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Abstract. Let TTRP be the tree corresponding to the weighted
trapezoid graph G = (V,E). The eccentricity e(v) of the vertex v is

defined as the sum of the weights of the vertices from v to the vertex

farthest from v ∈ TTRP . A vertex with minimum eccentricity in the
tree TTRP is called the 1-center of that tree. In an inverse 1-center

location problem, the parameter of the tree TTRP corresponding to

the weighted trapezoid graph G = (V,E), like vertex weights, have
to be modified at minimum total cost such that a pre-specified vertex

s ∈ V becomes the 1-center of the trapezoid graph G. In this paper,

we present an optimal algorithm to find an inverse 1-center location
on the weighted tree TTRP corresponding to the weighted trapezoid

graph G = (V,E), where the vertex weights can be changed within

certain bounds. The time complexity of our proposed algorithm is
O(n), where n is the number of vertices of the trapezoid graph G.

1. Introduction

1.1. Trapezoid Graph. A trapezoid graph can be represented in terms of
a trapezoid diagram. A trapezoid diagram consist of two horizontal parallel
lines, named as the top line and the bottom line. Each line contains n
intervals. The left end point and right end point of an interval i are ai and
bi (≥ ai) on the top line and ci and di (≥ ci) on the bottom line. A trapezoid
i is defined by four corner points [ai, bi, ci, di] in the trapezoid diagram.
Let T = {1, 2, . . . , n} be the set of n trapezoids. Let G = (V,E) be an
undirected graph with n vertices and m edges and let V = {1, 2, . . . , n}. G
is said to be a trapezoid graph if it can be represented by a trapezoid diagram
such that each trapezoid corresponds to a vertex in V and (i, j) ∈ E if and
only if the trapezoids i and j intersect in the trapezoid diagram [12]. Two
trapezoids i and j(> i) intersect if and only if either (aj − bi) < 0 or
(cj − di) < 0 or both. We assume that the graph G = (V,E) is connected.
Without loss of generality we make the following assumptions.

(a) A trapezoid contains four different corner points and no two trape-
zoids share a common end point.
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(b) Trapezoids in the trapezoid diagram and vertices in the trapezoid
graph are one and the same.

(c) The trapezoids in the trapezoid diagram T are indexed by increas-
ing right end points on the top line, i.e., if b1 < b2 < · · · < bn then
the trapezoids are indexed by 1, 2, 3, . . . , n, respectively.

Figure 2 represents a trapezoid graph shown in Figure 1. The class of
trapezoid graphs includes two well-known classes of intersection graphs:
the permutation graphs and the interval graphs [19]. The permutation
graphs are obtained where ai = bi and ci = di for all i and the interval
graphs are obtained where ai = ci and bi = di for all i. Trapezoid graphs
can be recognized in O(n2) time [30]. Trapezoid graphs were first studied
in [11, 12]. These graphs are a superclass of interval graphs, permutation
graphs and a subclass of co-comparability graphs [29].

In G, a walk is defined as a finite alternating sequence of vertices and
edges, beginning and ending with vertices, such that each edge is incident
with the vertices preceding and following it. No edge appears more than
once in a walk. A vertex; however, may appear more than once. An open
walk, in which no vertex appears more than once, is called a path. A closed
walk, in which no vertex (except the initial and the final vertex) appears
more than once, is called a circuit. A tree T is a connected graph without
any circuits, i.e., a tree is a connected acyclic graph. Clearly, there is one
and only one path between every pair of vertices of T . A tree T is weighted
if there is a non-negative real number associated with each edge or vertex of
T . In an un-weighted tree T = (V,E), where |E| = |V |− 1, the eccentricity
e(v) of the vertex v is defined as the distance from v to the vertex farthest
from v ∈ T , i.e.,

e(v) = max{d(v, vi), for all vi ∈ T},

where d(v, vi) is the number of the edges on the shortest path between v
and vi.

In vertex weighted tree T = (V,E), the eccentricity e(v) of the vertex
v is defined as the sum of the weights of the vertices from v to the vertex
farthest from v ∈ T , i.e.,

e(v) = max{dw(v, vi), for all vi ∈ T},

where dw(v, vi) is the sum of the weights of the vertices on the path between
v and vi.

A vertex with minimum eccentricity in the tree T is called a center, i.e., if
e(s) = min{e(v), for all v ∈ V }, then s is the 1-center. It is clear that every
tree has either one or two centers. The 1-center location problems occur
when the best location of an emergency service, a hospital, a fire station, a
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Figure 1. A Trapezoid graph G.

a1 b1 b2a2 a3 b3b4a4 b5a5a6 b6a7 b7a8 b8a9 b9a10 b10

c1 d1c2 d2c3 d3 c4 d4c5 d5c6 d6 c7 d7c8 d8c9 d9c10 d10

Figure 2. A trapezoid diagram T of the graph G of Figure 1.

police office, a bank branch, a train station, an airport, a shopping center,
a city park, or another facility center has to be found.

