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Abstract
In this study, cluster hypergraphs are introduced to generalize the concept of hypergraphs, where cluster nodes are allowed. 
Few related terms and properties on cluster hypergraphs are discussed. Some operations, including the Cartesian product, 
union, intersection, etc., are studied. Different types of matrix representations and isomorphism are also proposed on cluster 
hypergraphs. The notion of an effective degree for nodes is introduced to capture the group/ cluster effects. At last, the area 
of applications and future directions with conclusions is deployed.
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1  Introduction

The graphs are perfect representations of relations among 
data. The great mathematician L. Euler (1707–1783), known 
as the father of Graph Theory, first provided the concepts of 
graphs in 1736 by solving the famous Konigsberg bridge 
problem. A graph (Harary 1972; Sabidussi 1959) is a set 
of vertices with a relation among vertex. There are huge 
developments in graph theory and its applications in com-
petitions, colorings, social networks (Das et al. 2018; Yan 
and Ding 2009), etc. But a hypergraph is a generalization 
of the graph in which any subset of a vertex set is an edge 
rather than two vertices. Specially, Berge (1961,1973, 1989) 
introduced hypergraphs as a generalization of graphs.

Buroscha and Ceccherini (1996) characterized cube-
hypergraphs where each hyperedge contains three vertices. 
Tyshkevich and Zverovich (1996) introduced a new multi-
valued function, the line hypergraph. The function general-
izes two classical concepts at once, namely, of the line graph 
and the dual hypergraph. In terms of this function, proofs of 
some known theorems online graphs can be unified, and their 
more general versions can be obtained. Sonntag and Teichert 
(2000) defined hypertrees, and they extended the notion to 
competition hypergraphs (Sonntag and Teichert 2004). Bol-
labos and Scott (2000) discussed three-uniform hypergraphs. 
There are various research works on hypergraphs (Djokovic 
1973; Frankl and Katona 2000; Katona and Kierstead 1999). 
Bergen studied about the infection in hypergraphs (Bergen 
et al. 2018). But all these previous work’s concepts of a group 
of nodes as a single node ignored. Samanta et al. (2020a) have 
been introduced cluster hypergraphs to generalize the concept 
of hypergraphs and to capture the notion of cluster nodes. 
The author considered the simple node as well as the cluster 
node in hypergraph where a simple node is as a usual node, 
and the cluster node is containing more than one simple node. 
The author also proposed the various types of the coloring of 
cluster hypergraphs (Samanta et al. 2020b).
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Current concepts of graphs use simple nodes and clus-
ters separately to find the influence of/on a node. But this 
approach is not enough to capture more complicated situ-
ation, when a node is part of different clusters. For exam-
ple, node 4 is part of two additional clusters: 8, 9. In this 
paper, we develop a general approach to address the issue 
for hyper cluster graphs. In this study, we introduced vari-
ous terms and properties of cluster hypergraphs with the 

application. Thus, the major contributions of this study 
are as follows.

•	 The degree and effective degree of cluster hypergraphs 
has been introduced.

•	 Operations (Cartesian product, union, intersection) on 
two cluster hypergraphs have been proposed.

•	 Various matrices on cluster hypergraphs have been pre-
sented.

•	 Type-I and Type-II isomorphism have been introduced.
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The rest of the sections are organized as follows. In 
Sect. 2, preliminaries on cluster hypergraphs are described. 
In Sect. 3, the degree and effective degree of cluster hyper-
graphs have basic operations, such as a Cartesian product, 
union and intersection, are defined. In Sect. 4, different types 
of matrix representation with examples are displayed. In 
Sect. 5, isomorphisms on cluster hypergraphs are studied. 
In Sect. 6, the conclusion and future direction are described.

2 � Preliminaries

Definition 2.1  Let X =
{

x1, x2,… , xn

}
 be a finite set and let 

E =
{

e1, e2,… , em

}
 be a family of subsets of X such that

The pair (X, E) is called a hypergraph with vertex set X and 
hyperedge set E . The elements 

{
x1, x2,… , xn

}
 of X are verti-

ces of hypergraph H , and the sets 
{

e1, e2,… , em

}
 are hyper-

edges of hypergraph H.

Definition 2.2  Let X be a non-empty set and VX be a subset 
of P(X) such that � ∉ VX and X ⊂ VX. Now, E be a multi-set 
whose elements belong to P(P(X)) such that

•	 � ∉ E

•	 For each element e ∈ E, there exists at least one element 
v ∈ VX such that v ∈ e.

ei ≠ �(i = 1, 2,… , m)

m⋃
{i=1}

ei = X

Then, G =
(
VX , E

)
 is said to be cluster hypergraph where 

VX is said to be vertex set, and E is said to be multi-hyper-
edge set.

