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Abstract: Let TIG be the tree corresponding to the weighted interval graph  
G = (V, E). In an inverse 1-centre location problem the parameter of an interval 
tree TIG corresponding to the weighted interval graph G = (V, E), like vertex 
weights have to be modified at minimum total cost such that a pre-specified 
vertex s ∈ V becomes the 1-centre of the interval graph G. In this paper, we 
present an O(n) time algorithm to find an inverse 1-centre location problem on 
the weighted tree TIG corresponding to the weighted interval graph, where the 
vertex weights can be changed within certain bounds and n is the number of 
vertices of the graph G. 
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1 Introduction 

An undirected graph G = (V, E) is an interval graph if the vertex set V can be put into 
one-to-one correspondence with a set of intervals I on the real line R such that two 
vertices are adjacent in G if and only if their corresponding intervals have non-empty 
intersection. The set I is called an interval representation of G and G is referred to as the 
intersection graph of I (Golumbic, 2004). Let I = {i1, i2, …, in}, where ic = [ac, bc] for 1 ≤ 
c ≤ n, be the interval representation of the graph G, ac is the left endpoint and bc is the 
right end point of the interval ic. 

If the intervals have common end points then the Algorithm CONVERT (Pal and 
Bhattacharjee, 1995) may be used to convert the intervals of I into intervals of distinct 
end points. Here we consider the weighted interval graphs, i.e., corresponding to each 
interval i, we put a positive weight wi > 0. 

An interval graph and its interval diagram are shown in Figure 1(a) and Figure 1(b) 
respectively. 

In vertex weighted tree T = (V, E), the eccentricity e(v) of the vertex v is defined as 
the sum of the weights of the vertices from v to the vertex farthest from v ∈ T, i.e., 

( ){ }( ) max , , for all ,w i ie v d v v v T= ∈  

where dw(v, vi) is the sum of the weights of the vertices on the path between v and vi. 
A vertex with minimum eccentricity in the tree T is called a centre of that tree T, i.e., 

if e(s) = min{e(v), for all v ∈ V}, then s is the 1-centre. It is clear that every tree has either 
one or two centres. The eccentricity of a centre in a tree is defined as the radius of the tree 
and is denoted by ρ(T), i.e., 

{ }( ) min ( ) .v Tρ T e v∈=  
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For the weighted tree T with n vertices and n – 1 edges of the corresponding weighted 
interval graphs, the inverse 1-centre problem on weighted tree T is concerned with 
modifying parameter, like vertex weight, at minimum total cost within certain 
modification bounds such that a pre-specified vertex becomes the 1-centre. 

1.1 Survey and applications of the problem 

As shown in Marlow (1983), Zhang and Liu (1996) and Zhang and Ma (1996), the 
inverse problems of many combinatorial/network optimisation problems can be solved by 
strongly or weakly polynomial algorithms. In the context of location problems Cai et al. 
(1999) proved that the inverse 1-centre location problem with edge length modification 
on general un-weighted directed graphs is NP-hard, while the underlying centre location 
problem is solvable in polynomial time. Recently, Yang and Zhang (2008) proposed an 
O(n2 log n) time solution method for the inverse vertex centre problem on a tree provided 
that the modified edge lengths always remain positive. Recently, Alizadeh and Burkard 
(2009) have designed an algorithm for inverse 1-centre location problem with edge length 
augmentation on trees in O(n log n) time, using a set of suitably extended AVL-search 
trees. In Alizadeh and Burkard (2011), they have designed a combinatorial algorithm for 
inverse absolute on trees in O(n2) time when topology not allowed and O(n2r) time when 
topology allowed. Recently, Jana et al. (2012) have designed a linear time algorithm to 
compute inverse 1-centre location problem on the edge weighted trees. 

In this paper, we propose an algorithm to compute inverse 1-centre location problem 
on weighted interval graphs in O(n) time, where n is the number of vertices of the graph. 

For instance, an important application comes from geophysical sciences and concerns 
predicting the movements of earthquakes. To achieve this aim, geologic zones are 
discretised into a number of cells. Adjacency relations can be modelled by arcs in a 
corresponding network. Although some estimates for the transmission times are known, 
precise values are hard to obtain. By observing an earthquake and the arrival times of the 
resulting seismic perturbations at various points and assuming that earthquakes travel 
along shortest paths, the problem is to refine the estimates of the transmission times 
between the cells. This is just an inverse shortest path problem. 

2 Construction of the tree 

Let i be pre-specified vertex which to be inverse 1-centre. Our target is to form a 
spanning tree corresponding to the weighted interval graph with two branches. Let the 
vertex i be the root of the tree. Then we find all adjacent vertices to i and set them as 
child (leaves) of i. To form the spanning trees we have the following two cases: 

Case 1 If number of adjacent of i is one, i.e., deg(i) = 1, then we can not construct a tree 
with root i and two branches. Therefore, vertex i is not inverse 1-centre of the 
weighted interval tree. 

