set-​theoretic model of the theory) in 1922. Given the notion of 
number series, Carnap introduces the notion of a similarity between such sys-
tems. This corresponds roughly to the modern notion of an isomorphism be-
tween two ordered sets.25 An “order type” of a particular series is then defined 
as the concept holding of all series similar to it. In the case of progressions, this 
is the order type ω; in case of continuous number series, this is order type λ. 
Compare again Carnap on this point:

To express more briefly what holds for these mutually similar series, we assert it 
of a single formal representative of them that we construct for this purpose. . . . 
Strictly speaking, this representative of the progressions is nothing other than 
their concept (in our sense of the word). (Carnap 1922, 13)

Applied to Carnap’s account of formal spaces sketched previously, it follows that 
a (topological, projective, or metrical) space should not be understood as a par-
ticular order system. Rather, it presents an order type, that is, a higher-​level sim-
ilarity concept or, put in purely extensional terms, a similarity class of such a 
system. Thus, both in Carnap’s axiomatic approach and in the set-​theoretic ap-
proach, mathematical structures are identified with higher-​level concepts. We 
will return to his conception of structures as similarity (or isomorphism) types 
in the next section.

Turning to the second point, one immediate consequence of Carnap’s ap-
proach in 1922 is that formal geometry itself becomes a part of logic or set theory. 
This fact was clearly intended and led him to formulate a generalized logicism  

	 24	 The latter approach, to think about structure in terms of logically definable models, can be found 
also in subsequent work by Carnap, in particular in his Untersuchungen manuscript. See Schiemer 
(2012b) for a closer discussion of this point.
	 25	 Compare section 15.3.3 for a closer discussion of Russell’s notion of the similarity of relations 
and Carnap’s later generalization of it.
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not limited to number theory and analysis.26 The view that formal space (as the 
subject matter of pure geometry) is essentially a logical concept is expressed at 
different stages in his work on the foundations of geometry. An early formulation 
of the idea is contained in his dissertation manuscript of 1920, which formed the 
basis for Der Raum:

An [abstract space] is a logical system of relations among indefinite elements. It 
says: in case certain relations, specified purely formally, hold among the elem-
ents of a set, then certain theories hold for this system. (Unpublished manu-
script, Quoted from Carus 2007, 110)

Compare also a related remark concerning the status of pure geometry in 
Carnap’s lectures notes of 1928:

(Mathematical) geometry is essentially relation theory (theory of relations, of 
structures, of order systems) a branch of formal logic, therefore analytic. (RC 
089-​62-​02)27

Pure geometry forms a part of logic because its subject matter, namely abstract 
space, can be represented in terms of sets of real number tuples that, given 
Frege’s thesis, are effectively reducible to arithmetical and thus to purely logical 
notions.

A different but related account of the logical nature of geometry can be iden-
tified in Carnap’s subsequent work on axiomatics. Returning again to his Abriss 
der Logistik, we saw that an axiom system not only gives an implicit definition 
of its primitive terms, but also an explicit definition of a higher-​level concept 
applying to all models of the theory in question. Carnap discusses a number of 
mathematical examples to illustrate this Fregean account, including Peano arith-
metic, Zermelo-​Freankel set theory, projective geometry, and topology (among 
others).

For instance, Carnap presents the following formalization of Hausdorff ’s 
neighborhood axioms for topological spaces:  the theory describes one primi-
tive binary relation, namely {αUx} standing for “α is a neighborhood set of x.” 
The class of points is defined as the range of relation U, that is, as pu :=  Ran(U). 

	 26	 This geometrical logicism, i.e., the fact that pure space is constructable in pure logic, essentially 
goes back to Russell’s extensive discussion of different geometries in his Principles of Mathematics 
(1903). Carnap frequently refers to this book, as well as to Russell and Whitehead’s Principia 
Mathematica as the primary sources for his own discussion of formal space. See, in particular, 
Gandon (2009) and Gandon (2012) for further details on Russell’s approach.
	 27	 I leave open the issue here how the concept of analyticity used here was understood by Carnap 
in his pre-​syntactical work.
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The theory of neighborhoods is given by the following axioms (in slightly 
modernized form):

Ax1a: Dom( ) ( )U pu⊂℘  (Neighborhoods are classes of points.)
Ax1b: U ⊂ ∈Kon( )  (A point belongs to each of its neighborhoods.)

Ax2: ∀ ∧ → ∃ ∧ ⊂ ∩α β α β α β, , ( ( ))x x x y y x yU U U  (The intersection of two 
neighborhoods of a point contains a neighborhood.)

Ax3: ∀ ∈ ∧ ∈ → ∃ ∧ ⊂α α α γ γ γ α, ( ( ) ( ))y Dom y yU U  (For every point of a 
neighborhood α, a subclass of α is also a neighborhood.)

Ax4:  ∀ ∧ ≠ → ∃ ∧ ∧ ∩ = ∅x y x y y x y, ( , , ( ))∈pu U Ux α β α β α β  (For two 
distinct points, there exist two corresponding neighborhoods with no points 
in common.)

Given this axiomatization, it seems natural to say that the explicit concept 
“hausd” represents the structure defined by Axioms 1–​5, i.e., the structure 
shared by all concrete models satisfying the theory. Moreover, given the fact that 
in Carnap’s formalization of the theory, the only primitive term, U (standing for 
the neighborhood sets), is symbolized as a relation variable, it follows that the 
concept hausd turn out to be purely logical in character. Compare Carnap on 
this point:

The explicit concept of a geometrical AS . . . presents the logical concept of the 
relevant type of space (e.g., the concept “projective space”). In this sense geom-
etry can also be represented as a branch of logistic itself (as arithmetic) instead of 
being a case of application of logistics to a nonlogical domain. (Carnap 1929, 72)

Concerning the specific example of Hausdorff topology, he goes on to add:

The explicit concept of the AS is the class of the “Hausdorffian neighborhood 
systems” (hausd), a purely logical concept. (Carnap 1929, 76)