A k-cluster hypergraph is defined as follows:

Definition 2.3  Let X be a non-empty set and VX  be a subset 
of Pk(X) , k = 1, 2, 3… such that � ∉ VX and X ⊂ VX. Now, 
E be a multi-set whose elements belong to P

(
VX

)
 such that

•	 � ∉ E

•	 For each element e ∈ E, there exists at least one element 
such that v ∈ e.

Then, G =
(
VX , E

)
 is said to be k-cluster hypergraph 

where VX is said to be vertex set, and E is said to be multi-
hyperedge set. Generally, for k = 1,−1 cluster hypergraphs 
are assumed as cluster hypergraphs.

Example 2.4  In  Fig .   1 , X = {A, B, C, E, F, G}, V
X
=

{{A}, {B}, {C}, D = {B, C}, {E}, {F}, {G}, H = {F, G}} and

E = {{{A}, {B}}, {{A}, {E}}, {{B, C}, {B}}, {{B, C}, {C}},

{{F}, {G}}, {{F, G}, {F}}, {{F, G}, {G}}, {{F, G}, {B, C}}} . 
It can be easily verified that for each element e in E, 
there exists an element v ∈ VX  such that v ∈ e . For 
example, {{F, G}, {F}} in E, , there exists an element 
{F, G} ∈ VX such that {F, G} ∈ {{F, G}, {F}}.

Remark 2.5 

•	 It is assumed that each node inside a cluster node is auto-
matically connected to the cluster node, but these inside 
nodes may not be connected to each other.

•	 In a virtual representation (Fig. 2) of any cluster hyper-
graph, the cluster nodes are assumed as separate nodes, 

Fig. 1   Cluster hypergraph

Fig. 2   Virtual representation of Fig. 1
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and the connections to the inside nodes are shown in the 
representation.

•	 The maximal nodes are those nodes which are not con-
tained in any other cluster nodes. The elements of X are 
termed as simple nodes. A simple node may be termed as 
a maximal node if it does not belong to any other nodes.

•	 Depending on the cluster node sizes and their edges, clus-
ter hypergraphs are classified into some different catego-
ries.

3 � Degree and effective degree

Definition 2.5  Let X =
{

x1, x2,… , xm

}
 be a non-empty set 

and  G =
(
VX , E

)
 be a cluster hypergraph where 

VX =
{

v1, v2,… , vn

}
 be set of nodes, that is, vi ∈ P(X), 

i = 1, 2,… , n and E =
{

e1, e2,… , ek

}
 be the set of edges, 

that is, ei ∈ P(P(X)), i = 1, 2,… , k. w, the degree of node vi 
which is contained in the edges eij, j = 1, 2,… , p which is 
denoted as d

(
vi

)
 and defined as d(vi) = ���

∑p

j=1
eij
��� in the virtual 

representation of G.

Note that an edge containing single vertex will contribute 
once to the degree of containing vertex. Similarly, the edges 
containing more than one vertex, contribute once to each of 
its vertices.

Example 2.6  In the cluster hypergraph (Fig. 1), the degree 
of node {D} is 3.

A number of connections to a node are termed as a degree 
of a node. If a node is contained in another cluster node 
(group), then the node may have separate effect of connec-
tions. In this study, a separate term is defined for a node, an 
effective degree of a node.

Definition 2.7  Let X =
{

x1, x2,… , xm

}
 be a non-empty 

set and G =
(
VX , E

)
 be a cluster hypergraph where 

VX =
{

v1, v2,… , vn

}
 be set of nodes, that is, vi ∈ P(X), 

i = 1, 2,… , n and E =
{

e1, e2,… , ek

}
 be the set of edges, 

that is, ei ∈ P(P(X)), i = 1, 2,… , k. Also, let, cvi is cluster 
node containing simple node vi. Now, an effective degree of 
a simple node vi is denoted as ed

(
vi

)
 d defined as

where l is the number of cluster nodes containing vi.

Example 2.8  In the cluster hypergraph (Fig. 1), degree 
of node {C} is 1, but an effective degree of node {C} is 
1 +

2

1
= 3.

ed
�
vi

�
= d

�
vi

�
+

∑l

i=1
d
�
cvi

�
l

,

Theorem  2.9  Let G =
(
VX , E

)
 be a cluster hypergraph 

where |X| = k. Then, the total degree of the cluster hyper-
graph is less than 

(
2k − 1

)
22k−2.

Proof  Since G =
(
VX , E

)
 is a cluster hypergraph where 

|X| = k . Thus, maximum number of nodes of G is 2k − 1. 
Now, in cluster hypergraphs, there may be edges containing 
a single node, containing double nodes and so on. Thus, the 
contribution of edges of containing n nodes is n × (number 
of edges). The maximum contribution of all edges is (

2

k − 1

1

)
+ 2 ×

(
2

k − 1

2

)
+ 3 ×

(
2

k − 1

3

)
+…+

(
2

k − 1

)

×

(
2

k − 1

2

k − 1

)
=
(
2

k − 1

)
2

2

k−2

. Hence the result.

