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Abstract
Many papers have been published for finding eigenvalues and eigenvectors of a fuzzy
matrix (FM) (i.e. matrix with membership values) as well a fuzzy graph. But, all
papers determine such parameters based on conventional arithmetic operators, though
the valid operations on FMs are max–min. To the best of our knowledge no papers
are published to find eigenvalues and eigenvectors based on max–min operators. In
this paper, a novel technique is adapted to find the eigenvalues and eigenvectors of
an interval-valued fuzzy graph (IVFG) using max–min operators. The energy of an
IVFG is defined and computed using max–min operators. Finally, an application of
eigenvalues of an IVFG is discussed for the ecological system. In ecology, the amount
of food consumed by a predator from the preys is represented as an interval valued
fuzzy membership values which is natural as the consumption of food for a predator
from preys is uncertain. So this application is very much appropriate for eigenvalues
and eigenvectors as well as energy of an IVFG.
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1 Introduction

By the definition of fuzzy relations, it is familiar that real-life matters/objects be related
to each other by a certain degree/grade. In real-life position, one object is either related
or not related with another object. So, there is no opportunity to mention the strength
or degree of relationship. But, we can assign the strength/degree of relationship, using
the concept of fuzzy set theory between two objects. To represent a relationship there
may be uncertainty/hesitation but, fuzzy set theory is enough if there is no hesitation
or doubt to determine the strength/degree of relationship.

In extension of fuzzy sets there is a growing interest which can model not only
uncertainty but also vague information. We know that the membership value com-
pletely depends on the thoughts of the decision maker, his habits, mentality, etc. So,
membership value can’t be measured as a point, but measured appropriately as an inter-
val. Therefore, an interval-valued fuzzy set (IVFS) was successfully used to overcome
the hesitation.

It is well known that graph representations are very important to model and analyze
various real life problems and complex systems. Generally it is used in different
domains for dealing with structural information such as operations research, computer
science, engineering, networks, medical sciences, system analysis, ecosystems, image
interpretation, pattern recognition and economics. One of the complex networks in the
ecosystem is food web.

Eigenvalues and eigenvectors are generally crucial for determining the long term
behavior of all kinds of models. A particular list of applications includes the followings:

• Population dynamics (biology/epidemiology)
• Stabilizing a system eg. anti lock brakes (control theory/engineering)
• Finding resonant frequencies (engineering, physics)
• Ranking internet pages by importance (computer science)
• Principal component analysis (statistics)
• Finding stable axes of rotation (physics)

Energy of a graph is the sum of absolute values of the eigenvalues of the adjacency
matrix of that graph. This quantity is studied in the context of spectral graph theory.
The energy of a given molecular graph, in chemistry is interesting as its relation to the
total number of π -electron of the molecule represent by that graph. A graph has zero
energy if all of its vertices are isolated, while for a complete graph Kn with n entries
has 2(n − 1) energy.

1.1 Review of related work

Interval-valued fuzzy sets, apparently with Zadeh in 1975 first proposed by Sambue
[25], who called them φ-floues functions with respect to the assignment of membership
degrees, serve to capture a feature of uncertainty. The actual idea is to replace fuzzy
[0, 1]-valued membership degrees by subintervals of the interval [0, 1] realized to
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Energy of IVFG and its application, present contribution

Energy of fuzzy graph by Anjali et al. (2013) IVFG graph by Akram et al (2011)

Energy of a graph by Gutman (1978) Fuzzy graph by Rosenfeld (1975)

Graph theory by Euler (1736)

Fig. 1 Contribution chart

contain the true incompletely known degree of membership. As a generalization of
fuzzy matrix (FM) the concept of IVFM was introduced and developed by Shyamal
and Pal [26] in fuzzy algebra by extending the max–min operation. The interval-
valued fuzzy vector space was first proposed in [15] and three types of rank viz, row
rank, column rank and fuzzy rank of IVFM [18] are investigated and a relation is
established between them. For more reading FM reader’s are suggested to read the
following [16,17,19,21]. Two new operators are defined by Shyamal and Pal [27] for
fuzzy matrices.

Fuzzy eigenvalue problem was first proposed by Buckley in 1990 [6]. After that
many authors tried [7,9,12] to find the eigenvalues and eigenvectors of fuzzy matrices.
But, their techniques are not relevant for all kinds of matrices and those are very labo-
rious methods. Some authors [7,9,12,31] are attempting to find out the eigenvalues and
its eigenvectors as per regulation of crisp matrices by introducing the α-cut approach.
In [13], an attempt has been made to find the eigenvalues and eigenvectors of fuzzy
graph using max–min operations. But, no one used the max–min operations to find
the eigenvalues and eigenvectors of interval-valued fuzzy graphs. Therefore, it was
seen that the eigenvalues and associated eigenvectors were also negative [2] . But, for
fuzzy sense negative values are not acceptable. We investigated the intuitionistic [16]
and bipolar [19] fuzzy eigenvalues and associated eigenvectors of respective matrices
by using max–min operation and obtained positive eigenvalues. For a real life appli-
cation of graphs see [24]. The reader may consult with the recent book on fuzzy graph
theory for the terminologies and applications of fuzzy graphs [22].

The interval-valued fuzzy graph is introduced by Akram et al. [1,3]. Formal concept
analysis is described in [28] using interval-valued fuzzy formal concept lattice.