These passages illustrate Carnap’s attempt to reconcile the logicist’s emphasis on 
explicit definitions with structural axiomatics. The resulting version of the logi-
cist thesis does not amount to the claim that the individual models of an axi-
omatic theory are logically constructible. Rather, Carnap adopts the Fregean 
strategy to represent the structural content of a mathematical theory in terms of a 
higher-​level concept defined by the theory’s axioms. Since such explicit concepts 
of theories (such as hausd) are definable in a language of pure type theory, it 
follows that the represented mathematical content is also purely logical, and the 
axiomatic theory thus “a branch of logic.”
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3.3.  Model Structures

An important characteristic of modern axiomatics is the new focus on 
metatheoretic properties of theories and their interpretations. As a consequence 
of this “metatheoretic turn” at the end of the 19th and early 20th century, axiom 
systems themselves became an object of (meta)mathematical investigation. 
Moreover, mathematicians working in geometry, number theory, and other dis-
ciplines started to investigate systematically the content of theories in terms of 
structure-​preserving mappings between their models.28

This metatheoretic approach in modern axiomatics is usually characterized 
today in structuralist terms, that is, by referring to the structures or structural 
properties defined by an axiom system. More specifically, it is usually held that 
one can investigate the logical structure of a given theory not only by deriving 
theorems, but also by analyzing how particular axioms contribute to the spec-
ification of this content, how the structure is changed if particular axioms are 
added or omitted from the system, and so on.29

Interestingly, a similar approach to expressing the metatheoretic properties 
of theories in structuralist terms can be identified in Carnap’s work on general 
axiomatics from the late 1920s. We saw in section 3.1 that Carnap, from his Der 
Raum onward, defended the view that an axiom system defines a structure (or an 
“order system”) that in turn can be instantiated by different “formal models” or 
physical “realizations.” While he does not discuss models and their properties in 
published work in closer detail, the model-​theoretic account of theories is devel-
oped in his project on “general axiomatics,” in particular, in his Untersuchungen 
zur allgemeinen Axiomatik. The manuscript contains a detailed discussion of 
the logical formalization of axiomatic theories that is similar to the account 
presented in Abriss der Logistik (see again section 3.1 for details). In addition, 
Carnap’s manuscript also contains a logical explication of several genuinely 
metatheoretical concepts (such as the notions of logical consequence, truth in 

	 28	 This line of research includes Dedekind’s categoricity result for arithmetic in Was sind und was 
sollen die Zahlen (1888), Hilbert’s consistency and independence proofs in his Grundlagen (1899), 
as well as the formulation of different notions of completeness in subsequent work by the postu-
late theorists. See Awodey and Reck (2002) for a rich study of early metatheoretic work in modern 
axiomatics. Compare also the articles on Hilbert and Dedekind in the present volume for further 
details.
	 29	 Compare Hintikka for a characterization of this general approach: “An axiom system is also 
calculated to serve also as an object for a metatheoretical study. . . . For the purpose of reaching such 
a metatheoretical overview, it is crucial to grasp the logical structure of the theory in question, in 
the sense of seeing what the different independent assumptions of the theory are, of seeing which 
theorems depend on which of these basic assumptions and so on. For this purpose, the axiomatic 
method is eminently appropriate” (Hintikka 2011, 72–​73).
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a model, etc.), as well as several metatheorems on the relation between different 
notions of completeness.30

A central concept defined in this context is that of a “model isomorphism,” 
that is, a mapping between two models of a given theory that preserves their re-
lational structure. The isomorphism relation (or, in Carnap’s terms, the “isomor-
phism correlation”) between two models is defined roughly in the modern sense 
as a bijective function between the respective individual domains that induces 
correlations between the higher-​order domains and thus preserves the relations 
in the models.31 Based on this notion, Carnap specifies several completeness 
properties that turn out to be crucial for the understanding of the “logical struc-
ture” of theories, including the notions of non-​forkability and monomorphicity 
(or, in modern terminology, of semantic completeness and categoricity).32

How does Carnap specify the structural content of axiomatic theories in 
Untersuchungen? In contrast to previous work, he argues here that an axiom 
system does not only define an “explicit concept” (conceived of as the class of 
its models), but possibly also several more fine-​grained structures, so-​called 
model structures (conceived of as subclasses of its model class). Roughly put, a 
model structure is the structure shared by isomorphic models of a given theory. 
As Carnap points out, such structures are to be identified with the classes of iso-
morphic models:

In logistic, one tends to define structures, including also the cardinalities, in 
terms of isomorphism classes. (Carnap 2000, 72)

In the related article (Carnap and Bachmann 1936), a more detailed specification 
of model structures in terms of the notion of a “complete isomorphism” is given:

Since the complete isomorphism between n-​place models (i.e., sequences with 
n members) is a 2n-​ary equivalence relation, n-​place relations can be defined 
over the field of this relation . . . such that the n-​place relations have the fol-
lowing properties: for each model there exists exactly one such relation which is 
satisfied by the constituents of the model and is satisfied by the constituents of 
two different models if and only if the models are completely isomorphic. The 

	 30	 See Carnap (2000). Several of the concepts introduced here were published later on in Carnap 
and Bachmann (1936). Compare Awodey and Carus (2001), Reck (2004), and Schiemer, Zach, and 
Reck (2017) for further details on Carnap’s axiomatics project.
	 31	 Carnap’s definition of “model isomorphism” is actually more complex than this since it takes 
into account a mapping between “inhomogeneous models,” that is, models with relations of different 
types and orders. See Carnap (2000) and also Carnap and Bachmann (1936) for further details. See 
also Carnap (1929) for a simplified definition.
	 32	 Compare, in particular, Awodey and Carus (2001) and Schiemer, Zach, and Reck (2017) for 
assessments of Carnap’s early metatheory and of the limitations of his approach.
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relations so determined we will call structures and will say that model M1 has 
structure S1 if “S1(M1)” is analytic. (Carnap and Bachmann 1981, 74)