Corollary 2.10  Let G =
(
VX , E

)
 be a cluster hypergraph 

where ||VX
|| = k. Then, the total degree of the cluster hyper-

graph is less than k × 2k−1.

Theorem 2.11  Let G =
(
VX , E

)
 be a cluster hypergraph 

where |X| = k. Then, the total effective degree of the cluster 
hypergraph is less than � +

(
2k − 1

)(
2k − 2

)
 , where δ is the 

sum of maximum degrees of nodes, and l is the number of 
cluster nodes in the hypergraph.

Proof  Let G =
(
VX , E

)
 be a cluster hypergraph where 

X =
{

x1, x2,… , xk

}
 . Thus, the maximum number of nodes 

of  G  i s  2k−1. Now,  an  ef fec t ive  degree  i s 

ed
�
xi

�
= d

�
xi

�
+

∑l

i=1
d(cxi)
l

 ere l  is the number of cluster 
nodes containing xi . Here, sum of the effective degree is 
∑k

i=1
ed
�
xi

�
=

k∑
i=1

�
d
�
vi

�
+

∑l

i=1
d(cvi)
l

�
= 

∑k

i=1
d
�
vi

�
+

k∑
i=1

∑l

i=1
d(cvi)
l

 . Let us suppose the total number 

of cluster nodes in the hypergraph is l . Now, the degree of a 
cluster node is always less than 2k − 2 . Thus, sum of the 
degrees of all cluster nodes is less than or equal l ×

(
2k − 2

)
 . 

One simple node may belong to all cluster nodes. Thus, sum 
of all effective degrees is less than or equal to 
� +

(
2k − 1

)(
2k − 2

)
 , where � =

(
2k − 1

)
22k−2 and l is the 

number of cluster nodes in the hypergraph. Hence, the result 
is true.

Fig. 3   Cluster hypergraph G
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4 � Operations on cluster hypergraphs

The basic operations, that is, cartesian product, union, the 
intersection of cluster hypergraphs are defined and studied 
some properties.

Definition 3.1  Suppose G =
(
V1, E1

)
 and H =

(
V2, E2

)
. are 

two cluster hypergraphs. Then, the Cartesian product of G 
and H is denoted by G × H = (V , E) and defined as vertex 
set E =

{ (
ui, vj

)
, ui ∈ V1 and vj ∈ V2 } and e is an edge ∈ E 

of G × H if e =(ui, vj)(uk, vl) where either  i = k and vjvl ∈ E2 
or j = l and uiuj ∈ E1.

Example 3.2  Consider two cluster hypergraphs 
(Figs.  3, 4) G =

(
V1, E1

)
 and H =

(
V2, E2

)
 , where 

V1 = {{b}, {c}, A = {b, c}, {d}}, ,  E1 = {{b ,  A}, {c , 
A}, {A,d}} V2 = {{f }, {e}} , E2 = {{f , e}} . Then, the 
cross-product (Fig.  5) of G and H  is G × H  , whose 
vertex set is {{(b, e)},{(b, f)}, {(c, e)},{(c, f)}, {(A, 
e)}, {(A, f)}, {(d, e)}, {(d, f)}} , and edge set is 
{{{(b, e)}, {(A, e)}}, {{(A, e)}, {(c, e)}}, {{(A, e)}, {(d, e)}},

{{(A, e)}, {(A, f )}}, {{(A, f)},{(b,  f)}}, {{(A, f)}, {(c, e)}}, 
{{(A, f)}, {(d, f)}}, {{(d, f)}, {(d, e)}}  

Proposition 3.3  If G =
(
V1, E1

)
 and H =

(
V2, E2

)
 be two 

cluster hypergraph, then e is product G × H also a cluster 
hypergraph.

Proof  Let G = (V1,E1 ) and H = (V2,E2 ) are two cluster hyper-
graphs with G × H = (V , E) . Then, � ∉ E1 , � ∉ E2 and for 
each elemente1 in E1 , there exists at least one element v1 

in V1 such that v1 ∈ e1 and for each element e2 in E2 , there 
exists at least one element v2 in V2 such that v2 ∈ e2 . There-
fore, � ∉ V  , � ∉ E and for each element e ∈ E , there exists 
at least one element v ∈ V such that v ∈ e . Hence, all the 
conditions of the definition of cluster hypergraph satisfy in 
G × H, ; therefore, G × H is a cluster hypergraph. Hence the 
result.