In Fig. 1, the contribution of fuzzy graphs and eigenvalues and eigenvectors of
IVFG are depicted.
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1.2 Motivation

From different extensions of fuzzy sets taking IVFS with graph theory create a new
field called IVFG. We know that matrices are important tools to study/model different
mathematical problems in linear algebra. Also imprecise/fuzzy data has huge applica-
tions in our real life aspect. One of the very important areas of fuzzy graphs is to find
out the energy of the adjacency matrix and apply it in real fields. This is the motivation
of our work.

1.3 Our contribution

In this article, a method is described to find the eigenvalues and eigenvectors of an
IVFM and hence an IVFG using the max–min operators. The proposed method pro-
duces the eigenvalues which are the members of D[0, 1] and this is natural. Then the
energy of such a graph is computed and it is shown that the energy is also a member
of D[0, 1]. Using these parameters of IVFG, the ecological system is investigated as
a case study. An ecological system is modeled as an IVFG and based on the con-
sumptions of food habits of the predators an IVFG is constructed. Then by finding
eigenvalues and eigenvectors the energy is computed for the ecology.

1.4 Organization of the paper

The remaining part of the paper is organized as follows: in Sect. 2, the basic definitions
of IVFM, IVFG and related terms are discussed. The methods for finding eigenvalues
and eigenvectors are discussed in Sect. 3. Section 4 is devoted to compute the energy
of an IVFG. In Sect. 5, an application of eigenvalues and eigenvectors in the ecological
system is described. Also, a procedure to find the energy of an ecological system is
provided in this section.

2 Preliminaries

In this section, some basic notions of the IVFM are recalled. To know about the IVFM
first of all we have to know about the IVFS and interval-valued fuzzy algebra (IVFA).

Let I = {a : 0 ≤ a ≤ 1} be the set of all real numbers between 0 and 1. Also the set
of all subsets of the interval [0, 1] be denoted by D[0, 1] or simply D and is defined
by

D[0, 1] = {[a, b] : a ≤ b; a, b ∈ I}

Definition 1 (IVFS) An IVFS A on the universe U ( �= φ) is given by

A = {(x, A(x)) : x ∈ U }, where A(x) = [A(x), A(x)] ∈ D[0, 1].
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Obviously, A(x) = [A(x), A(x)] is the membership degree and A(x) is the lower
limit, A(x) is the upper limit of the membership degree of x ∈ U in A respectively.

The arithmetic operations like addition and multiplications of any two elements of
D are as follows:

Definition 2 Let u = [x1, y1] and v = [x2, y2] ∈ D. The addition (+) and multipli-
cation (·) between u and v are defined below.

u + v = [x1, y1] + [x2, y2] = [max(x1, x2), max(y1, y2)] = [x1 ∨ x2, y1 ∨ y2]
and u · v = [x1, y1] · [x2, y2] = [min(x1, x2), min(y1, y2)] = [x1 ∧ x2, y1 ∧ y2].

Here it is seen that for the above operations only the values of lower and upper
limits of membership degree are used. So an IVFS can be written as

A(x) = {[x, x] : [x, x] ∈ D[0, 1]} ,

where x, x are the lower limits and upper limits of the membership degree of x ∈ U .
Now, two special elements are defined as follows:

Definition 3 (Zero element) The zero element of an IVFS is denoted and defined by
∅ = [0, 0].
Definition 4 (Unit element) The unit element of an IVFS is denoted and defined by
� = [1, 1].

Equality of two elements is defined as follow:

Definition 5 (Equality) Let F be an IVFS and u, v ∈ F where u = [x1, y1] and
v = [x2, y2], then u = v if and only if x1 = x2 and y1 = y2.

An IVFA is a mathematical system (F,+, ·) on the set F with two binary operations
+ and · satisfying the properties written below.

(P1) Idempotent: x + x = x , x · x = x
(P2) Commutativity: x + y = y + x , x · y = y · x
(P3) Associativity: x + (y + z) = (x + y) + z, x · (y · z) = (x · y) · z
(P4) Absorption: x + (x · y) = x , x · (x + y) = x
(P5) Distributivity: x · (y + z) = (x · y) + (x · z), x + (y · z) = (x + y) · (x + z)
(P6) Universal bounds: x + ∅ = x , x + � = �, x · ∅ = ∅, x · � = x

where x = [x, x], y = [y, y], z = [z, z] and x, y, z ∈ F.

Definition 6 (Interval-valued fuzzy vector) An interval-valued fuzzy vector (IVFV)
is an n-tuple of elements from an IVFA. That is, an IVFV is of the form
(a1, a2, a3, . . . , an), where each elements ai ∈ F, i = 1, 2, 3, . . . , n.

We denote Vn to be the set of all n-tuples (a1, a2, a3, . . . , an) over F. An element
of Vn is known as IVFV of dimension n. Let V

n = {αt | α ∈ Vn} where the transpose
of the vector α is denoted by αt . Generally, an element of Vn is written as a row vector
which is a 1 × n matrix. The elements of V

n are column vectors.
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Definition 7 (IVFM) An IVFM of order m×n is denoted by Mm×n which is the matrix
over IVFA, i.e. Mm×n = (ai j )m×n , where each ai j ∈ F.

