Totai	Pages-04
-------	----------

RNLKWC/B.Sc./CBCS/VIS/H/MTMH DSE601/22

2022

MATHEMATICS

[HONOURS]

(B.Sc. Sixth Semester End Examination-2022)
PAPER-MTMH DSE 601
[NUMBER THEORY]

Full Marks: 60

Time: 03Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

Group A

1. Answer any ten questions:

2x10=20

- i) Find the general solution in integer of the equation 8x-27y=1.
- ii) Show that the remainder when $6.7^{32} + 7.9^{45}$ divided by 4 is 1
- iii) Prove that the eighth power of any integer, is of the form $17k \text{ or } 17k \pm 1$
- iv) If gcd(a,b)=1 then prove that $gcd(a+b, a^2-ab+b^2)=1$ or 3.
- v) If p be a prime and k is a positive integer, then prove that $\phi(p^k) = p^k \left(1 \frac{1}{p} \right).$

vi) If n is a positive integer such that $(n-1)! \equiv -1 \pmod{n}$, prove that n is prime.

vii) Find the number of zeros at the right end of the integer 141!

- viii) Find all primes p such that $\left(\frac{10}{p}\right) = 1$
- ix) Find the solution of the congruence $353x \equiv 254 \pmod{400}$
- x) Let p be a prime number. Prove that $x^2 \equiv 1 \pmod{P}$ if and only if $x \equiv \pm 1 \pmod{p}$
- xi) Show that if $d \mid m$, then $\phi(d) \mid \phi(m)$
- xii) Show that 4(29)!+5! is divisible by 31.
- xiii) Show that $2^{41} \equiv 3 \pmod{23}$

19

xiv) Determine the integer is the unit place of 19

xv) Let n be a positive integer such that gcd (n,9)=1. Prove that 9 divides $n^{18}-1$.

Group B

2. Answer any four questions:

4x5 = 20

- i) Prove that every prime number has a primitive root. Find $\pi(155)$.
- ii) If $ax \equiv ay \pmod{m}$, then prove that $x \equiv y \pmod{\frac{m}{(a,m)}}$. Show that $6!!+1 \equiv 63!+1 \equiv 0 \pmod{7}$.

- iii) State and prove Chinese Remainder theorem.
- iv) Prove that $53^{100}+103^{53}$ is divisible by 39.
- v) State Mobius inversion formula. If P_n is the nth prime, then prove that $\frac{1}{p_1} + \frac{1}{p_2} + ... + \frac{1}{p_n}$ is not an integer.
- vi) Find the least positive integer which leaves remainder 2,3 and 4 when divided by 3,5 and 11 respectively. Find integer m,n such that gcd(19,85) = 19m + 85n.
- 3. Answer any two questions:

2x10 = 20

- i) a) Solve the system of congruences. $x \equiv 14 \pmod{29}, x \equiv 5 \pmod{11}$ $x \equiv 15 \pmod{31}$.
 - b) If 2n+1 is prime, prove that $(n!)^2 \equiv (-1)^{n+1} \pmod{(2n+1)}$
- ii) a) Let n be an integer greater than 1 such that $n = p_1^{r_1} p_2^{r_2} p_k^{r_k} \text{ where, } p_1, p_2, ..., p_k \text{ are distinct prime integers. Then prove that}$

$$\phi(n) = n \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) ... \left(1 - \frac{1}{p_k} \right)$$

$$\phi(6480)$$

b) Define linear Diophantine equation. Let a,b,c,d be integers and m be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ then prove that, $ax + by \equiv cx + dy \pmod{m}$

- iii) a) If p and q are distinct primes and a is any integer, prove that $a^{pq} - a^p - a^q + a$ is divisible by pq.
 - b) Let n > 2 be an integer. Prove that $\phi(n)$ is even. 2
 - c) Use the theory of congruencies to find the remainder when the sum $1^5+2^5+3^5+...+100^5$ is divisible by 5. 3
 - d) Prove that cube of any integer is of the form $9K \, or \, 9K \pm 1$.