Definition 3.4  The union of two cluster hypergraphs G = (V1 , 
E1) and H = (V2 , E2) is denoted by G ∪ H = (V , E) , where 
V = {v ∶ v ∈ V1 ∪ V2 such that v ∉ u where u ∈ V1 ∪ V2} 
and E = {(u, v) ∶ u, v ∈ V and (u, v) ∈ E1 ∪ E2}.

Example 3.5  Consider two cluster  hypergraphs 
( F i g s .   6 ,  7 )  G = (V1, E1)  a n d  H = (V2, E2)  , 

Fig. 4   Cluster hypergraph H

Fig. 5   Cluster hypergraph G × H

Fig. 6   Cluster hypergraph G

Fig. 7   Cluster hypergraph H

Fig. 8   Cluster hypergraph G ∪ H
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w h e r e  V1   =  {{a}, {b}, C = {a, b}, {d}, {e}}   , 
E1   =  {{{a}, C},{{b}, C}, {{d}, C}, {{d}, {e}}}  a n d 
V

2

= {{a}, {g}, {h}, I = {g, h}} , E
2

= {{{a}, I}, {{g}, I}, {{h}, I}}.

T h e  ve r t ex  s e t  o f  G ∪ H  ( F i g .   8 )  i s 
{{a}, {b}, C = {a, b}, {d}, {e}, {g}, {h}, I = {g, h}} , and edge set is 
{{{a}, C}, {{b}, C}, {{d}, C}, {{d}, {e}}, {{a}, I}, {{g}, I}, {{h}, I}}.

Proposition 3.6  If G = (V1, E1) and H = (V2, E2) be two 
cluster hypergraphs, then G ∪ H is a cluster hypergraph.

Proof  Since G = (V1,E1 ) and H = (V2,E2 ) are two cluster 
hypergraphs with G ∪ H = (V, E) . Then, � ∉ E1 , E2 and for 
each element e1 in E1 , there exists at least one element v1 in 
V1 such that v1 ∈ e1 and for each element e2 in E2 , there exists 
at least one element v2 in V2 such that v2 ∈ e2 . Then, � ∉ E 
( ∵� ∉ E1 , E2 ) and for each element e in E , there exists at 
least one element v in V  such that v ∈ e. Therefore, G ∪ H is 
a cluster hypergraph. Hence the result.

Definition 3.7  The intersection of two cluster hypergraphs 
G = (V1 , E1) and H = (V2 , E2 ) is G ∩ H = (V , E) , where 
V = V1 ∩ V2 and E =

{
(u, v) ∶ u, v ∈ V and (u, v) ∈ E1 ∩ E2

}
.

Example 3.8  Consider two cluster hypergraphs (Figs. 9, 
10)G = (V1 , E1 ) and H = (V2 , E2 ), where V1 =  {{a}, {b}, C 
= {a, b}, {d}, {e}}, E1 =  {{{a}, C}, {{b}, C}, {{d}, C}}, 
{{d}, {e}}} and V2 = {{a}, {b}, C = {a, b}, {d}, {f}, {g}, 
H = {f,g}}, E2 = {{a}, C}, {{b}, C}, {{d}, C}, {{f}, H}}, 
{{g}, H}, {C,H}}.

The vertex set of G ∩ H (Fig. 11) is V = {{a}, {b}, C = 
{a, b}, d} , and edge set is E = {{{a},C}, {{b}, C}, {{d}, 
C}}}.

Proposition 3.9  If G = (V1, E1) and H = (V2, E2) be two 
cluster hypergraphs, then G ∩ H is also a cluster hypergraph 
if V1 ∩ V2, E1 ∩ E2 ≠ �.

Proof  Since G = (V1,E1 ) and H = (V2,E2 ) are two cluster 
hypergraphs with G ∩ H = (V , E) . Then, � ∉ E1 , E2 and for 
each element e1 in E1 , there exists at least one element v1 
in V1 such that v1 ∈ e1 and for each element e2 in E2 , there 
exists at least one element v2 in V2 such that v2 ∈ e2 . Then, 
� ∉ V , E and for each element e in E , there exists at least o 
element v in V  such that v ∈ e. Therefore, G ∩ H is a cluster 
hypergraph. Hence the result.

5 � Matrix representation of cluster 
hypergraphs

Matrix representation is the easiest and convenient way to 
represent graphs. We represent cluster hypergraph as four 
types of matrices.

•	 Adjacency matrix
•	 Incidence matrix
•	 Location matrix
•	 Circuit matrix

Fig. 9   Cluster hypergraph G 

Fig. 10   Cluster hypergraph H 

Fig. 11   Cluster hypergraph 
G ∩ H
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Definition 4.1  The adjacency matrix of a cluster hypergraph 
with n nodes (total number of simple and cluster nodes) is 
an n × n symmetric matrix X =

[
xij

]
 , where

xij = (l, m) in which l =
{

1, if two nodes are adjacent

0, if two nodes are not adjacent
 

and
If one cluster node is adjacent to another maximal node, 

m is related to the indirect path from simple nodes of one 
cluster node to the simple nodes of another cluster node or 
to the maximal node itself).