The set of all rectangular matrices is denoted by Fmn of order m × n and the set of
all square matrices is denoted by Fn of order n. The zero matrix On ∈ Fn is the matrix
whose all elements are ∅ = [0, 0] and the identity matrix In ∈ Fn is the matrix where
all entries are ∅ = [0, 0] except the diagonal entries which are all � = [1, 1].

3 Eigenvalues of interval-valued fuzzymatrices

In this section, a method to find the eigenvalues and eigenvectors of IVFMs by using
max–min operation is discussed. Over crisp and fuzzy vector space [14], eigenvalue
problems are useful in many areas. These problems are prepared when representing
real cases into mathematical models. As for example, the principal axes in elasticity
and dynamics, the natural frequencies and mode shapes in vibration problems, the
analytical hierarchy process for decision making, and the Markov chain in stochastic
modeling and queueing theory, etc. all are related to eigenvalue problems.

Definition 8 (Eigenvalue and eigenvector) Let a square matrix A ∈ Fn and a scalar
ξ = [ξ, ξ ] ∈ F be an eigenvalue of A and a vector Y (non-zero) known as column
(row) eigenvector of A if AY = ξY (Y A = ξY ), where Y is defined as an eigenvector
with respect to the eigenvalue ξ .

Theorem 1 If A = (ai j ) = ([ai j , ai j ]) ∈ Fn be an IVFM of order n×n, such that a1i =
a2i = · · · = ai−1,i = ai+1,i = · · · = ani = ∅ (say) where i = 1, 2, 3, . . . , n. Then aii

is an eigenvalue associated to the column eigenvector κ(∅,∅,∅, . . . , �, . . . , ∅)T ∈ V
n,

where � = [1, 1] be the i th entry and κ ≥ aii .

Proof Here Y = κ(∅,∅,∅, . . . , �, . . . ,∅)T = (yi1) (say).

Then AY =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

n∑

k=1
a1k · yk1

n∑

k=1
a2k · yk2

n∑

k=1
a3k · yk3

...
n∑

k=1
ank · ykn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∅
∅
...

κaii
...

∅

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= aiiκ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∅
∅
...

�
...

∅

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

[Since for the i th entry
∑n

k=1 aik ·xki = ai1 ·∅+ai2 ·∅+· · ·+aii ·κ+· · ·+ain ·∅ =
aiiκ .]

Therefore, AY = aii Y .
Hence, aii is the eigenvalue associating to column eigenvector

Y = κ(∅,∅, . . . , �, . . . ,∅)T . 	
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Example 1

Let A =
⎛

⎝
[0.4, 0.5] [0, 0] [0.6, 0.7]
[0.5, 0.6] [0.3, 0.4] [0.5, 0.7]
[0.7, 0.8] [0, 0] [0.8, 0.9]

⎞

⎠ and Y = κ([0, 0] [1, 1] [0, 0])T

with κ ≥ [0.3, 0.4] .

Then AY =
⎛

⎝
[0.4, 0.5] [0, 0] [0.6, 0.7]
[0.5, 0.6] [0.3, 0.4] [0.5, 0.7]
[0.7, 0.8] [0, 0] [0.8, 0.9]

⎞

⎠ κ

⎛

⎝
[0, 0]
[1, 1]
[0, 0]

⎞

⎠

=
⎛

⎝
[0, 0]

[0.3, 0.4]
[0, 0]

⎞

⎠ = [0.3, 0.4] κ

⎛

⎝
[0, 0]
[1, 1]
[0, 0]

⎞

⎠ = [0.3, 0.4] Y .

Thus, [0.3, 0.4] is the eigenvalue of A associated to the column eigenvector Y .

Theorem 2 Assume a square matrix A = (ai j ) = ([ai j , ai j ]) ∈ Fn. If ai1 = ai2 =
· · · = ai,i−1 = ai,i+1 = · · · = ain = ∅ (say) where i = 1, 2, 3, . . . , n. Then, aii is an
eigenvalue associated to the row eigenvector κ(∅,∅,∅, . . . , �, . . . , ∅) ∈ Vn, where �

be the i th entry and aii ≤ κ .

Proof The proof is similar to Theorem 1. 	


Example 2

Let A =
⎛

⎝
[0.3, 0.6] [0.6, 0.8] [0.2, 0.3]

[0, 0] [0.4, 0.6] [0, 0]
[0.4, 0.5] [0.5, 0.6] [0.8, 0.9]

⎞

⎠ and Y = κ([0, 0] [1, 1] [0, 0])

with [0.4, 0.6] ≤ κ.

Then Y A = κ([0, 0] [1, 1] [0, 0])

⎛

⎝
[0.3, 0.6] [0.6, 0.8] [0.2, 0.3]

[0, 0] [0.4, 0.6] [0, 0]
[0.4, 0.5] [0.5, 0.6] [0.8, 0.9]

⎞

⎠

= ([0, 0] [0.4, 0.6] [0, 0]) = [0.4, 0.6] κ([0, 0] [1, 1] [0, 0]).

Therefore, Y A = [0.4, 0.6] Y .
Hence, [0.4, 0.6] is the eigenvalue of A associated to the row eigenvector Y .

Theorem 3 Consider a square matrix A = (ai j ) = ([ai j , ai j ]) ∈ Fn such that ai j ≤
a1i = a2i = a3i = · · · = ani = ξ ≤ κ for all i, j = 1, 2, 3, . . . , n. Then, ξ is an
eigenvalue associated to the column eigenvector κ(�, �, �, . . . , �)T ∈ V

n.