Structures are specified here as unary relations that hold between any two 
models of a given theory in case there exists an isomorphism between them. In 
an attached footnote to the passage, Carnap goes on to add that structures in this 
sense are relations introduced by a “definition through formation of abstraction 
classes” or simply by “definition through abstraction” (Carnap and Bachmann 
1936, 171).33

Translated into modern terminology, the idea expressed here is to treat 
structures as particular equivalence classes, namely as “isomorphism classes” 
of models. Let K  be the class of models defined by a theory T. Let K /≅ be the 
partition of class K  induced by a suitable isomorphism relation ≅ between the 
objects in this class. For a model M K∈ , the relevant model structure is simply 
the isomorphism class M N | N M[ ]≅ = ≅: { }. Each model structure of T is a cell 
of the partition of K  induced by ≅. Moreover, given that K/≅  forms a partition, 
for any two different model structures we have the following two results:  (i)
M N =[ ] [ ]≅ ≅ ∅∩  and (ii) ⋃ M∈K M K/[ ] =

≅ ≅ .34

Given this approach, two further points of commentary are in order here. 
First, it should be noted that Carnap’s approach to thinking about mathematical 
structures in terms of definitions by abstraction was not new, but fairly conven-
tional at the time. In fact, in his Abriss and in other publications, Carnap refers 
to Frege’s famous definition of cardinal numbers in terms of an abstraction prin-
ciple as well as to work by Couturat and Weyl for further details on the method. 
Concerning the notion of mathematical structure, Carnap’s central background 
is Russell’s logical work on the general theory of relations. In fact, the notion of 
“model structures” outlined in Untersuchungen present a straightforward gener-
alization of the notion of “relational structures” previously introduced by Russell 
in his Introduction to Mathematical Philosophy (Russell 1919).35

In chapter 6 of his book of 1919, Russell first defines what he calls a “similarity 
relation” between relations:  two n-​ary relations R, S are similar if there exists 
a monotone, that is, a structure-​preserving function f: R → S such that x1, . . ., 
xn ∈ R iff f(x1), . . ., f(xn) ∈ S (Russell 1919, 52–​55). The “relation-​number” of a 
given relation is then defined as “the class of all those relations that are similar to 
the given relation” (Russell 1919, 56). Based on this, Russell then introduces the 

	 33	 This notion of structure based on the method of definition by abstraction but restricted to a 
single relation is discussed also in Carnap’s Abriss. See section 15.4.1 for further details.
	 34	 A natural way to think about the kind of structural abstraction from isomorphic models under-
lying this approach is in terms of abstraction principles. I will return to this point in section 15.4.1.
	 35	 See the article by Heis in the present volume for a more detailed study of Russell’s 
structuralist views.
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notion of “structure” in the sense that two similar relations “have the same struc-
ture.” More explicitly, he holds that

two relations have the same structure when they have likeness, i.e. when they 
have the same relation-​number. Thus what we defined as the “relation-​number” 
is the very same thing as is obscurely intended by the word “structure”—​a word 
which, important as it is, is never (so far as we know) defined in precise terms 
by those who use it. (Russell 1919, 61)

This passage shows how strongly Carnap’s account of structures in his general 
axiomatics project is influenced by Russell’s preceding ideas. In particular, in 
Untersuchungen and also in Carnap and Bachmann (1936), Russell’s notion of 
similarity is generalized to apply also to “non-​homogenous” relations as well 
as to models understood as ordered sequences of such relations. Similarly, the 
Russellian account of structures as “relation numbers,” that is, as similarity 
classes of relations, is adopted in Carnap’s work to apply also to formal models of 
different arities and of more complex type levels.

The second point to emphasize here is that Carnap’s motivation for the in-
troduction of model structures was clearly metatheoretic in spirit. Talk of such 
structures allowed him to develop a more refined account of the subject matter 
of axiomatic theories than in previous work. More specifically, instead of iden-
tifying the structural content of a theory with a single “explicit concept,” Carnap 
proposes a classification of axiomatic theories here based on the number and type 
of model structures they describe. In the completed first part of Untersuchungen 
(published as Carnap 2000), he introduces the notion of the “structure number” 
of theories as the number of isomorphism classes they describe. Categorical 
theories such as second-​order Peano arithmetic have number 1; noncategorical 
theories such as group theory or Hausdorff topology have structure numbers 
greater than 1.

In the projected but unfinished second part of the manuscript (RC 081-​01-​01 
to 081-​0133) as well as in Carnap and Bachmann (1936), a further specification 
of the structural content of theories is given based on the notion of so-​called 
extremal structures.36 The fundamental idea here is that the content of a theory 
is not only determined by the number of its isomorphism classes of models, 
but also by possible relations between them. A  central notion introduced by 
Carnap for the study of such interrelations between structures is that of a “proper 

	 36	 In the following, I refer mainly to the published results in Carnap and Bachmann (1936). For 
a closer discussion of the differences between the 1936 paper and the existing notes on Part 2 of 
Untersuchungen see Schiemer (2013).
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structure extension” (or “proper substructure”). Carnap proposes the following 
definition of this notion in his article with Friedrich Bachmann of 1936:

We call a structure S a proper substructure of a second structure T, if S and T 
are distinct and every model having the structure S is isomorphic to a proper 
part of every model having the structure T. (Carnap and Bachmann 1936, 175)

Put differently, given a theory T and two model structures S, T  described by 
it, we say that S is a proper substructure of T , in symbols S ⊏ T, if and only if  
(i) S T≠  and (ii) for every model M  with structure S and for every model N with 
structure T , there exists a mapping that embeds (in the model-​theoretic sense of 
the term) M into N. Notice that the relata of this substructure-​relation are the 
structures (conceived as isomorphism classes) themselves and not the models 
instantiating them.