Case 2 If number of adjacent vertices to the vertex i are more than one, i.e., deg(i) > 1, 
then three possibilities arises and we try to form a tree with two longest 
branches. 
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a When i is the starting vertex in G, i.e., i = 1. 
In this case we find all adjacent vertices to the vertex 1 and set them as 
child (leaves) of 1 and marked them. Next we consider the vertices k and j 
whose right end points of the corresponding intervals are maximum and 
next maximum respectively. Next find all unmarked adjacent vertices to the 
vertices k and j respectively. If there is no common adjacent vertices to k 
and j, then find m1, interval whose right end point is maximum among all 
adjacent to k and all unmarked adjacent are placed as the child of k and 
marked them else 1m′  as child of j and marked. This process is continued 
until all intervals right to 1 are marked. 

b When i is the end vertex in G, i.e., i = n. 
In this case we find all adjacent vertices to the vertex n and set them as 
child (leaves) of n and marked them. Next we consider the vertices j′ and k′ 
whose left end points of the corresponding intervals are minimum and next 
minimum respectively. Next find all unmarked adjacent vertices to the 
vertices j′ and k′ respectively. If there is no common adjacent vertices to j′ 
and k′, then find m1, interval whose left end point is minimum among all 
adjacent to j′ and unmarked adjacent are placed as the child of j′ and marked 
them else 1m′  as child of k′. This process is continued until all intervals left 
to n are marked. 

c When i is the vertex between 1 and n, i.e., 1 < i < n. 
In this case we find all adjacent vertices to the vertex i and set them as child 
(leaves) of i and marked them. Next, we consider the vertex k whose right 
end point of the corresponding interval among all adjacent vertices to i is 
maximum. Corresponding to the vertex k we find all unmarked vertices 
adjacent to k and put them as the child of k. Continuing this process on the 
right side of the interval diagram until all vertices corresponding to the 
intervals right of i are marked. Similarly, on the left side of i, we find j′, the 
unmarked adjacent to i, and put them as child in left branch. Then same 
procedure is applied on left side until all intervals left of i are marked. 

Now we propose a combinatorial algorithm to construct the tree TIG. Our proposed 
algorithm is as follows: 

Algorithm INT-TREE 

Input: Weighted interval graph G with interval representation I = [i1, i2, …, in], ij = [aj, bj] 
and weight wj, j = 1, 2, …, n. 

Output: The rooted tree TIG with two branches of the interval graph G. 
Step 1 Set root = i and compute N(i) = the open neighbourhood of i = {v : (v, i) ∈ E}. 
Step 2 If |N(i)| = 1, then end. 
  If |N(i)| > 1 and i is the starting interval, i.e., i = 1, then goto step 3. 
  If |N(i)| > 1 and i is the end interval, i.e., i = n, then goto step 4. 
  If |N(i)| > 1 and i is an interval between 1 and n, i.e., 1 < i < n, then goto step 5. 
Step 3 Set N(i) as the child of the root i and marked them. 
  Step 3.1 Set k = max{bk: (k, i) ∈ E}, j = max{bj: (j, i) ∈ E, k ≠ j and bj < bk}. 
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  Step 3.2 Find unmarked adjacent of j and k and if N(j) ∩ N(k) = φ, then  
11 1 1max{ : ( , ) , ( )}mm b m k m N k= ∈ ∈  and set all unmarked N(k) as the 

child of k and marked them. 
  else 1 1max{ ( ) ( )}m bm N k N j′ ′− ∈ ∩  set as child of j and 1{ ( ) ( ) { }}N k N j m′∪ −  

as child of k and marked and find 1 1max{ ( ) ( ) { }}.m N k N j m′′ ′= ∪ −  

  Step 3.3 This process is continued until all intervals are marked. 
  Step 3.4 Compute the interval tree TIG. 
Step 4 Set N(i) as the child of the root i and marked them. 
  Step 4.1 Set j′ = min{aj′ : (j′, i) ∈ E}, 

min{ : ( , ) , and }.k j kk a k i E k j a a′′ ′ ′ ′ ′ ′= ∈ ≠ <  

  Step 4.2 Find unmarked adjacent of j′ and k′ and if N(j′) ∩ N(k′) = φ, then  
11 1 1min{ : ( , ) ( ) ( )}mm a m j m N k N j′ ′ ′ ′= ∈ ∩  and set all unmarked 