Proof Since ai j ≤ a1i = a2i = a3i = · · · = ani = ξ ≤ κ for all i, j = 1, 2, 3, . . . , n.
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Therefore,
∑n

j=1 ai j = ξ . Also Y = κ(�, �, �, . . . , �)T .

Then AY = κ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

n∑

j=1
a1 j�

n∑

j=1
a2 j�

...
n∑

j=1
anj�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= κ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

n∑

j=1
a1 j

n∑

j=1
a2 j

...
n∑

j=1
anj

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= κ

⎛

⎜⎜⎜
⎝

ξ

ξ
...

ξ

⎞

⎟⎟⎟
⎠

= ξκ

⎛

⎜⎜⎜
⎝

�

�
...

�

⎞

⎟⎟⎟
⎠

= ξY .

This shows, ξ is an eigenvalue of A associated to the column eigenvector Y . 	

Example 3

Let A =
⎛

⎝
[0.4, 0.5] [0.8, 0.9] [0.6, 0.7]
[0.7, 0.8] [0.8, 0.9] [0.5, 0.7]
[0.6, 0.7] [0.8, 0.9] [0.7, 0.8]

⎞

⎠ and Y = κ([1, 1] [1, 1] [1, 1])T

with κ ≥ [0.8, 0.9].
Then

AY =
⎛

⎝
[0.4, 0.5] [0.8, 0.9] [0.6, 0.7]
[0.7, 0.8] [0.8, 0.9] [0.5, 0.7]
[0.6, 0.7] [0.8, 0.9] [0.7, 0.8]

⎞

⎠ κ

⎛

⎝
[1, 1]
[1, 1]
[1, 1]

⎞

⎠ =
⎛

⎝
[0.8, 0.9]
[0.8, 0.9]
[0.8, 0.9]

⎞

⎠

= [0.8, 0.9] κ

⎛

⎝
[1, 1]
[1, 1]
[1, 1]

⎞

⎠ .

Hence, AY = [0.8, 0.9] Y .
Thus, [0.8, 0.9] is the column eigenvalue of A associated to the eigenvector Y .

Theorem 4 Consider a square matrix A = (ai j ) = ([ai j , ai j ]) ∈ Fn such that ai j ≤
ai1 = ai2 = ai3 = · · · = ain = ξ ≤ κ for all i, j = 1, 2, 3, . . . , n. Then, ξ is an
eigenvalue of A corresponding to the row eigenvector κ(�, �, �, . . . , �) ∈ Vn.

Proof The proof is similar to the Theorem 3. 	

Example 4

Let A =
⎛

⎝
[0.5, 0.6] [0.6, 0.8] [0.7, 0.8]
[0.8, 0.9] [0.5, 0.7] [0.6, 0.7]
[0.9, 1] [0.9, 1] [0.9, 1]

⎞

⎠ and Y = κ([1, 1] [1, 1] [1, 1])

with κ ≥ [0.9, 1] .

Then Y A = κ([1, 1] [1, 1] [1, 1])

⎛

⎝
[0.5, 0.6] [0.6, 0.8] [0.7, 0.8]
[0.8, 0.9] [0.5, 0.7] [0.6, 0.7]
[0.9, 1] [0.9, 1] [0.9, 1]

⎞

⎠

= ([0.9, 1] [0.9, 1] [0.9, 1]) = [0.9, 1] κ([1, 1] [1, 1] [1, 1]).
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Therefore, Y A = [0.9, 1] Y .
Hence, [0.9, 1] is the eigenvalue of A associated to the row eigenvector Y .

Definition 9 (Diagonally dominant) Let A = (ai j ) ∈ Fn be a square IVFM of order
n. A is called row diagonally dominant if aii ≥ ∑n

j �=i, j=1 ai j , A is called column
diagonally dominant if aii ≥ ∑n

i �= j,i=1 ai j and A is called diagonally dominant if and
only if it is both row as well as column diagonally dominant.

Theorem 5 Consider a square matrix A = (ai j ) = ([ai j , ai j ]) ∈ Fn such that a11 =
a22 = a33 = · · · = ann = ξ ≤ κ (say) and if A is diagonally dominant, then ξ is
an eigenvalue corresponding to the row (column) eigenvector κ(�, �, �, . . . , �) ∈ Vn(
κ(�, �, �, . . . , �)T ∈ V

n
)
.

Proof Since the IVFM A = (ai j ) is diagonally dominant, therefore
∑n

j=1 ai j = aii =
ξ ≤ κ . Also Y = κ(�, �, �, . . . , �)T . Then

AX = κ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

n∑

j=1
a1 j�

n∑

j=1
a2 j�

...
n∑

j=1
anj�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= κ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

n∑

j=1
a1 j

n∑

j=1
a2 j

...
n∑

j=1
anj

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= κ

⎛

⎜⎜⎜
⎝

ξ

ξ
...

ξ

⎞

⎟⎟⎟
⎠

= ξκ

⎛

⎜⎜⎜
⎝

�

�
...

�

⎞

⎟⎟⎟
⎠

= ξY .

Thus, ξ is an eigenvalue of the IVFM A corresponding to the column eigenvector Y .
We can prove the theorem similarly for row eigenvector. 	