Based on this notion of substructure, defined in terms of isomorphisms and 
embeddings between models, Carnap suggests an ordering of the class of model 
structures of a given axiomatic theory in terms of their extremal structures. The 
extremal structures consist of “initial structures,” “end structures,” and “isolated 
structures,” defined in the following way. Given the class of structures defined by 
a theory T, we say that

	 1.	 S is an “initial structure” iff there exists no T  of theory T such that T ⊏ S;
	 2.	 S is an “end structure” iff there is no T  of theory T such that S ⊏ T;
	 3.	 S is an “isolated structure” iff there is no T  of theory T such that S ⊏ T or  

S ⊏ T.37

Put less formally, the initial structures (taken together with the isolated 
structures) represent the structures of minimal models of the theory in ques-
tion, that is, of models that do not contain isomorphic copies of other models as 
submodels. Similarly, end structures (taken together with the isolated structures) 
represent structures of maximal models, that is, models not embeddable in other 
models. Isolated structures stand for models without any embeddings to other, 
non-​isomorphic models.

This framework of extremal structures was explicitly introduced by Carnap 
to further analyze the structural content of axiomatic theories.38 In particular, 
according to him, each theory can be assigned a “structure diagram,” that is, a 

	 37	 Compare Carnap’s slightly different definition of these extremal structures in terms of the do-
main and range of the substructure relation (Carnap and Bachmann 1936, 176).
	 38	 We refer the reader to Schiemer (2012a) for a closer discussion of this theory of extremal 
structures and the limitations of Carnap’s approach.
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(possibly infinite) directed graph where the nodes represent model structures 
defined by the theory and the edges represent the proper substructure relation 
(and thus the embedding properties between models of different structures). 
Such a structure diagram of a theory can thus be viewed as a graphical represen-
tation of its structural content.

To see how Carnap thought about this structural content in terms of his newly 
introduced terminology, let us briefly look at one of his mathematical examples 
discussed in this context, namely the theory of elementary arithmetic. This is 
essentially a version of Russell’s theory of arithmetical progressions with a single 
primitive relation R(x,y) (standing for a successor relation) and based on four 
axioms:

b1  ∀ ∀ → ∃( )x y R x y z R y z( , ) ( ( , ))

b2  ∀ ∀ ∀ ∧ → =( ) ∧ ∧ → =( )( )x y z R x y R x z y z R x y R z y x z( , ) ( , ) ( , ) ( , )

b3  ∃ ∈ ∧ ∉( )! ( ) ( )x x Dom R x Ran R

b4  MinS b b ;R1 3−( )  (Carnap and Bachmann 1936, 179)

Axiom b1 states that relation R is endless. Axiom b2 states that R is an injec-
tive function. Axiom b3 states that there exists a base element in the progres-
sion. Axiom 4 is a so-​called minimal axiom similar in effect to an induction 
axiom. It effectively imposes that all models satisfying axioms b1−b3 belong to 
minimal structures in the sense specified. What is particularly interesting about 
Carnap’s discussion of this mathematical axiom system is the way in which he 
characterizes its structural content by analyzing the corresponding structure 
diagrams of its subtheories. Consider the two graphs in Figure 1, presenting 
the possible structures of models satisfying axiom systems b1−b2 and b1−b3 
respectively.

The structures described by subtheory b1−b2(R) include the intended natural 
number structure, i.e., all isomorphic models of the form of a “progression” as 
well as infinitely many cycles of order 1 up to infinity. These structures, as well as 
the possible combinations of them, are presented by the nodes in the diagram on 
the right-​hand side.

By adding axiom b3 to the system, the structural content is significantly re-
stricted. In particular, as is illustrated in the diagram on the left-​hand side, 
adding b3 to the base theory will have the effect that all structures of isolated 
cycles will be eliminated. The model class of the theory now contains the 
models of the intended structure P (i.e., progressions) as well as unintended 
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models consisting of combinations of progressions and cycles. Adding the 
minimal axiom b4 finally has the effect that all further unintended models are 
ruled out and the only remaining structure defined by the theory is that of 
an arithmetical progression P. In other words, adding axiom b4 to the system 
b1−b3 will render the resulting theory categorical or, in Carnap’s own termi-
nology, monomorphic.

4.  Points of Contact with Modern Structuralism

The previous section has shown that one can identify several proposals in 
Carnap’s early philosophy of mathematics on how to characterize the struc-
turalist thesis. Interestingly, not only does his general structuralism connect 
his work with that of several of his contemporaries, including Russell, Husserl, 
Cassirer, and Quine, but one can also find several parallels between Carnap’s 
early views on the structural nature of mathematical theories and contemporary 
structuralism. In this section, we will focus on two specific points of contact with 
the present philosophical debate.
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Figure 1.  Structure diagrams of theories b1-​b3(R) and b1-​b2(R).
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4.1.  Structural Abstraction

Carnap’s treatment of model structures in his work on general axiomatics is based 
on the notion of abstraction. Specifically, we saw that the structure of a model of 
a given theory was identified with its isomorphism type, that is, with the class of 
models isomorphic to it. The main philosophical background for his approach 
was clearly Russell’s work, in particular, the extensive treatment of abstraction 
principles in Russell (1903) and the subsequent discussion in Russell (1919). 
Interestingly, Carnap’s abstraction-​based approach is also closely connected to 
much more recent debates on mathematical structuralism.

Present research on the topic is based on a general distinction between 
two ways to think about the nature of mathematical structures. According to 
“eliminativist” structuralists, the mathematicians’ talk about abstract structures 
should be understood merely as an abbreviation for generalizing over all models 
of a given theory. In contrast, “non-​eliminative” structuralists such as Parsons, 
Shapiro, and others are realists about mathematical structures. For them, ab-
stract entities such as the structure of the natural numbers exist in addition to the 
particular (set-​theoretic) systems satisfying a theory.39

In the literature on non-​eliminative structuralism, a further distinction is 
usually made between forms of ante rem and in re structuralism.40 Briefly put, 
ante rem structuralists hold that abstract structures are bona fide objects that 
exist independently of their instantiating systems. Thus, the structure of the nat-
ural numbers exists irrespectively of whether there are particular number sys-
tems satisfying the axioms of Peano arithmetic. In contrast, in re structuralists 
usually argue that such higher-​order entities are conceptually or ontologically 
dependent on their instantiating systems. Thus, according to this position, the 
natural number structure shared by all models of second-​order Peano arithmetic 
exists only insofar as there are concrete models of the theory that instantiate the 
structure.