If two clusters are connected, then the nodes among the 
cluster are indirectly connected.

m =

⎧
⎪⎪⎨⎪⎪⎩

1,

if one simple node inside a cluster is indirectly

connected to another simple node inside other clusters

or to the maximal node itself

0, if two nodes are not indirectly connected

Example 4.2  Consider a cluster hypergraph (Fig. 12) G = 
(VX, E), where VX = {{a}, {b}, {c}, D = {b, c}, {e}, {f}, 
{g}, H = {f,g}} and E = {{{a}, {e}}, {{b} ,D}, {{c}, D}, 
{{f}, {g}}, {{f},H}, {{g}, H}, {D, H}}.

The corresponding adjacency matrix of Example 4.2 is 
given below:

a b c D e f g H

a (0,0) (0,0) (0,0) (0,0) (1,0) (0,0) (0,0) (0,0)
b (0,0) (0,0) (0,0) (1,0) (0,0) (0,1) (0,1) (0,1)
c (0,0) (0,0) (0,0) (1,0) (0,0) (0,1) (0,1) (0,1)
D (0,0) (1,0) (1,0) (0,0) (0,0) (0,1) (0,1) (1,0)
e (1,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
f (0,0) (0,1) (0,1) (0,1) (0,0) (0,0) (1,0) (1,0)
g (0,0) (0,1) (0,1) (0,1) (0,0) (1,0) (0,0) (1,0)
H (0,0) (0,1) (0,1) (1,0) (0,0) (1,0) (1,0) (0,0)

Observations 4.3 

•	 The entries along the principal diagonal are all (0,0) if 
the graph has no self-loop.

•	 If the entry value is (1,0), then there is a direct edge 
between two nodes.

•	 If the entry values are (0,1), then the nodes are indirectly 
connected through some cluster to maximal node adja-
cency.

Note 4.4  For complete CCCH, the entries for the adja-
cency matrix will be either (1,0) or (0,1) for all non-diagonal 
entries.

Definition 4.5  Let us consider a cluster hypergraph with 
m nodes and n edges. The incidence matrix A =

[
aij

]
 is an 

m × n matrix define as,
Fig. 12   Cluster hypergraph

Fig. 13   Cluster hypergraph with 
virtual representation (right)
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E x a m p l e  4 . 6   C o n s i d e r  a  c l u s -
te r  hyperg raph (Fig .   13)  G =

(
VX , E

)
 ,  where 

VX = {{a}, {b}, {c}, D = {b, c}, {e}, {f }, {g}, H = {f , g}} . 
and E = {{{a}, {e}}, {{a}, {b}{{b}, D}, {{c}, D}, {{f }, {g}}, {{f }, H}, {{g}, H}, {D, H}}.

The corresponding incidence matrix of Example 4.6 is 
given below:

e
1

e
2

e
3

e
4

e
5

e
6

e
7

a 0 0 0 1 1 0 0
b 0 0 0 0 1 1 0
c 0 0 0 0 0 0 1
D 0 0 0 0 0 1 1
e 0 0 0 1 0 0 0
f 1 1 0 0 0 0 0
g 1 0 1 0 0 0 0
H 0 1 1 0 0 0 0

Observations 4.7 

•	 Since every edge is incidence on precisely two vertices, 
each column of A has exactly two 1’s.

•	 The number of 1’s is in a row equal to the degree of the 
corresponding vertex.

Note 4.8  For (m, n)uniform cluster hypergraph, the n entries 
of a column of the incidence matrix for will be 1.

Definition 4.9  Let us consider a cluster hypergraph with 
m simple nodes and n cluster nodes. The location matrix 
defined as an m × n matrix A =

[
aij

]
 such that

Example 4.10  In Fig. 12, the corresponding location matrix 
is given below:

D H

a 0 0
b 1 0
c 1 0
e 0 0
f 0 1
g 0 1

aij =

{
1, if j-th edge is incident on i-th node

0, otherwise

aij =

{
1, if i-th simple node is located in j-th cluster node

0, otherwise

Observations 4.11 

•	 Number of rows is the total number of simple nodes.
•	 Number of columns is the total number of cluster nodes.
•	 The number of 1′s in each column is the number of sim-

ple nodes, contained in the corresponding cluster nodes.

Note 4.12  For (m, n)uniform cluster hypergraph, m-entries 
for each column in the location matrix will be 1.