Example 5

Let A =
⎛

⎝
[0.8, 0.9] [0.5, 0.7] [0.6, 0.8]
[0.7, 0.9] [0.8, 0.9] [0.5, 0.6]
[0.5, 0.5] [0.7, 0.8] [0.8, 0.9]

⎞

⎠ and Y = κ([1, 1] [1, 1] [1, 1])

with κ ≥ [0.8, 0.9] .

Therefore, X A = κ([1, 1] [1, 1] [1, 1])

⎛

⎝
[0.8, 0.9] [0.5, 0.7] [0.6, 0.8]
[0.7, 0.9] [0.8, 0.9] [0.5, 0.6]
[0.5, 0.5] [0.7, 0.8] [0.8, 0.9]

⎞

⎠

= ([0.8, 0.9] [0.8, 0.9] [0.8, 0.9]) = [0.8, 0.9] κ([1, 1] [1, 1] [1, 1]).

That is, Y A = [0.8, 0.9] Y .
Hence, [0.8, 0.9] is the eigenvalue of A corresponding to the row eigenvector Y .

Theorem 6 If a square matrix A = (ai j ) = ([ai j , ai j ]) ∈ Fn, then ξ = (ξ , ξ) ≤
κ ∈ F be an eigenvalue associated to the column eigenvector κ(�, �, �, . . . , �)T ∈ V

n

if max{ak1, ak2, ak3, . . . , akn} = ξ and max{ak1, ak2, ak3, . . . , akn} = ξ for every
k ∈ {1, 2, 3, . . . , n}.
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Proof Since max{ak1, ak2, ak3, . . . , akn} = ξ and max{ak1, ak2, ak3, . . . , akn} = ξ

for every k ∈ {1, 2, 3, . . . , n}. Therefore,
∑n

j=1 akj = (
∑n

j=1 akj ,
∑n

j=1 akj ) =
(ξ, ξ) = ξ for every k ∈ {1, 2, 3, . . . , n}. Also Y = (�, �, �, . . . , �)T ∈ V

n . Then

AY = κ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

n∑

j=1
a1 j�

n∑

j=1
a2 j�

...
n∑

j=1
anj�

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= κ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

n∑

j=1
a1 j

n∑

j=1
a2 j

...
n∑

j=1
anj

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= κ

⎛

⎜⎜⎜
⎝

ξ

ξ
...

ξ

⎞

⎟⎟⎟
⎠

= ξκ

⎛

⎜⎜⎜
⎝

�

�
...

�

⎞

⎟⎟⎟
⎠

= ξY .

Thus, ξ is an eigenvalue of the IVFM A, and the corresponding column eigenvector
is Y . 	


Example 6

Let A =
⎛

⎝
[0.5, 0.6] [0.6, 0.8] [0.7, 0.7]
[0.7, 0.8] [0.6, 0.7] [0.5, 0.6]
[0.7, 0.7] [0.3, 0.4] [0.5, 0.8]

⎞

⎠ and Y = κ([1, 1] [1, 1] [1, 1])T

with [0.7, 0.8] ≤ κ .

Then AY =
⎛

⎝
[0.5, 0.6] [0.6, 0.8] [0.7, 0.7]
[0.7, 0.8] [0.6, 0.7] [0.5, 0.6]
[0.7, 0.7] [0.3, 0.4] [0.5, 0.8]

⎞

⎠ κ

⎛

⎝
[1, 1]
[1, 1]
[1, 1]

⎞

⎠ =
⎛

⎝
[0.7, 0.8]
[0.7, 0.8]
[0.7, 0.8]

⎞

⎠

= [0.7, 0.8] κ

⎛

⎝
[1, 1]
[1, 1]
[1, 1]

⎞

⎠ .

Hence, AY = [0.7, 0.8] Y .
Thus, [0.7, 0.8] is the column eigenvalue of A associated to the eigenvector Y .

Theorem 7 If a square matrix A = (ai j ) = ([ai j , ai j ]) ∈ Fn, then ξ = (ξ , ξ) ≤
κ ∈ F be an eigenvalue associated to the row eigenvector κ(�, �, �, . . . , �) ∈ Vn

if max{a1k, a2k, a3k, . . . , amk} = ξ and max{a1k, a2k, a3k, . . . , ank} = ξ for every
k ∈ {1, 2, 3, . . . , n}.

Proof The proof is similar to the Theorem 6. 	
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Example 7

Let A =
⎛

⎝
[0.8, 0.8] [0.4, 0.5] [0.6, 0.9]
[0.7, 0.9] [0.8, 0.9] [0.5, 0.6]
[0.5, 0.6] [0.7, 0.8] [0.8, 0.8]

⎞

⎠ and Y = κ([1, 1] [1, 1] [1, 1])

with [0.8, 0.9] ≤ κ.

Therefore, Y A = κ([1, 1] [1, 1] [1, 1])

⎛

⎝
[0.8, 0.8] [0.4, 0.5] [0.6, 0.9]
[0.7, 0.9] [0.8, 0.9] [0.5, 0.6]
[0.5, 0.6] [0.7, 0.8] [0.8, 0.8]

⎞

⎠

= ([0.8, 0.9] [0.8, 0.9] [0.8, 0.9]) = [0.8, 0.9] κ([1, 1] [1, 1] [1, 1]).