Carnap’s own account of model structures outlined in Untersuchungen can be 
understood as an early formulation of in re structuralism about mathematics. In 
particular, his method of introducing structures by definitions by abstraction, 
i.e., by taking equivalence classes of isomorphic models, can be considered as 
one way to specify the conceptual dependency between structures and particular 
systems. Structures—​conceived of as isomorphism types or classes—​exist only 
if there are models of the axiomatic theory in question.41 Comparable accounts 

	 39	 See Reck and Price (2000) for an overview of the different accounts of mathematical 
structuralism.
	 40	 See, in particular, Shapiro (1997) on this distinction.
	 41	 One should add here that in Carnap’s understanding of structures as isomorphism classes, the 
conceptual dependency between structures and systems is only given under the assumption that the 
classes in question are non-​empty.
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of such an abstraction-​based structuralism can also be found in the current 
literature on the topic. Linnebo and Pettigrew have recently introduced a ver-
sion of non-​eliminative structuralism based on Fregean abstraction principles 
that determines this kind of abstraction from concrete systems to pure abstract 
structures (Linnebo and Pettigrew 2014).42 The motivating idea underlying their 
approach is described as follows:

A pure structure is the result of some operation of abstraction on a class of sys-
tems that are pairwise isomorphic. (Linnebo and Pettigrew 2014, 270)

Pure structures such as the structure of the natural numbers or of complete or-
dered fields can be introduced by abstracting away all nonessential or nonstruc-
tural properties of the objects in such systems. Such properties are identified here 
with properties not shared by isomorphic systems. The corresponding principle 
of structural abstraction has the form

	 S S S[ ] = ′[ ] ⇔ ≅ ′S � (SA)

where S,S′  represent relational systems of the same signature, ≅ symbolizes the 
isomorphism relation between such systems, and S , S[ ] ′[ ] express the structures 
of S and ′S  respectively. The principle (SA) specifies an identity condition for ab-
stract structures: for any two systems of a given signature, one can say that they 
share the same abstract structure just in case they are isomorphic.43

From a methodological point of view, this abstraction-​based account of struc-
turalism (as developed by Linnebo, Pettigrew, and Reck) is clearly similar to 
Carnap’s position from the late 1920s. Mathematical structures are specified here 
and there as general forms shared by isomorphic models or systems. Moreover, 
even though Carnap does not explicitly introduce a structural abstraction prin-
ciple of the form of (SA) in his work on axiomatics, a similar principle can be 
found in his Abriss der Logistik of 1929. In §22, in the context of his discussion 
of relations, the structure (or relation number) of a relation is identified with the 
“class of its isomorphic relations.” Theorem L 22-​24 then states an abstraction 
principle very similar to the one given above (Carnap 1929, 90):

	 P Smor Q . ≡ . Nr′ P = Nr′Q	

	 42	 A related account of mathematical structuralism based on a notion of “Dedekind-​Cantor ab-
straction” has recently been developed in Reck (2018).
	 43	 Linnebo and Pettigrew also formulate structural abstraction principles for positions and rela-
tions in such abstract structures. See Linnebo and Pettigrew (2014) for further details.
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where P,Q are relations of a given type and order, Smor stands for the isomor-
phism relation between them and Nr′P, Nr′Q stand for the structure of P and Q 
respectively.44

Despite the obvious similarity between Carnap’s and the contemporary ac-
counts, there are also important differences concerning the very notion of 
structural abstraction. With respect to abstraction principles such as (SA), this 
relates to the question how the abstraction operator used on the left-​hand side 
of the equivalence statement is understood. Such operators are usually treated 
as functions from a domain consisting of relational systems to a codomain of 
abstract structures. How can the codomain of the structural abstraction operator 
be understood?

In addressing this question, it is interesting to compare recent contributions 
to abstraction-​based structuralism with different uses of abstraction principles 
(and definitions by abstraction) in 19th-​ and early 20th-​century mathematics. 
In his recent study of this topic, Mancosu has shown that one can distinguish be-
tween at least three ways in which the operator in abstraction principles was un-
derstood in mathematics (Mancosu 2016). The values of abstraction functions 
were either taken to be (i) (canonical) representatives of the equivalence cells 
determined by an equivalence relation between mathematical objects or (ii) the 
equivalence classes themselves. Alternatively, the values of a given abstraction 
operator were also sometimes thought of (iii) as newly introduced abstracta, that 
is, as a type of “new object not coinciding with the equivalence class or one of its 
representatives” (Mancosu 2016, 87).

Mancosu’s taxonomy of the possible values of abstraction functions corres-
ponds closely to the different ways in which structural abstraction is described 
in the literature on structuralism. We saw that in Carnap’s case, structures of 
models are identified with their isomorphism types.45 Similar versions of this 
understanding of mathematical structures as equivalence classes can also be 
found in the more recent literature. Compare, for instance, how the nature of ab-
stract structures in the case of basic arithmetic is described by Benacerraf in his 
influential article of 1965:

	 44	 Carnap refers to Russell (1919) for further discussion of the notion of structure in this section. 
Compare Heis’s article in the present volume for a detailed discussion of similar structural abstrac-
tion principles in Russell’s work.
	 45	 It should be noted here that a corresponding structural abstraction principle of the form (SA) 
can lead to inconsistency in case the structures on the right-​hand side of the biconditional can also be 
inserted as models on the left-​hand side. This fact is related to the Burali-​Forti Paradox and has been 
discussed in the (neo-​)logicist literature and in philosophy of mathematics more generally. See, in 
particular, Linnebo and Pettigrew (2014) on this point. Notice that this danger of yielding an incon-
sistent account of structural abstraction is excluded in Carnap’s type-​theoretic framework given the 
fact that model structures are required to be of a higher type than their instantiating models.
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If we identify an abstract structure with a system of relations (in intension, of 
course, or else with the set of all relations in extension isomorphic to a given 
system of relations), we get arithmetic elaborating the properties of . . . all sys-
tems of objects (that is, concrete structures) exhibiting that abstract structure. 
(Benacerraf 1965, 70)