Definition 4.13  A chain is defined as the finite alternat-
ing sequence of nodes and edges, beginning and ending 
with nodes such that each edge is incident with the nodes 
preceding and following it. In a virtual representation of 
cluster hypergraph G, a chain is defined to be a sequence 
(V1, E1, V2, E2,… , Eq, Vq+1) such that

	 (i)	 V1, V2,… , Vq are vertices of G, which may be 
repeated.

	 (ii)	 E1, E2,… , Eq are all distinct edges.
	 (iii)	 each edge is incident with the vertices preceding and 

following it.
	 (iv)	 V1 = Vq+1.

Then, this chain is called a circuit.

Definition 4.14  Let us consider a cluster hypergraph G with 
the number of different circuits in a virtual representation of 
G be m, and the number of edges in G is n. Then, the circuit 
matrix B =

[
bij

]
 of G is a m × n matrix define as follows:

Example 4.15  For this above cluster hypergraph (Fig. 14), 
different circuits are { e1, e2, e3},{e4, e5, e6.}, { e4, e7, e8 }, 
{e1, e2,e4, e5, e6,e3 }, { e1, e2, e4, e7, e8, e3}.

These circuits are denoted by A, B, C, D and E, 
respectively.

The corresponding matrix of Fig. 10 is given below:

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

e
9

e10

A 1 1 1 0 0 0 0 0 0 0
B 0 0 0 1 1 1 0 0 0 0
C 0 0 0 1 0 0 1 1 0 0
D 1 1 1 1 1 1 0 0 0 0
E 1 1 1 1 0 0 1 1 0 0

bij =

{
1, if i−th circuit includes j−th edge

0, otherwise
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Observations 4.16 

•	 The number of 1’s in a row is equal to the number of 
edges in the corresponding circuit.

•	 A column of all zeros corresponds to a non-circuit edge.

6 � Isomorphism on cluster hypergraph

Isomorphism is an important property of cluster hyper-
graphs. We define isomorphism on cluster hypergraphs.

Definition 5.1  The two cluster hypergraphs G =
(
VX , E

)
 and 

G� =
(
V �

X
, E�

)
 are said to be Type-I isomorphic if there exists 

a bijective mapping f ∶ VX → V �
X
 such that there exists an 

edge (a, b) ∈ E if and only if (f (a), f (b)) ∈ E� for all a, b ∈ VX.

Observations 5.2 

•	 There are one–one correspondences between nodes and 
edges among two cluster hypergraphs.

•	 There should be the same number of nodes between two 
cluster hypergraphs.

•	 The degree of a node under the isomorphic image should 
be the same.

•	 The effective degree of a node under the isomorphic 
image should be the same.

•	 The matrices, that is, adjacency matrices, incidence 
matrixes, location matrices and circuit matrices under 
isomorphic image should be the same.

•	 There should be the same number of maximal nodes 
under isomorphism.

Definition 5.3  Two cluster hypergraphs G =
(
VX , E

)
 and 

G� =
(
V

�

X
, E�

)
 are said to be Type-II isomorphic if there 

exists a bijective mapping f ∶ VX → V �
X
 such that for all 

maximal nodes a, b ∈ VX there exists edge (a, b) ∈ E if and 
only if there exist maximal nodes f (a), f (b) ∈ V �

X
 such that 

(f (a), f (b)) ∈ E�.

Observation 5.4 

•	 Type-I isomorphism implies Type-II isomorphism 
between the two cluster hypergraphs but not conversely.

•	 Adjacency matrices of Type-I and Type-II isomorphism 
between the cluster hypergraphs may not be the same.

7 � Area of applications

A.	 This study of cluster hypergraphs introduces a new area 
of graph theory and networks. The properties, matrix 
representations and isomorphism of cluster hypergraphs 
will be main backgrounds of the future studies in the 
area.

There are a number of applications of cluster hypergraphs 
in searching, centrality measures, etc. in social networks. 
There is a big problem to search for a particular type of 
small amount of data or a small network from a big amount 
of data or a big network. It is possible to search such small 
networks by using cluster hypergraphs. First represent the 
virtual presentation of cluster hypergraphs to the desired 
particular types of network and fit all possible type-2 iso-
morphism mappings to all such small networks of a big net-
work. This can be done by adjacency matrices or degree 
sequence properties of cluster hypergraphs. Thus, isomor-
phism properties of cluster hypergraphs can be applied 
for filtering the required data as advanced searching. This 
study also analyzes the node’s importance in the network, 
especially the importance of a cluster node in a social net-
work where a group of nodes is taken as a cluster node. The 

Fig. 14   Cluster hypergraph with virtual representation (right)
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degree of cluster indicates the direct impact of the cluster 
in the network.