That is, Y A = [0.8, 0.9] Y .
Hence, [0.8, 0.9] is the eigenvalue of A associated to the row eigenvector Y .

Corollary 1 Let a square matrix A = (ai j ) = ([ai j , ai j ]) ∈ Fn. If
∑n

j=1 a1 j =∑n
j=1 a2 j = · · · = ∑n

j=1 anj = ξ ≤ κ (say). Then, ξ is an eigenvalue of A associated

to the column eigenvector κ(�, �, �, . . . , �)T ∈ V
n.

Corollary 2 Let a square matrix A = (ai j ) = ([ai j , ai j ]) ∈ Fn. If
∑n

i=1 ai1 =∑n
i=1 ai2 = · · · = ∑n

i=1 ain = ξ ≤ κ (say). Then, ξ is an eigenvalue of A associated
to the row eigenvector κ(�, �, �, . . . , �) ∈ Vn.

Let σ(A) denote the set of all eigenvalues of A, i.e. spectrum of the FM A.

Theorem 8 Let A ∈ Fn be a square IVFM, then A has a zero column iff ∅ ∈ σ(A).

Proof Let the i th column of A be zero and Y = κ(∅,∅, . . . , �, . . . ,∅)T , where � is the
i th entry. Then Y is a non-zero vector satisfying the equation AY = ∅Y = ∅. Hence,
Y is a column eigenvector corresponding to the eigenvalue ∅.

Let Y = κ(y1, y2, y3, . . . , yn)T be a column eigenvector associating to the eigen-
value ∅, then AY = ∅. We assume that yi �= ∅ for i ∈ {1, 2, 3, . . . , n}. Then AY = ∅
implies that

∑n
k=1 a jk · yk = ∅ for each j ∈ {1, 2, 3, . . . , n}. This implies a jk · yk = ∅

for each j and k. Since yi �= ∅, ai j = ∅ for each j , thus the i th column of A is zero. 	

Definition 10 Let σ(A) be the set of all eigenvalues of A ∈ Fn . Then δ(A) =
sup{ξ | ξ ∈ σ(A)} is called the spectral radius of A.

Theorem 9 Let A ∈ Fn. Then δ(A) is either ∅ or �.

Proof If σ(A) = {∅}, then δ(A) = ∅, otherwise, if there exist ξ( �= ∅) ∈ σ(A), then
there is a non-zero eigenvector Y ∈ V

n such that AY = ξY . Also, we know that for
any α with ξ ≤ α ≤ �, α · ξ = ξ and ξ · ξ = ξ .

Therefore, ξY = (α · ξ)Y = α(ξY )

Now, A(ξY ) = ξ(AY ) = ξ(ξY ) = (ξ · ξ)Y = ξY = α(ξY ).
Hence, α ∈ σ(A).

Since α is arbitrary, � ∈ σ(A). Therefore, δ(A) = �. 	

Theorem 10 For any A, B ∈ Fn if A ≤ B, then δ(A) ≤ δ(B).
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Proof From Theorem 2, δ(A) is either ∅ or �.
If δ(A) = ∅, then δ(A) ≤ δ(B) holds trivially.
If δ(A) = �, we have to prove that δ(B) = �.

Since δ(A) = �, then by definition � ∈ σ(A) and AY = �Y = Y for some non-zero
column vector Y . We consider e = (�, �, �, . . . , �)T , then Y ≤ e.
Also AnY = An−1 AY = An−1Y = An−2Y = · · · = A2Y = AY = Y
i.e., Y = AnY ≤ Ane ≤ Bne. [Since Y ≤ e and A ≤ B.]

Since Y is non-zero hence Bne is non-zero.
Now, if Y = Bne, then BY = Bn+1e = Bne = Y = �Y . Hence, � ∈ σ(B).
Thus, δ(B) = �. 	


4 Energy of interval-valued fuzzy graph

In this section, the IVFG, interval-valued fuzzy digraph (IVFDG), adjacency matrix
of IVFDG and energy of an IVFDG under interval-valued fuzzy circumstances are
defined.

Definition 11 (IVFG) Let G∗ = (V , E) be a crisp graph with E ⊆ V × V . An IVFG
of a graph G∗ = (V , E) is a pair G = (A, B), where A = [μA, μA] ∈ V is an IVFS
with condition 0 ≤ μA(x) ≤ μA(x) ≤ 1 for all x ∈ V and B = [μB, μB] ∈ E is an
interval-valued fuzzy relation with conditions

μB(xy) ≤ min{μA(x), μA(y)}
and μB(xy) ≤ min{μA(x), μA(y)} for all xy ∈ E .

Here A be known as interval-valued fuzzy vertex set of V , and B be known as
interval-valued fuzzy edge set of E .

Definition 12 (IVFDG) Let
−→
G ∗ = (V ,

−→
E ) be a crisp directed graph (diagraph) with

directed edge
−→
E ⊆ V × V . An IVFDG of a graph

−→
G ∗ = (V ,

−→
E ) is a pair

−→
G =

(A,
−→
B ), where A = [μA, μA] ∈ V is an IVFS with condition 0 ≤ μA(x) ≤ μA(x) ≤

1 for all x ∈ V and
−→
B = [μB, μB] ∈ −→

E is an interval-valued fuzzy relation with
conditions

μB(
−→xy) ≤ min{μA(x), μA(y)}

and μB(
−→xy) ≤ min{μA(x), μA(y)} for all −→xy ∈ −→

E .