While Benacerraf does not address the issue of structural abstraction from sys-
tems to abstract structures here, he explicitly mentions the possibility of identi-
fying such structures as isomorphism classes of a given system.46

A different view of structural abstraction is presented in a recent paper 
by Leach-​Krouse (2017). Leach-​Krouse discusses different “structural” ab-
straction principles for models of axiomatic theories in the context of a neo-​
logicist approach to mathematics. The principles introduced here are similar 
in logical form to the structural abstraction principles already mentioned. 
However, the abstraction operators are understood neither in Carnap’s nor 
in Linnebo and Pettigrew’s sense.47 Instead, Leach-​Krouse’s account follows 
an “approach to abstraction favored by Georg Cantor and Richard Dedekind, 
on which abstraction serves to introduce the isomorphism type of a mathe-
matical structure as a first-​class citizen of the mathematical universe” (Leach-​
Krouse 2017, 3).

More specifically, given a finitely axiomatizable theory T expressed in a 
second-​order language with signature Σ = { }R , ,Rn1 ... , a structural abstrac-
tion principle AT for T is characterized here as a second-​order sentence of 
the form

	 ( )( )[ ( ) ( ) ]§ §∀ ∀ = ↔X Y X Y X E Yn n T n T n n T n � ( )AT

The (sequences of) variables Xn  and Yn  present model variables in Carnap’s 
understanding of the term, that is, ordered sequences of relation or function 
variables substituted for the primitive terms of the theory. The binary relation 
ET presents an isomorphism relation between models of theory T. The terms  
§T(Xn ) and §T(Yn ) present the structures of models Xn  and Yn  respectively. Thus, 
in a sense comparable to (SA), this principle states that any two models of T 

	 46	 In his 1965 article, Benacerraf does not mention Carnap as an early proponent of such an ac-
count of mathematical structures.
	 47	 Leach-​Krouse explicitly mentions the possibility of identifying mathematical structures with 
isomorphism classes (Leach-​Krouse 2017, 5–​6).
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that are isomorphic also share the same structure and vice versa (Leach-​Krouse 
2017, 9–​10).

In contrast to Carnap’s account of structural abstraction, the abstraction op-
erator §T does not give isomorphism classes as values here. Rather, §T expresses a 
type-​lowering function just as in the case of Hume’s principle in the neo-​logicist 
project. More precisely, it presents a function that assigns an object of the indi-
vidual domain dom of the object language to each model of the theory T. The 
only constraint on the interpretation of §T determined by the principle (AT) is 
that the function will assign the same individual to isomorphic systems. Thus, 
unlike in Carnap’s account, the structure of a given model is specified here in 
terms of “first-​order representatives” from the domain of the object language.48

A third possible approach to structural abstraction is presented in Linnebo 
and Pettigrew (2014) as well as in Reck (2018). In both accounts, the abstraction 
operator in (SA) gives as values pure structures of relational systems (of a given 
mathematical signature) that are thought of neither as equivalence classes nor 
as first-​order representatives, but rather as newly introduced abstracta or “sui 
generis objects” (Linnebo and Pettigrew 2014, 274). More specifically, structures 
are themselves structured systems consisting of a domain of pure positions (or 
placeholders) and pure relations that can be exemplified by concrete set-​theoretic 
systems. I cannot enter here into a closer discussion of the different approaches 
to structural abstraction or their philosophical implications.49 Instead, let us 
turn to a second point of contact between Carnap’s early structuralism and the 
modern debate.

4.2.  Invariance and Definability

The notion of structural properties of (objects in) mathematical systems plays a 
central role in modern structuralism. In fact, structuralism is often characterized 
by reference to this notion:  it is the thesis that mathematical theories investi-
gate only the structural or relational properties of the objects in their respective 
domains.50 According to this view, mathematical systems such as groups or 

	 48	 Leach-​Krouse’s approach to structural abstraction seems similar to Mancosu’s first strategy 
of thinking of the values of a mathematical abstraction operator in terms of representatives of a 
given equivalence class. Notice, however, that in Leach-​Krause’s account it is not required that the 
structures conceived of as first-​order representatives form elements of the relevant isomorphism 
classes they stand for.
	 49	 In this respect, it might be interesting to give a closer discussion of possible connections be-
tween an abstraction-​based structuralism and debates on the metaontology and logic of abstraction 
principles in neo-​logicism. See, e.g., Linnebo (2018).
	 50	 Compare, for instance, Hellman on this point: “On a structuralist view, . . . the mathematician 
claims knowledge of structural relationships on the basis of proofs from assumptions that are fre-
quently taken as stipulative of the sort of structure(s) one means to be investigating” (Hellman 1989, 5).
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number systems are usually specified axiomatically, that is, in terms of implicit 
definitions. The task of the mathematician is then to investigate the “structural 
relationships” between the objects in such systems based on deductive proofs.

As we saw, this account of modern axiomatics closely corresponds to Carnap’s 
view. Compare again the passage from his lecture notes on geometry (already 
quoted in section 3.1):

An AS determines (defines) one (or several) structure[s]‌ of a relational system, 
the “theorems” [Lehrsätze] determine structural properties of that system that 
follow from this definition, the AS; therefore analytic. (RC 089-​62-​02)

In his work on type theory and general axiomatics, Carnap proposes two ways in 
which this notion of structural properties can be made logically precise. The first 
approach—​ presented in Carnap (1929) and Carnap (2000)—​ is to specify struc-
tural properties of relations (and henceforth also of models of axiomatics the-
ories) in terms of the notion of invariance under isomorphic transformations. 
Carnap gives the following definition in his Untersuchungen manuscript:

Definition 1.7.1. The property f P of relations is called a “structural property” if, in 
case it applies to a relation P, it also applies to any other relation isomorphic to P. . . .