We considered a small research network (Fig. 15) among 
researchers and supervisors in an area of a specific subject. 
These persons are taken as cluster nodes or simple nodes. 
Here, a supervisor is considered as a cluster node, and a 
researcher is taken as a simple node. The edges are con-
sidered if there is a paper between them. Also, a super-
visor always has an edge over his/her researchers, which 
belongs to the same cluster. But the problem is to find "who 
is influential in this network?". Hence, we have to find some 
measures like degree centrality, effective degree centrality 
of nodes in the network. Here, degree centrality indicates 

the direct influence of a node in the network, and effective 
degree centrality indicates the effective influence of node 
considering the belongingness of node in a cluster in a net-
work (Fig. 16). 

All the necessary calculations are done (Table 1) and 
found the direct influence and effective direct influence of 
all nodes in the network using the definition of degree and 
effective degree, respectively. In this study of the applica-
tions, we compared (Fig. 17) the results, and it is observed 
that

•	 The direct influence and effective direct influence of 
maximal clusters are the same.

Fig. 15   Research network

Fig. 16   Virtual representation 
of Fig. 19
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•	 The effective direct influence of non-maximal nodes may 
be greater than direct influence.

•	 The non-maximal nodes within a cluster are also influ-
ential when these nodes belong to a bigger cluster with 
more nodes.

•	 The cluster nodes and nodes in the cluster are much more 
influential than the simple maximal node that are not in 
a cluster.

 Figure 17 shows that the effective degree brings addi-
tional information that is in clusters, and hence effective 
degree is higher in each case. But, the relative importance 
of node (ranking) and its normalized inform us that effective 
degree shows a different perspective. The relative impor-
tance of the node changes in the network due to the influence 
of clusters. This is shown in Fig. 18a and b for the above 
example problem.

B.	 Another application

We illustrate the application of the above-described 
approach to a real-life problem. We study the publications 
for COVID 19 and how authors, departments (consisting 
of different authors), and papers (authors collaborated on 
papers) are interrelated. For this purpose, a small data have 
been collected and have been shown in Table 2. Further, we 
take the perspective that an author is a node, a paper is a 
cluster of nodes, and a department is a hyperedge. Thus, an 
influential department is one that works on different influen-
tial papers. Further, it is often observed that nodes associated 
with a persuasive paper to gain from the association. We 
provide a means to compute the impact of such an associa-
tion with a paper/s on individual nodes.

In Tables 2 and 3, paper-author and department-author 
details of ten collected paper are displayed.

Here, each individual author is taken as simple node. 
Each paper may be written by more than one author. The 
collection of authors per paper is considered as cluster. Now, 
same department authors are connected by hyperedges. The 
traditional graph where two authors are connected if they 
share a common paper, is shown in Fig. 19. The cluster 
hypergraph of assumed data is shown in Fig. 20. Here, small 
black circles are simple nodes. Big circles are clusters and 
blue lines indicate the hyperedges.

Now, effective degrees of simple nodes of the cluster 
hypergraphs are calculated in Table 4.

Table 1   Result of direct and 
effective direct influence of 
researchers

The bold values indicate that 
the nodes are cluster nodes

Node Direct 
influence

Effective 
direct influ-
ence

PM 1 10
AM 2 11
KD 4 13
RM 3 12
SS 9 –
DP 2 6
MD 1 5
GG 4 –
SP 2 7
AKP 2 7
AP 5 –
PK 2 13
HP 1 12
CJ 2 13
TP 2 13
TS 3 14
SSA 2 13
MP 11 –
PKD 1 1
MA 2 2
YS 1 1
HD 1 1
BD 1 1

Fig. 17   Comparison of the 
result of Table 1
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Figure 21a and b show the relative ranking using the cur-
rently accepted degree centrality measure and compare it to 
the proposed effective degree.

We observe that the normalized effective degree val-
ues are bigger than those computed using the normalized 
degree. This, we believe, is due to the fact that since all 
values (effective degree) increase by some amount (from 
the base—the degree values), and the largest value has also 
increased similarly. This has the effect of increasing every 

value. If the highest effective degree value were significantly 
higher, we would have seen a reduction in the normalized 
value (or vice versa). We also see a change in the ranking 
of influential nodes. This is a significant difference. We find 
that when additional information is considered, the influence 
of the node increases. For example, an author that is associ-
ated with an influential paper would appear more influential 
that other authors who are not connected to such clusters.

