Total Pages-05

RNLKWC/P.G.-CBCS/IS/MTM/103/21

2021

Applied Mathematics with Oceanology and Computer Programming

[**P.G.**]

(CBCS)

(M.Sc. First Semester EndExaminations-2021)

MTM - 103 (ORDINARY DIFFERENTIAL EQUATIONS AND **SPECIAL FUNCTIONS**)

Full Marks: 50

Time: 02 Hrs

The figures in the right hand margin indicate marks Candidates are required to give their answers in their own words as far as practicable Illustrate the answers wherever necessary

1. Answer any FOUR questions 4x2=8

a) Consider the second order homogeneous linear differential equation

$$a_0(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_2(x).y = 0$$

Where $a_0(x)$, $a_1(x)$, $a_2(x)$ are continuous on a real interval $a \le x \le b$ and $a_0(x) \ne 0$ for all $x \in [a,b]$. Let f_1 and f_2 are solutions of the differential equation. Show that if f_1 and f_2 have relative maximum at a common point x_0 of the interval [a,b]. Then f_1 and f_2 are linearly dependent on $a \le x \le b$.

- b) Discuss the nature of the differential equation $z^{2} \frac{d^{2} \omega}{dz^{2}} + z \operatorname{Sinz} \frac{d \omega}{dz} + (1 - \cos z)\omega = 0 \text{ at } z = 0$
- c) Let $P_0(z)$ be the Legendre's polynomial of degree *n*. If

$$1 + z^5 = \sum_{n=0}^5 C_n P_n(z)$$

Then find the value of C_5

d) Prove that

$$F(\alpha,\gamma,\nu+1;z) = \frac{\gamma}{(\beta-\alpha)z} \Big[F(\alpha,\beta-1,\gamma;z) - F(\alpha-1,\beta,\gamma;z) \Big]$$

- e) What are Bessel's functions of order n ? State for what values of n the solutions are independent of Bessel's equation of order n.
- f) Consider the linear system of differential equation

$$\frac{dx}{dt} = a_1 x + b_1 y$$
$$\frac{dy}{dt} = a_2 x + b_2 y$$

Where a_1 , b_1 , a_2 and a_2 are real constants. Show that the system has two real linearly independent solution of the form $x = Ae^{\lambda t}$ and $y = Be^{\lambda t}$ if $a_2b_1 > 0$

2. Answer any FOUR questions 8x4=32

a) i) Let $P_0(x), P_1(x), ..., P_n(x)$ are continuous on [a,b] and $y_1(x), y_2(x), ..., y_n(x)$ are n solutions of the equation $P_0(x)\frac{d^n y}{dx^n} + P_1(x)\frac{d^{n-1}y}{dx^{n-1}} + ... + P_n(x)y = 0$ then prove that $W(y_1, y_2, ..., y_n)$ is identically zero or nowhere zero in $a \le x \le b$. If $P_0(x), P_1(x), ..., P_n(x)$ are all polynomial functions of degree n and have one zero at common point $x_0 \in [a,b]$ show that all solutions are linearly dependent. Where $W(y_1, y_2, ..., y_n)$ is the Wronskian of $y_1, y_2, ..., y_n$ ii) Show that

 $1+3P_1(z)+5P_2(z)+7P_3(z)+\dots+(2n+1)P_n(z) = \frac{d}{dz} \Big[P_{n+1}(z)+P_n(z) \Big]$ Where $P_n(z)$ denotes the Legendre's Polynomial of degree n. 3+2+3

b) i) Find the characteristics values and characteristic functions of the Sturm-Liouville problem

(4)

$$(x^{3}y') + \lambda xy = 0; \ y(1) = 0, \ y(e) = 0$$

ii) Prove that $Sin(z Sin\theta) = 2\sum_{n=1}^{\alpha} J_{2n-1}(z)Sin(2n-1)\theta$ Hence
find the series expansion of *Sinz* in terms of Bessel
functions. $4+4$

c) i) Solve by using Green function the differential equation $\frac{d^2u}{dx^2} + k^2u = x \quad (k \neq \pi) \rightarrow Pi \text{ subject to the boundary}$ conditions $u(0) = \alpha \quad u'(1) = \beta$

ii) Show that ordinary Green function does not exists for d^2y

any arbitrary function for
$$u'(-1) = u'(1) = 0$$
 and $\frac{d^2 y}{dx^2} = f(x)$
6+2

d) i) If the function
$$\phi_1, \phi_2....\phi_n$$
 defined as

$$\phi_{1} = \begin{pmatrix} \phi_{11} \\ \phi_{21} \\ , \\ \phi_{n1} \end{pmatrix}, \phi_{2} = \begin{pmatrix} \phi_{12} \\ \phi_{22} \\ , \\ \phi_{n2} \end{pmatrix}, \dots, \phi_{n} = \begin{pmatrix} \phi_{1n} \\ \phi_{2n} \\ , \\ \phi_{nn} \end{pmatrix} \text{ be } n \text{ solution of a}$$

homogeneous differential equation $\frac{dx}{dt} = A(t)x$ then prove

that if $W(\phi_1, \phi_2, \dots, \phi_n) \neq 0$ then solutions are linearly

independent. Where $W(\phi_1, \phi_2, ..., \phi_n)$ is the wronskian of $\phi_1, \phi_2, ..., \phi_n$

ii) Find the solution of non-homogeneous linear equation

$$\frac{dx}{dt} = Ax + F(t) \text{ where } A = \begin{pmatrix} 6 & -3\\ 2 & 1 \end{pmatrix} F(t) = \begin{pmatrix} e^{5t}\\ 4 \end{pmatrix}$$
3+5

- e) i) Find the general solution of the equation 2z(1-z)wⁿ(z)+w''(z)+4w(z) = 0 by the method of solution in series about z = 0, and show that the equation has a solution which is polynomial in z.
 ii) Show that nP_n(z) = zP'_n(z) P'_{n-1}(z) where P_n(z) denotes the Legendre Polynomial of degree n 5+3
- f) i) Prove the series solution of the differential equation $(1-z^2)\frac{d^2\omega}{dz^2} - 2z\frac{d\omega}{dz} + n(n-1)\omega = 0$ about z = 0 admits polynomial function of n is positive or negative integer. ii) Prove that $\int_{-1}^{1} P_m(z)P_n(z)dz = \frac{2}{2n+1}\delta_{mn}$ where δ_{mn} and

 $P_n(z)$ are the Kroneker delta and Legendre's polynomial respectively. 5+3

[Internal Marks – 10]