2022

COMPUTER SCIENCE

M.Sc. Second Semester End Examination - 2022 Paper - CS-202

Design & Analysis of Algorithm

Full Marks: 50

Time 2 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group - A

1. Answer any four questions.

4×2=8

- a) Time complexity of the recurrence relation T(n)=25T (n/5) + n is
- b) The total cost of the spanning tree of the following graph using Kruskal's Algorithm is

(Turn Over)

c) A feasible solution in fractinal Knapsack problem with Knapsack size M refers to a solution that has

- a) Maximum profit with weight less than M.
- b) Maximum profit with weight less than or equal to M
- c) Maximum profit only.
- d) Any of these.
- d) What do you mean by the properties definite and finite properties that an algorithm must have?
- e) A is the adjancency matrix of a graph. What does the value of (i,j) entry of A³ convey?
- f) What do you mean by stable sorting?

Group - B

Answer any four questions

 $4 \times 4 = 16$

2. Apply Prim's algorithm to compute a minimum cost spanning tree for the following graph. Consider vertex 7 as the starting vertex.

M.Sc. RNLKWC-/Computer Science/CS-202/22

(Continued)

3. Fill out the dynamic programming table for the following 0-1 knapsack problem :

$$n=5, W=10$$

Items (weight, value): $I_1(4,6)$, $I_2(2,4)$, $I_3(1,3)$, $I_4(6.9)$, $I_5(3,5)$

- 4. Explain the max-flow min-cut theorem with an example.
- 5. Find the shortest paths between all pairs of nodes in the following graph using Floyd's alrorithm.

6. Suppose, an altorithm has the following time complexity in terms of recurrence relation:

$$T(n) = 2$$
, $T\left(\frac{n}{2}\right) + n$

7. What do you understand by NP complete? Write a short note on any one NP complete problem. 2+3

Group - C

(Long answer type question)

Answer any two questions

 $2 \times 8 = 16$

- 8. a) Find the optimal parenthesization of the following matrix chain:
 - $M_1(10\times20) * M_2(20\times40) * M_3(40\times5) * M_2(5\times50) * M_3(50\times10)$
 - b) Give an altorithm for the above procedure. 6+2=8
- 9. a) Sort the following elements using Heap sort:

11 45 23 78 14 36

- b) Find out best and worst-case time complexity of Quick sort.

 4+4-8
- 10. a) Compare DFS and BFS.
 - b) Gompare dynamic programming and divide-and-conquer method.
 - c) Define the classes P and NP. Discuss diagramatically the relations among P class, NP class, NP-hard, and NP-complete. 2+2+4=8
- 11. a) Give a solution of 8-queen problem.
 - b) Give an efficient algorithm for multiplication of compatible Martices.

 4+4

M.Sc. RNLKWC-/Computer Science/CS-202/22