0

5
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15

20
AK

P
AM BD CJ DP HD HP KD M

A
M

D PK PK
D

PM RM SP SS
A TP TS YS

Degree Effec�ve Degree

Comparison of Rankings:
Degree and Effec�ve Degree

0
0.2
0.4
0.6
0.8

1

AK
P

AM BD CJ DP HD HP KD M
A

M
D PK PK
D

PM RM SP SS
A TP TS YS

Degree (N) Effec�ve Degree (N)

Comparison of Degree (N) and 
Effec�ve Degree (N) values

Fig. 18   a Left and b right

Table 2   Paper-author 
representation

S.S M.A M.P R.A.B H.R Q.X Y.X W.A.D G.G T.P S.M S.P T.K.P

Paper-1 1 1 1 0 0 0 0 0 0 0 0 0 0
Paper-2 1 0 1 1 1 0 0 0 0 0 0 0 0
Paper-3 0 0 0 0 0 1 1 0 0 0 0 0 0
Paper-4 0 0 1 0 1 0 0 0 0 0 0 0 0
Paper-5 0 1 0 0 0 0 0 1 0 0 0 0 0
Paper-6 0 0 1 0 0 0 0 0 1 0 0 0 0
Paper-7 0 0 0 1 1 0 0 0 0 0 0 0 0
Paper-8 0 0 0 0 0 1 0 0 1 0 0 1 0
Paper-9 0 0 1 0 0 0 0 0 0 0 1 0 1
Paper-10 1 0 1 0 0 0 0 0 0 1 1 0 0

Table 3   Department and author 
representation

S.S M.A M.P R.A.B H.R Q.X Y.X W.A.D G.G T.P S.M S.P T.K.P

Dept-1 1 0 0 1 1 0 0 0 0 0 1 0 0
Dept-2 0 1 1 0 0 0 0 0 1 1 0 1 1
Dept-3 0 0 0 0 0 1 0 0 0 0 0 0 0
Dept-4 0 0 0 0 0 0 1 0 0 0 0 0 0
Dept-5 0 0 0 0 0 0 0 1 0 0 0 0 0
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Fig. 19   Network on author-author representation
Fig. 20   Cluster hypergraph of considered data

Table 4   Comparison of table of 
degree and effective degree

Node Names Degree Effective degree

1 S.S 7 = d(S.S) +
(
d
(
P

1

)
+ d

(
P

2

)
+ d

(
P

10

))
∕3= 7 + (3 + 4 + 4)∕3 ≈ 10.67

2 M.A 10  = d(M.P.) +
(
d
(
P

2

)
+ d

(
P

10

)
+ d

(
P

1

)
+ d

(
P

9

)
+ d

(
P

4

)
+ d

(
P

6

))
∕6 

= 10 + (4 + 4 + 3 + 3 + 2 + 2)∕6= 13

3 M.P 6 = d(M.A.) +
(
d
(
P

1

)
+ d

(
P

5

))
∕2 = 6 + (3 + 2)∕2 = 8.5

4 R.A.B 7 = d(H.R.) +
(
d
(
P

2

)
+ d

(
P

4

)
+ d

(
P

7

))
∕3 = 7 + (4 + 2 + 2)∕3 ≈ 9.67

5 H.R 6 = d(R.A.B.) +
(
d
(
P

2

)
+ d

(
P

7

))
∕2 = 6 + (4 + 2)∕2 = 9

6 Q.X 6 = d(G.G.) +
(
d
(
P

6

)
+ d

(
P

8

))
∕ = 6 + (2 + 3)∕2 = 8.5

7 Y.X 4 = d(Q.X.) +
(
d
(
P

8

)
+ d

(
P

3

))
∕2 = 4 + (3 + 2)∕2 = 6.5

8 W.A.D 3 = d(Y.X.) + d
(
P

3

)
 = 3 + 2 = 5

9 G.G 5 = d(S.P.) + d
(
P

8

)
= 5 + 3 = 8

10 T.P 5 = d(T.K.P) + d
(
P

9

)
= 5 + 3= 8

11 S.M 5 = d(T.P.) + d
(
P

10

)
 = 5 + 4 = 9

12 S.P 3 = d(W.A.D) + d
(
P

5

)
 = 3 + 2 = 5

13 T.K.P 6 = d(S.M.) +
(
d
(
P

10

)
+ d

(
P

9

))
∕ = 6 + (4 + 3)∕2 = 9.5
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8 � Conclusion

In this paper, some properties of cluster hypergraphs have 
been developed. The effective degree is defined and is taken 
as a replacement of degree as the effective degree is more 
convenient to represent as the effects of other persons who 
form a cluster/groups are considered separately along with 
direct impact. A comparison with the currently available 
approach has been mentioned for describing the limitations 
of these approaches, and this also serves as the motivation 
for developing the proposed method. Two realistic applica-
tions have been shown. For the second application, we col-
lect data on COVID-19-related publications. In both appli-
cations, we find that our approach not only captures more 
information but also changes the influence ranking of the 
nodes. Computationally, our method has similar complexity 
as that of existing methods. Thus, the approach in the paper 
improves upon currently available approaches to addressing 
the problem of determining the influence of a node in cluster 
hypergraphs.
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