N(j′) as the child of j′ and marked them. 
   else 

11 1min{ : ( ) ( )}mm a m N k N j′′ ′ ′ ′= ∈ ∩  set as child of k′ and 

1{ ( ) ( ) { }}N k N j m′ ′ ′∪ −  as child of j′ and marked and find 

11 1 1min{ : { ( ) ( ) { }}}.mm a m N k N j m′′′′ ′′ ′ ′ ′= ∈ ∪ −  

  Step 4.3 This process is continued until all intervals are marked. 
  Step 4.4 Compute the interval tree TIG. 
Step 5 Set N(i) as the child of the root i and marked them. 
  Step 5.1 Set p = max{bp : (p, i) ∈ E}, q = min{aq : (q, i) ∈ E} and p ≠ q. 
  Step 5.2 Set p′ = max{bp′: (p′, p) ∈ E, p′ ∈ N(p)} and set all unmarked N(p) as 

the child of p and marked. 
  Step 5.3 Set q′ = min{aq′ : (q′, q) ∈ E, q′ ∈ N(q)} and set all unmarked N(q) as 

the child of q and marked. 
  Step 5.4 This process is continued until all intervals are marked. 
  Step 5.5 Compute the interval tree TIG. 
Step 6 Put weight wj to the vertex j in TIG corresponding to the interval j of the interval 

graph G. 
end INT-TREE 

The weighted tree TIG with root as the vertex 1 of the interval graph G is shown in Figure 
2 and we have the following important observation on TIG. 

Lemma 1: The tree TIG formed by the Algorithm INT-TREE is a spanning tree. 

Theorem 1: The time complexity of the Algorithm INT-TREE is O(n), where n is the 
number of vertices of the tree. 

Proof: step 1 takes O(n) time, since the intervals are sorted and the root is selected from n 
intervals. Similarly step 2 can be computed in O(n) time. Since the end points of the 
intervals are sorted and intersection of two finite sets of n elements can be executed in 
O(n) time, so step 3, or step 4, or step 5 can be computed in O(n) time. Also step 6 takes 
O(n) time. Hence overall time complexity of our proposed Algorithm INT-TREE is 
O(n) time. 
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3 Inverse 1-centre, algorithm and its complexity 

Here, we introduce some notations for our algorithmic purpose. 
Ri is the longest weighted path right to the vertex i; Li is the longest weighted path left 

to the vertex i does not contain any vertex of the path Ri; w(Ri), w(Li) are sum of weights 
of the vertices of the path Ri, Li, respectively; w*(Ri); w*(Li) are sum of weights of the 
vertices of the path Ri, Li after modification, respectively, wlow = min{w(Li), w(Ri)},  
whigh = max{w(Li), w(Ri)}; k is the number of vertices in such path between Li, Ri whose 
weight is maximum, except the vertex i; wlow(v) = min{w(v) : v ∈ TIG} = w′;  
wupp(v) = max{w(v) : v ∈ TIG}; TIG is the weighted interval tree corresponding to the 
interval graph G; IGT ′  is the modified tree of the tree TIG corresponding to the interval 
graph G. 

To find inverse 1-centre we discuss following two cases: 

Case 1 if sum of weights of one side of the root i is equal to the sum of weights of other 
side, i.e., w(Li) = w(Ri), then i is the centre as well as the inverse 1-centre of the 
graph. 

Case 2 If w(Li) ≠ w(Ri), then we have following three subcases: 
Case 2.1 When wlow = kw′. 
Case 2.2 When wlow > kw′. 
Case 2.3 When wlow < kw′. 

Under above conditions we modify the tree TIG with the help of following non-linear 
semi-infinite (or nonlinear) optimisation model: 

{ }
( )

Minimize ( ( )) ( ( )) ( ( )) ( ( ))
IGv V T

c w v x w v c w v y w v+ −

∈

+∑  

subject to 

( ) ( ) ( )max ( , ) max ( , ), for all ,
IG IGw w IGv V T v V Td v i d v p p V T∈ ∈≤ ∈  

{ } { } ( )( ) ( ) ( ) ( ) for all ,IGw v w v x w v y w v v V T= + − ∈  

{ } { } ( )( ) ( ) for all ,IGx w v w w v v V T+≤ ∈  

{ } { } ( )( ) ( ) for all ,IGy w v w w v v V T−≤ ∈  

{ } { } ( )( ) , ( ) 0 for all ,IGx w v y w v v V T≥ ∈  

where ( )w v  be the modified vertex weight, w+{w(v)} = wupp(v) – w(v) and  
w–{w(v)} = w(v) – wlow(v) are the maximum feasible amounts by which w(v) can be 
increased and reduced respectively, i.e., ( ) ( ) ( ),low uppw v w v w v≤ ≤  x{w(v)} and y{w(v)} 
are the amounts by which the vertex weight w(v) is increased and reduced respectively, 
c+(w(v)) is the non negative cost if w(v) is increased by one unit and c–(w(v)) is the non 
negative cost if w(v) is reduced by one unit. Every feasible solution (x, y) with  
x = {x(w(v)) : v ∈ V (TIG)} and y = {y(w(v)) : e ∈ V (TIG)} is also called a feasible 
modification of the inverse 1-centre location problem. 
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Now, we have the following three important results. 