	 P Q fP Ism Q P fQ, & ,( ) ( )( ) → 	

The structural properties are so to speak the invariants under isomorphic trans-
formation. They are of central importance for axiomatics. (Carnap 2000, 74)

The structural properties of a relation are thus those properties left invariant or pre-
served under suitable isomorphisms. Typical examples of such properties mentioned 
by him concern the arity and type of relations, the cardinality of their fields, as well 
as properties such as the reflexivity, symmetry, and transitivity of a binary relation.

In addition to this invariance-​based account, Carnap proposed a second way 
to think about structural or “formal” properties in his monograph Der Logische 
Aufbau der Welt of 1928. In the first section of the book, the notion of a relational 
structure is characterized in terms of “the totality [Inbegriff] of its formal prop-
erties” (Carnap 1928, 13). Put differently, the structure of a given relation can be 
determined by considering all formal properties that apply to it. Formal proper-
ties, in turn, are specified in the Aufbau as follows:

By formal properties of a relation, we mean those that can be formulated 
without reference to the meaning of the relation and the type of objects be-
tween which it holds. They are the subject of the theory of relations. The 



Carnap’s Structuralist Thesis  413

formal properties of relations can be defined exclusively with the aid of logistic 
symbols, i.e., ultimately with the aid of the few fundamental symbols which 
form the basis of logistics (symbolic logic). (Carnap 1928, 21)

Such properties are thus determined by means of the notion of logical 
definability: a property of a relation is formal just in case it is definable in a pure 
type-​theoretic language.

Given Carnap’s suggestions on how to explicate the notion of structural prop-
erties, two further remarks should be made here. First, Carnap was clearly one 
of the first philosophers to reflect on a general duality between two conceptually 
distinct ways to specify the structural content of mathematics. This is the use of 
invariance criteria on the one hand and the method of logical definability on the 
other hand. This duality has also been discussed in more recent work on logic 
and model theory. Compare, for instance, Hodges’s characterization:

In a sense, structure is whatever is preserved by automorphisms. One conse-
quence . . . is that a model-​theoretic structure implicitly carries with it all the 
features which are set-​theoretically definable in terms of it, since these features 
are preserved under all automorphisms of the structure. There is a rival model-​
theoretic slogan:  structure is whatever is definable. Surprisingly, this slogan 
points in the same direction as the previous one. (Hodges 1997, 93)

The general observation stated here is clearly in line with Carnap’s two attempts 
to specify the structural properties of mathematical relations.51

Second, Carnap’s approach to structural properties is also closely related to re-
cent work on mathematical structuralism. In particular, one can find both ways 
to think about such properties, namely in terms of isomorphism invariance and 
logical definability, also in the present literature. For instance, a definability-​
based account of structural properties of positions in abstract structures is 
discussed in detail in work on non-​eliminative structuralism, e.g., in Keränen 
(2001) and Shapiro (2008). An invariance-​based account of structural properties 
of such positions is presented in Linnebo and Pettigrew’s (2014) work on struc-
tural abstraction.52

Moreover, the notion also plays a crucial role in several of the systematic 
debates in these fields, for instance, on identity criteria for positions in abstract 
structures (e.g., in work by Shapiro, Keränen, and Leitgeb). The central bone 

	 51	 An important difference from Hodges’s account concerns the logical framework in which struc-
tural properties are specified. Whereas Hodges’s book is about first-​order model theory, Carnap’s 
focus is on the definability of properties in a higher-​order language of logical type theory.
	 52	 See Korbmacher and Schiemer (2018) for a more systematic comparison of the two definitions 
of structural properties.
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of contention here concerns the question whether structurally indiscernible 
positions in a given structure—​that is, positions that share the same structural 
properties—​should be identified. A related Leibnizian principle of structural in-
discernibility is usually formulated as follows:

For all structural properties P and all objects a,b in the domain of a structure S:

	 ( ( ) ( ))P a P b a bS⇔ ⇔ = 	

The objects (conceived of as pure positions) in a structure are thus identified if 
there exists no structural property that allows one to discriminate between them. 
In this case, the objects can be said to play the same role in a given structure.53

Interestingly, Carnap developed a similar account of structuralist identity 
conditions in his work from the late 1920s. In the Aufbau, he first states the idea 
of a purely “structural description” of an object in a domain in terms of its formal 
properties. His example of the graphical representation of the European-​Asian 
railway network is used as an illustration of how one can, in principle, discrim-
inate between different objects (that is, train stations) by considering only such 
properties (Carnap 1928, 17–​19).54 Carnap adds that in the hypothetical case 
that two objects share exactly the same formal properties, they have to be “treated 
as identical in the strict sense” of the term (Carnap 1928, 19). A similar account 
of structural identity is expressed in his work on general axiomatics. The notes 
of the fragmented second part of the Untersuchungen contain a section titled 
“Reduction of the Primitive Concepts” (RC 081-​01-​12). Here Carnap addresses 
the question which objects of a given relation are identifiable purely in terms 
of the relation. He holds that “an R-​element x is describable through R if there 
exists a formal property with respect to R that only applies to x and to no other 
R-​element” (RC 081-​01-​12/​1). Carnap’s specification of this approach is based 
on the further distinction between two properties of pairs of elements of a rela-
tion, which he calls “homotopical” and “heterotopical.” Roughly put, two objects 
x, x ′ are homotopical with respect to a relation R if there exists an automorphism 
f : R R≅  such that f x x( ) = ′ . Objects that are not homotopical with any other 
object in R are called heterotopical R-​elements.55

	 53	 See Keränen (2001) and Shapiro (2008). Compare also Leitgeb and Ladyman (2008) for a crit-
ical discussion of such a “structuralist” identity criterion.
	 54	 In his concrete example, these are graph-​theoretic properties of the nodes in the unlabeled 
graph representing the structure of the railway system.
	 55	 According to Carnap, systems consisting only of heterotopical objects are called heterotopical 
systems. This concept corresponds closely to the modern notion of rigid systems, i.e., systems like 
the natural number systems whose automorphism class contains only the trivial automorphism. 
Compare Leitgeb and Ladyman (2008).
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The relevant result stated in Carnap’s Untersuchungen is that it is precisely the 
heterotopical objects in a relation (or a model) that can be identified in terms of 
formal properties. In contrast, in models consisting only of pairwise homotopical 
objects, such a discrimination of individuals is not possible given that there are 
often infinitely many non-​trivial automorphisms of the model. Carnap’s obser-
vation is obviously connected to the modern debate on the principle of iden-
tity of structurally indiscernible objects. In particular, it has been pointed out by 
Keränen (among others) that adopting such a principle will force structuralists 
to identify objects in nonrigid structures that can be mapped to each other by 
nontrivial automorphisms.