Here A and B are known as interval-valued fuzzy vertex sets of V and interval-
valued fuzzy edge sets of E respectively. A weighted IVFDG is a digraph associated
with its edge weight as an interval number.

If a graph is large, then it is very difficult to handle without using a computer. To
represent it in a computer, several methods are available, among them the adjacent
matrix is one of the most useful techniques which is discussed below.

Definition 13 (Adjacency matrix of weighted IVFDG) Let
−→
G = (V ,

−→
E ) be a weighted

IVFDG with weight wi j ∈ D[0, 1] of the directed edges from vi to v j i.e, (−−→viv j ) then
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the adjacency matrix of this directed graph is denoted by M = (mi j )n ∈ Fn , where n
is the number of vertices of the graph and is defined by

mi j =
{

wi j ; if (−−→viv j ) ∈ −→
E

0; otherwise

Therefore, every IVFDG has an adjacency matrix and so it has some eigenvalues.
It is observed that for any IVFG, there is an adjacency IVFM. An outline is given

to find the eigenvalues of an IVFM. So, for any IVFM, one can determine some
eigenvalues.

Definition 14 (Energy of IVFG) Let G = (V , E) be a weighted IVFG and M = (mi j )

be its adjacency matrix of order n × n. Also, let ξ1, ξ2, ξ3, . . . , ξn be the eigenvalues
of the corresponding adjacency matrix of this weighted IVFG. Then, the energy of
this IVFG is denoted by E(G) and is defined by

E(G) =
n∑

i=1

|ξi |.

For an IVFG, all the eigenvalues are the members of D, so this definition is updated
as

E(G) =
n∑

i=1

[ξ
i
, ξ i ].

5 Application to ecosystem

In an ecosystem, different types of species are there, each species depends for food
on one or more other species, except producers (plants and some organic chemicals).
The species are divided into two groups, preys and predators. A predator be prey for
other predators. We can explain the prey-predator relationship easily with the help of
a directed graph called a food web.

The primary producers are called basal species. The species that eat plants are
known as herbivores or grazers. The animals that eat herbivores or each other are
called carnivores or predators. Species that eat both plants and other animals are
called omnivores. The basal species always stayed at the bottom of the food web.

For example, let us consider a small ecosystem, owls eat snakes and rats, snakes eat
frogs and rats, frogs eat grasshoppers, rats eat grasshoppers and corn, grasshoppers
eat corn. These relationships can be represented by a diagraph shown in Fig. 2 called
food web.

The six organisms viz. corn, grasshopper, rat, frog, snake and owl are taken as
vertices. There is an edge from species P to species Q if species Q preys on species
P . In Fig. 2 corn is in the bottom of the food web and owl at the top, top predator. In
a particular food web, if there is one and only one species is above the other then it is
called the food chain. For example, the food web of Fig. 2b is a food chain.
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Fig. 2 Some small food webs

Corn

Grasshopper

Frog

Snake

Owl

Rat

(a) Food web

Corn

Grasshopper

Frog

Snake

Owl

(b) Food chain

In 1960, Cohen [10] constructed a food web to analyze ecosystems. Cattin et al. [8]
proposed a new model assuming that any species diet is the consequence of phyloge-
netic constraints and adaptation. Cohen [10], observed that the food web constructed
from homogeneous ecosystems generally have competition graphs that are interval
graphs (a very simple graph structure and it has lots of application in many fields).
But, it is not true for all food webs. Cohen et al. [11] showed that the probability that
a competition graph is an interval graph tends to 0 as the number of species increases.
After that many people are working on this area, for details see [4,5,20,23,29,30,32–
34].

5.1 Weighted food web andweighted fuzzy graph

It is obvious that all the relations are not the same. For example, snakes eat rats and
frogs, but snakes do not eat the same amount of rats and frogs. It may differ among
species to species belonging to the same genus, e.g. snakes and frogs have different
varieties. In general, species may eat much more of one species of prey then another
depending on availability of food. Using the quadrat method for finding food habits
of snakes with respect to the total biomass of a particular food web we observe that
snakes eat rats (say 30–35%) and frogs (say 35–40%). These numbers can be assigned
to the corresponding edges as weights. Thus, weights on the edges represent the food
preferences with respect to the total biomass of the food habits. The weight of the
directed edge (

−→
i j ) is denoted by wi j , which represents the proportion of the food

contribution of the vertex i to the vertex j .

5.2 Formation of adjacencymatrix

To make the adjacency (relation) matrix of the above weighted food web (graph) first
of all we have to draw the order of every vertex, i.e. species of the food web. Here, we
correspond to the natural number for every element of the food web, which is taken
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Fig. 3 Weighted food web

Corn

Grasshopper

Frog

Snake

Owl

Rat

[0.25, 0.3]

[0.3, 0.35]

[0.3, 0.35]

[0.35, 0.4]

[0.15, 0.2] [0.2, 0.25]

[0.4, 0.45]

[0.25, 0.3]

according to the following priority charts.

Highest consumer (if any)
↑

Tertiary consumer Carnivorus
↑ ↑

Secondary consumer Omnivorus
↑ ↑

Primary consumer Herbivorus
↑ ↑

Producer Producer
Priority chart 1 Priority chart 2

Here, the first priority chart taken according as food chain and second priority chart
taken according as food habits

If there is a tie up of two species for numbering then we go to priority chart 2 from
priority chart 1. If the numbering was completed then ok. But, if it was not done by
above priority charts then we go to the last priority chart which was according to the
evaluation of animals.