Lemma 2: If wlow = kw′ in TIG, then w*(Li) = w*(Ri) by reducing the weights of all vertices 
except the vertex i, i.e., root i up to minimum weight maintaining the bounding condition 
in the path whose weight is maximum and i is the inverse 1-centre. 

Lemma 3: If wlow > kw′ in TIG, then w*(Li) = w*(Ri) by reducing the weights of some 
vertices except the root i maintaining the bounding condition in the path whose weight is 
maximum and i is the inverse 1-centre. 

Lemma 4: If wlow < kw′ in TIG, then w*(Li) = w*(Ri) by reducing the weights of all vertices 
up to minimum weight except the root i maintaining the bounding condition in the path 
whose weight is maximum and enhance the weights of some vertices except the root i in 
the path whose weight is minimum and i is the inverse 1-centre. 

Our proposed algorithm to the inverse 1-centre location problem is as follows: 

Algorithm 1-INV-INT-LOC-TREE 

Input: Weighted interval graph G with interval representation I = [i1, i2, …, in], ij = [aj, bj], j 
= 1, 2, …, n. 

Output Vertex i as inverse 1-centre of the tree TIG and modified tree .IGT ′  

Step 1 Construction of the tree TIG (as per Section 2) with root i. 
Step 2 Compute the weighted path Ri from i to other vertex vj on the tree TIG. 
Step 3 Next compute weighted path Li from i to the vertex vk does not contain any vertex of 

the path R except i. 
Step 4 Calculate weights of two paths Li and Ri, i.e., w(Li) and w(Ri). 
Step 5 //Modification of the tee TIG// 
  Step 5.1 If w(Li) = w(Ri), then i is the vertex one centre as well as inverse 1-

centre of TIG. 
  Step 5.2 If w(Li) ≠ w(Ri), then 
   Step 5.2.1 If wlow = kw′ in TIG, then w*(Li) = w*(Ri) by reducing the 

weights of all vertices except the vertex i, i.e., root i up 
to minimum weight maintaining the bounding condition 
in the path whose weight is maximum, then go to step 
5.3. 

   Step 5.2.2 If wlow > kw′ in TIG, then w*(Li) = w*(Ri) by reducing the 
weights of some vertices except the root i maintaining 
the bounding condition in the path whose weight is 
maximum, then go to step 5.3. 

   Step 5.2.3 If wlow < kw′ in TIG, then w*(Li) = w*(Ri) by reducing the 
weights of all vertices except the root i up to minimum 
weight maintaining the bounding condition in the path 
whose weight is maximum and enhance the weights of 
some vertices except the root i in the path whose weight 
is minimum, then go to step 5.3. 

  Step 5.3 IGT ′  = modified tree of the tree TIG. 

end 1-INV-INT-LOC-TREE. 

Lemma 5: Algorithm 1-INV-INT-LOC-TREE correctly computes the inverse  
1-centre location on the weighted interval tree. 
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The modification of TIG by this process, in general, is not unique but cost is always 
minimum. We have another important observation in the tree IGT ′  given by the Algorithm 
1-INV-INT-LOC-TREE. 

Lemma 6: The specified vertex i in the modified tree IGT ′  is the inverse 1-centre. 

Figure 1 (a) An interval graph G (b) Interval matching diagram of the interval graph G of (a) 

 
(a) 

 
(b) 

Figure 2 Tree TIG of the interval graph G with longest branch on both sides by checking 
adjacency 

 

Figure 3 Modified tree IGT ′  of the tree TIG 

 

Theorem 2: the time complexity to find inverse 1-centre problem on a given vertex 
weighted interval tree TIG is O(n), where n is the number of vertices of the tree. 

Proof. Step 1 takes O(n) time, since the adjacency relation of interval graph can be tested 
in O(n) time. Step 2, i.e., longest weighted path from i to vi can be computed in O(n) time 
if T is traversed in a depth- first-search manner. Similarly, step 3 can be computed in  
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O(n) time. Step 4 takes O(n) time to compute he sum of the weights of the paths. Also, 
step 5 takes O(n) time. Since comparing two numbers and distribution of the excess 
weight takes O(n) time, so, step 5.1, step 5.2 and step 5.3 can be computed O(n) time. 
Hence overall time complexity of our proposed Algorithm 1-INV-INT-LOC-TREE is 
O(n) time, where n is the number of vertices of the interval graph. 

4 Concluding remarks 

In this article, we investigated the inverse 1-centre location problem with different vertex 
weights on the tree corresponding to the weighted interval graph G. We developed an 
exact combinatorial solution algorithm for the tree of interval graphs with fast running 
time O(n), where n is the number of vertices of the interval graph. 
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