Applied Mathematics with Oceanology and

Computer Programming

[P.G.]
(CBCS)
(M.Sc. First Semester EndExaminations-2021)

MTM - 103
(ORDINARY DIFFERENTIAL EQUATIONS AND SPECIAL FUNCTIONS)

Full Marks: 50

Time: 02 Hrs
The figures in the right hand margin indicate marks
Candidates are required to give their answers in their own words as far as practicable
Illustrate the answers wherever necessary

1. Answer any FOUR questions
a) Consider the second order homogeneous linear differential equation

$$
a_{0}(x) \frac{d^{2} y}{d x^{2}}+a_{1}(x) \frac{d y}{d x}+a_{2}(x) \cdot y=0
$$

Where $a_{0}(x), a_{1}(x), a_{2}(x)$ are continuous on a real interval $a \leq x \leq b$ and $a_{0}(x) \neq 0$ for all $x \in[a, b]$. Let f_{1} and f_{2} are solutions of the differential equation. Show that if f_{1} and
f_{2} have relative maximum at a common point x_{0} of the interval $[a, b]$. Then f_{1} and f_{2} are linearly dependent on $a \leq x \leq b$.
b) Discuss the nature of the differential equation $z^{2} \frac{d^{2} \omega}{d z^{2}}+z \operatorname{Sin} z \frac{d \omega}{d z}+(1-\cos z) \omega=0$ at $z=0$
c) Let $P_{0}(z)$ be the Legendre's polynomial of degree n. If $1+z^{5}=\sum_{n=0}^{5} C_{n} P_{n}(z)$

Then find the value of C_{5}
d) Prove that
$F(\alpha, \gamma, v+1 ; z)=\frac{\gamma}{(\beta-\alpha) z}[F(\alpha, \beta-1, \gamma ; z)-F(\alpha-1, \beta, \gamma ; z)]$
e) What are Bessel's functions of order n ? State for what values of n the solutions are independent of Bessel's equation of order n.
f) Consider the linear system of differential equation
$\frac{d x}{d t}=a_{1} x+b_{1} y$
$\frac{d y}{d t}=a_{2} x+b_{2} y$

Where a_{1}, b_{1}, a_{2} and a_{2} are real constants. Show that the system has two real linearly independent solution of the form $x=A e^{\lambda t}$ and $y=B e^{\lambda t}$ if $a_{2} b_{1}>0$

2. Answer any FOUR questions

a) i) Let $P_{0}(x), P_{1}(x) \ldots . P_{n}(x)$ are continuous on $[a, b]$ and $y_{1}(x), y_{2}(x) \ldots y_{n}(x)$ are n solutions of the equation $P_{0}(x) \frac{d^{n} y}{d x^{n}}+P_{1}(x) \frac{d^{n-1} y}{d x^{n-1}}+\ldots+P_{n}(x) y=0$ then prove that $W\left(y_{1}, y_{2} \ldots y_{n}\right)$ is identically zero or nowhere zero in $a \leq x \leq b$. If $P_{0}(x), P_{1}(x) \ldots . P_{n}(x)$ are all polynomial functions of degree n and have one zero at common point $x_{0} \in[a, b]$ show that all solutions are linearly dependent.

Where $W\left(y_{1}, y_{2} \ldots . . y_{n}\right)$ is the Wronskian of $y_{1}, y_{2} \ldots . y_{n}$
ii) Show that
$1+3 P_{1}(z)+5 P_{2}(z)+7 P_{3}(z)+\ldots . .+(2 n+1) P_{n}(z)=\frac{d}{d z}\left[P_{n+1}(z)+P_{n}(z)\right]$
Where $P_{n}(z)$ denotes the Legendre's Polynomial of degree

$$
n
$$

$3+2+3$
b) i) Find the characteristics values and characteristic functions of the Sturm-Liouville problem
$\left(x^{3} y^{\prime}\right)+\lambda x y=0 ; \quad y(1)=0, y(e)=0$
ii) Prove that $\operatorname{Sin}(z \operatorname{Sin} \theta)=2 \sum_{n=1}^{\alpha} J_{2 n-1}(z) \operatorname{Sin}(2 n-1) \theta$ Hence find the series expansion of Sinz in terms of Bessel functions.
c) i) Solve by using Green function the differential equation $\frac{d^{2} u}{d x^{2}}+k^{2} u=x \quad(k \neq \pi) \rightarrow P i \quad$ subject to the boundary conditions $u(0)=\alpha \quad u^{\prime}(1)=\beta$
ii) Show that ordinary Green function does not exists for any arbitrary function for $u^{\prime}(-1)=u^{\prime}(1)=0$ and $\frac{d^{2} y}{d x^{2}}=f(x)$ $6+2$
d) i) If the function $\phi_{1}, \phi_{2} \ldots \phi_{n}$ defined as $\phi_{1}=\left(\begin{array}{l} \\ \phi_{11} \\ \phi_{21} \\ \phi_{n 1}\end{array}\right), \phi_{2}=\left(\begin{array}{l} \\ \phi_{12} \\ \phi_{22} \\ , \\ \phi_{n 2}\end{array}\right) \ldots . \phi_{n}=\left(\begin{array}{l}\phi_{1 n} \\ \phi_{2 n} \\ \phi_{n n}\end{array}\right)$ be n solution of a homogeneous differential equation $\frac{d x}{d t}=A(t) x$ then prove that if $W\left(\phi_{1}, \phi_{2} \ldots . \phi_{n}\right) \neq 0$ then solutions are linearly
independent. Where $W\left(\phi_{1}, \phi_{2} \ldots . \phi_{n}\right)$ is the wronskian of $\phi_{1}, \phi_{2} \ldots . . \phi_{n}$
ii) Find the solution of non-homogeneous linear equation $\frac{d x}{d t}=A x+F(t)$ where $A=\left(\begin{array}{cc}6 & -3 \\ 2 & 1\end{array}\right) F(t)=\binom{e^{5 t}}{4}$
e) i) Find the general solution of the equation $2 z(1-z) w^{n}(z)+w^{\prime \prime}(z)+4 w(z)=0$ by the method of solution in series about $z=0$, and show that the equation has a solution which is polynomial in z.
ii) Show that $n P_{n}(z)=z P_{n}^{\prime}(z)-P_{n-1}^{\prime}(z)$ where $P_{n}(z)$ denotes the Legendre Polynomial of degree n
f) i) Prove the series solution of the differential equation $\left(1-z^{2}\right) \frac{d^{2} \omega}{d z^{2}}-2 z \frac{d \omega}{d z}+n(n-1) \omega=0 \quad$ about $\quad z=0 \quad$ admits polynomial function of n is positive or negative integer.
ii) Prove that $\int_{-1}^{1} P_{m}(z) P_{n}(z) d z=\frac{2}{2 n+1} \delta_{m n}$ where $\delta_{m n}$ and $P_{n}(z)$ are the Kroneker delta and Legendre's polynomial respectively.