The second point to be mentioned here concerns the notion of the structural 
identity of relations or relational systems. In Untersuchungen, structural prop-
erties are defined for models of a given axiomatic theory in terms of the notion 
of isomorphisms. As Carnap points out in the passage cited earlier, such prop-
erties present the “invariants” under isomorphic transformations. A point not 
discussed in his 1928 manuscript, but briefly addressed in the Abriss, is whether 
one can formulate a structural property for a given relation (or a system of rela-
tions) that allows one to discriminate it from all other non-​isomorphic relations.

This directly relates to the question whether, for a given system, one can iden-
tify a complete invariant or, in Carnap’s terminology, a complete “structure char-
acteristic” of it. Put in modern terms, an invariant is simply a function f that 
assigns the same value to isomorphic systems, that is, for any two systems R, S, 
one has f(R) = f(S) ⇔ R ≅ S. An invariant for a given type of systems is complete 
if it also allows one to discriminate between any two non-​isomorphic systems.56 
Compare Carnap’s characterization of such complete invariants in his Abriss:

The task of presenting a “structure characteristic” . . . is to present a procedure 
by which one can assign a formula expression (for instance one consisting of 
numbers) to the given relations . . . in a way that two relations are assigned the 
same characteristic if and only if they are isomorphic. (Carnap 1929, 55)

Carnap made a rough suggestion in Abriss on how to formulate such a complete 
invariant for finite relations based on their graph-​theoretical representations and 
the corresponding adjacency matrices. Unfortunately, he did not further develop 
the ideas sketched there (see Carnap 1929, §22e). The relevant point for us to 

	 56	 Notice that the operators in the structural abstraction principle (SA) discussed in the previous 
section present complete invariants in this sense.
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note is that Carnap’s work already contains several of the key ideas—​particularly, 
on the identity criteria for objects and systems—​that are prominently discussed 
in contemporary debates on structuralism.

5.   Conclusion

This chapter surveyed Carnap’s contributions to a structuralist account of math-
ematics from the 1920s and early 1930s. As several other chapters in the pre-
sent volume show, his early structuralism was by no means an isolated position 
but shared by several other philosophers working at the time. Carnap’s con-
temporaries Ernst Cassirer, Bertrand Russell, and also Edmund Husserl can 
be mentioned in this respect. Characteristic of their respective work is the fact 
that it is based on a close philosophical reflection of several methodological 
developments in 19th-​ and early 20th-​century mathematics.

As we saw, this also holds of Carnap’s pre-​Syntax philosophy of mathematics. 
In his contributions from the period in question, one can identify three ways to 
characterize the thesis that mathematical theories are about abstract structures. 
The first method concerns axiomatic definitions which, according to Carnap, 
can be both understood as implicit definitions of the primitive terms of a given 
theory as well as explicit definitions of its class of models. The second method is 
based on the notion of logical constructions, specified by him in terms of explicit 
definitions in a logical type theory. Finally, Carnap’s work on general axiomatics 
depends crucially on the notion of model structures, characterized as isomor-
phism classes of models, specifiable in terms of definitions by abstraction.

The study of Carnap’s logical analysis of these different approaches allowed us 
to highlight several aspects of his early structuralism. First, Carnap took the dif-
ferent ways to characterize structures to be essentially equivalent. In particular, 
it is clear from the discussion given in Der Raum and in later writings that he 
understood Hilbert’s axiomatic approach and Russell’s genetic approach as two 
alternative ways to characterize the structural content of a theory. Second, it was 
shown that there are close connections in Carnap’s work between a structuralist 
account of mathematics and his understanding of the logicist thesis. More spe-
cifically, his proposal to treat the content of mathematical theories in terms of ex-
plicit concepts has direct ramifications for a generalized logicism: it allows one to 
treat also non-​arithmetical theories as reducible to logic and directly motivates 
an “if-​thenist” reconstruction of mathematical theorems.

Finally, I presented two points of contact between Carnap’s early philosophy 
of mathematics and recent debates on structuralism. The first concerns the role 
of structural abstraction principles in the formulation of versions of in re struc-
turalism. Carnap, closely following Russell in this respect, proposed to think of 
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structures of relational systems in terms of equivalence classes. Alternative ways 
to treat the operators in structural abstraction principles have been developed in 
work by Linnebo, Pettigrew, Reck, and Leach-​Krouse. The second point of con-
tact with modern work concerns Carnap’s suggestions on how to explicate the 
notion of structural properties, namely in terms of the notions of definability and 
invariance. As we saw, this proposal connects his early contributions to structur-
alism with debates on adequate structuralist identity conditions for positions in 
mathematical structures.

The focus of this chapter was on Carnap’s early contributions to the philos-
ophy of mathematics. It would be interesting to give a comparison between the 
structuralist thesis concerning mathematical knowledge developed there and 
Carnap’s more general scientific structuralism in his later work on the logic of 
science. Specifically, the present literature on Carnap still lacks a closer analysis 
of how his early contributions to general axiomatics are related to his mature 
work on logical theory reconstruction, for instance, on the ramsification of theo-
ries. A comparative study of Carnap’s structuralist ideas from different periods of 
his intellectual career will have to be developed elsewhere.
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