According to the above mentioned process we get the one-one correspondence from
the different species to natural numbers. For our example of Fig. 3, the following order
relation obtained as

1. Corn; 2. Grasshopper; 3. Rat; 4. Frog; 5. Snake; 6. Owl.
And the corresponding adjacency matrix was as follows.

Here, it is assumed that Grasshopper and Rat eat Corn [40%, 45%] and [25%, 30%]
respectively and no other organisms eat Corn. And so for other organisms.

This is the adjacency matrix A(
−→
G ) of the food web

−→
G shown in Fig. 3. Note that

all the entries for column 1 (corn) and row 6 (owl) are ∅, as 1 has no incident edges and
6 has no outgoing edges. Remove these column and row from the adjacency matrix
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1 2 3 4 5 6

1 [0, 0] [0.4, 0.45] [0.25, 0.3] [0, 0] [0, 0] [0, 0]
2 [0, 0] [0, 0] [0.15, 0.2] [0.2, 0.25] [0, 0] [0, 0]
3 [0, 0] [0, 0] [0, 0] [0, 0] [0.3, 0.35] [0.3, 0.35]
4 [0, 0] [0, 0] [0, 0] [0, 0] [0.35, 0.4] [0, 0]
5 [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0.25, 0.3]
6 [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

A(
−→
G ) and let the new matrix be A(

−→
G ) which is given by

A(
−→
G ) =

⎡

⎢⎢⎢⎢
⎣

[0.4, 0.45] [0.25, 0.3] [0, 0] [0, 0] [0, 0]
[0, 0] [0.15, 0.2] [0.2, 0.25] [0, 0] [0, 0]
[0, 0] [0, 0] [0, 0] [0.3, 0.35] [0.3, 0.35]
[0, 0] [0, 0] [0, 0] [0.35, 0.4] [0, 0]
[0, 0] [0, 0] [0, 0] [0, 0] [0.25, 0.3]

⎤

⎥⎥⎥⎥
⎦

5.3 Measuring energy of the food web

The adjacency matrix A(
−→
G ) of the food web

−→
G is an upper triangular matrix for

this particular food web, but it is not true for other cases. Therefore, all diago-
nal elements of the matrix A(

−→
G ) are eigenvalue corresponding to the eigenvectors

κ [∅,∅,∅, . . . ,∅, �,∅, . . . ,∅]T , where � = [1, 1] be the unit element of the col-
umn vector and is the i th entries with i ∈ {1, 2, 3, 4, 5} and aii ≤ κ . Therefore,
[0.4, 0.45], [0.15, 0.2], [0, 0], [0.35, 0.4], [0.25, 0.3] are the eigenvalues of the
adjacency matrix A(

−→
G ) of the directed graph

−→
G . So the spectrum of A(

−→
G ) is

σ(A) = {[0, 0], [0.15, 0.2], [0.25, 0.3], [0.35, 0.4], [0.4, 0.45]}.

Thus, the energy of the graph (food web)
−→
G is

E(
−→
G ) =

5∑

i=1
[ξ

i
, ξ i ], since all eigenvalues are positive

= [0, 0] + [0.15, 0.2] + [0.25, 0.3] + [0.35, 0.4] + [0.4, 0.45]
= [0 + 0.15 + 0.25 + 0.35 + 0.4, 0 + 0.2 + 0.3 + 0.4 + 0.45]
= [1.15, 1.35].

The procedure to find energy of an ecology is stated below:
Input: A food web of an ecology.
Step 1: Construct an IVFG (

−→
G ) based on pre-predator relation.

Step 2: Compute the membership values of each edge based on the consumptions of
food of the predators.
Step 3: Find the eigenvalues and eigenvectors of the IVFG.
Step 4: Find the energy E(

−→
G ) of the IVFG

−→
G .
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Output: The energy E(
−→
G ).

But, there is a big question, what is the significance of E(
−→
G )? However, definitely

the energy of a food web must be related with the stability of that particular food web
in its ecosystem.

6 Conclusion

The eigenvalues and eigenvectors of a fuzzy graph are investigated by some authors
without max–min operations and obtained any real numbers as eigenvalues. These
eigenvalues are not acceptable as the fuzzy matrix theory is established over max–min
operators and all members lie on [0, 1]. Some papers are published to find eigenvalues
and eigenvectors when the elements of the matrix are triangular fuzzy numbers. But,
as per our knowledge no papers are available to find eigenvalues and eigenvectors
for IVFMs. In this paper, an attempt is made to find eigenvalues and eigenvectors of
an IVFM and hence for an IVFG. Only the max–min operators are used to find such
parameters of an IVFG. Obviously, execution of max–min operators on IVFM is a very
difficult task. Also, the energy of an IVFG is evaluated. The very meaningful work of
this article is the computation of energy of an ecological system. The consumption of
food of the predators are considered as fuzzy intervals and constructed an IVFG. It
may be noted that the consumption of food of predators cannot be measured certainly.
So the fuzzy model is essential. From this IVFG, the energy of the ecological system is
computed. The similar approach may be used to find the eigenvalues and eigenvectors
and energy of any kind of ecosystem.
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