2022

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

[P.G.]

(M.Sc. Fourth SemesterEnd Examination-2022) PAPER-MTM 401

Full Marks: 50

Time: 02 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

[FUNCTIONAL ANALYSIS]

Group - A

Answer anytwo questions from the following:

2x10=20

- 1. a) Show that the set of all convergent sequences is a normed linear space with norm . $\|\{x_n\}\| = Sap_n|x_n|$
 - b) Let χ be the linear space of all bounded real continuous real functions f(x) defined on the closed interval [a,b]. Show that the mapping $T:X\to H$ defined by $T(f)=\int_a^b f(x)dx$ is a linear functional.

- 2. a) Show that for any bounded linear operator $T: X \to Y$ $\sup_{x \neq 0} \frac{\|Tx\|}{\|x\|} = \sup_{x \neq 0} \|Tx\| \text{ where } X \text{ and } Y \text{ are normed linear spaces.}$
 - b) Let the integral operator $T:C[0,1] \to C[0,1]$ be defined by $Tx(t) = \int_0^t K(t,s).x(s)dx \text{ where } K(t,s) \text{ is a given continuous}$ function on the closed sequence $[0,1] \times [0,1]$

Show that there exist a real constant M such that $||Tx|| \le M ||x||$ for all $x \in C[0,1]$ 4+6

- 3. a) Let X any Y be Banach spaces and $A \in BL(X,Y)$. Show that there is a constant c > 0 such that $||Ax|| \ge c ||x||$ for all $x \in X$ if and only if $Ker(A) = \{0\}$ and Ran(A) is closed in X.
 - b) Let the space $l^2(\square)$ be defined as the space of all two-sided squaresummable sequences and the bilateral shift is the operator W on $l^2(\square)$ defined by

$$W\left(..., a_{-2}, a_{-1}, \hat{a}_{-1}, a_{1}, a_{2}, ...\right) = \left(..., a_{-3}, a_{-2}, \hat{a}_{-1}, a_{0}, a_{1}, ...\right)$$
 Prove that
Wis a unitary, 5+5

4. a) Let X and Y be normed linear spaces and Let $T: X \to Y$ be a linear continuous transformation. Show that the kernel of T is a closed linear subspace.

b) If X is a normed space, M is a closed subspace of $X, x_0 \in X \setminus M$ and $d = dist(x_0, M)$, show that there is an $f \in X^*$ such that $f(x_0) = 1$, f(x) = 0 for all $x \in M$ and $||f|| = d^{-1}$ 5+5

Group - B

Answer anytwoquestions:

2x6 = 12

- 5. a) Define parallelogram law in an inner product space.
 - b) Show that parallelogram law does not hold in C[a,b] 2+4
- 6. a) Define unitary and isometric operators.
 - b) Show that a bounded linear operator T on a complex Hillbertspace X is unitary iff T is isometric and surjective.

 2+4
- 7. a) Let X = C[0,1] with the supremum norm. Consider the sequence $x_n(t) = \frac{t^n}{n^3}$, $t \in [0,1]$ Check whether the series $\sum_{n=1}^{\infty} x_n$ is summable in X.
 - b) State the relation between the continuous property and boundedness property of a linear function.

 4+2
- 8. a) Let Y be a normed space and Y_0 be a dense subspace of Y.

 Suppose Z is a Banch space and $T \in BL(Y_0, Z)$. Prove that there exist a unique $\tilde{T} \in BL(Y, Z)$ such that $\tilde{T} \mid Y_0 = T$
 - b) Let $T \in BL(H)$ be self -adjoint. Show that $Ker(T) = Ker(T^*)$

Group - C

Answer any Four questions of the following:

4x2 = 8

- 9. If X and Y are normed linear spaces then state the Condition on the space Y so that B(x, y) becomes a Banach space.
- 10. Let X and Y be normed spaces. If X is finite dimensional, then show that every linear map from X to Y is continuous.
- 11. Prove that T^*T is a positive operator.
- 12. If M is a closed subspace of a Hillbest space X and $x \in X$ then we know there exists element y in M and Z in M^{\perp} such that x = y + z. Prove that such decomposition is unique.
- 13. Let $\{e_i\}$ be a nonvoidorthonormat Set in an inner product space X. State the condition on $\{e_i\}$ so that Bassels inequality reduces to Parseval's identity
- 14. Let X be a normed space. Show that $x_n \to x$ weakly in X does not imply $x_n \to x$ in X in general.
- 15. Let $\{x_n\}$ be a weakly Convergent sequence in a normed linear space X and x be the weak limit of $\{x_n\}$. Prove that this weak limit is unique.
- 16. Let X be a normed space and $\Phi(x) = 0$ for every $\Phi \in X^*$. Show that x = 0

Internal Assessment - 10