The eccentricity of a center in a tree is defined as the radius of the tree
and is denoted by ρ(T ), i.e.,

ρ(T ) = {minv∈T e(v)}.
The diameter of an unweighted tree T is defined as the length of the

longest path in T , i.e., the maximum eccentricity is the diameter. The
diameter of a weighted tree T is defined as the sum of the weights of the
vertices in the path of T , i.e., the maximum eccentricity of the weighted
tree T is the diameter.
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For the weighted tree T with n vertices and n − 1 edges of the corre-
sponding weighted trapezoid graphs, the inverse 1-center problem is con-
cerned with a modifying parameter, like vertex weight, at minimum total
cost within certain modification bounds such that, a pre-specified vertex
becomes the 1-center. For example, consider the train station of a city
which cannot be relocated. The mayor could change some parameters in
the urban system (e.g., improving streets or urban transportation lines) at
minimum cost, subject to evident length constraints such that the current
location of the train station becomes the center (in a graph theoretic sense)
of the city.

Our problem is to design an optimal algorithm to compute the inverse
1-center location problem on weighted trapezoid graphs.

1.2. Survey of Relevant Literature. In [9, 40, 41], we can work out
the inverse problem of many combinatorial or network optimization in a
strong or weak way of polynomial algorithms. In fact [38] shows a large
class of combinatorial or network optimization problems, if we can solve
the original problem in polynomial times, then its inverse problem can be
solved in polynomial time by a uniform methodology. A detailed survey on
inverse optimization problems has been compiled by Heuberger [25]. In the
context of location problems, Cai et al. [10] proved that the inverse 1-center
location problem with edge length modification on general unweighted di-
rected graphs is NP-hard, while the underlying center location problem is
solvable in polynomial time. In 2004, Burkard et al. [5] considered inverse
p-median location problems could be solved in polynomial time, when p is
fixed and not an input parameter. They proposed a greedy like O(n log n)
time algorithm for the inverse 1-median problem with vertex weight mod-
ifications on tree networks. Galavi [21] showed later that this problem
can actually be solved in O(n) time. Moreover, Burkard proved that the
inverse 1-median problem on the plane under Manhattan (or Chebyshev)
norm can be solved in O(n log n) time. Later the same authors, [6], in-
vestigated the inverse 1-median problem with vertex weight modification
and unit cost on a cycle. They showed that this problem can be solved
in O(n2) time by using methods from computational geometry. In 2007,
Gassner [20] suggested an efficient O(n log n) time solution method for the
inverse 1-maxian problem with edge length modifications on tree networks.
The inverse Fermat-Weber problem was studied by Burkard et al. [7, 8].

The authors derived a combinatorial approach which solves the prob-
lem in O(n log n) time for unit cost and under the assumption that the
pre-specified point that should become a 1-median, does not coincide with
a given point in the plane. Galavii [21] showed that the 1-median on a
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path with positve/negative weights lies in one of the vertices with posi-
tive weights, or lies in one of the end points of the path. This property
allows us to solve the inverse 1-median problem on a path with negative
weights in O(n) time. Gassner [22] considered an inverse version of the
convex ordered median problem and showed that this problem is NP-hard
on general graphs, even on trees. Further, it was shown that the prob-
lem remained NP-hard for unit weights if the underlying problem was a
K-centrum problem; if not both of these conditions hold. The inverse unit-
weight K-centrum problem with unit cost coefficients on a tree can be solved
in O(n3k2) time. Recently, Yang and Zhang [39] proposed an O(n2 log n)
time solution method for the inverse vertex center problem on a tree, pro-
vided that the modified edge lengths always remain positive. Recently,
Alizadeh et al. [1] designed an algorithm for inverse 1-center location prob-
lem with edge length augmentation on trees in O(n log n) time, using a set
of suitably extended AVL-search trees. In [2], Alizadeh et al. designed a
combinatorial algorithm for inverse absolute on trees in O(n2) time, when
topology is not allowed, and O(n2r) time, when topology is allowed.

Inverse optimization problems have recently attained significant theoret-
ical interest due to their relevance in practice. For a comprehensive survey
on inverse optimization problems, see [16, 23, 25, 28].

Network location problems belong to basic optimization models which
are concerned with finding the best location of single or multiple new fa-
cilities in a network of demand points, such that a given function, which
depends on the distance between the facilities and clients, becomes mini-
mum. Depending on the model under investigation, facilities or clients may
either be placed only at vertices, or may also lie on edges of the network.
For further details on these problems, the reader is referred to the books of
Daskin [13], Drezner et al. [15], Francis et al. [18], Mirchandani et al. [32],
and Nickel et al. [35].

Burton and Toint [4] first investigated an inverse shortest paths prob-
lem in 1992. Since then, many problems have been considered by various
authors, working at least partly independently. The notation of ‘inverse op-
timization’ is always similar, but not the same. Recently, Jana et al. [26, 27]
designed a linear time algorithm to compute an inverse 1-center location
problem on the edge weighted trees and weighted interval graphs, respec-
tively.

In this paper, we design an algorithm to compute an inverse 1-center
location problem on weighted trapezoid graphs in O(n) time, where n is
the number of vertices of the graph.

1.3. Applications of the Problem. One application derives from geo-
physical sciences and concerns predicting the movement of earthquakes.
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Geologic zones are discretized into a number of cells with a view to achiev-
ing this. Adjacency relations can be modeled by arcs in a corresponding
network (Moser [34]). Precise values are hard to obtain in comparison to
some estimates of the transmission times being known. Earthquakes travel
along the shortest paths and the problem is to refine the estimates of the
transmission times between the cells on the basis of observation assumption
of an earthquake, and the arrival times of the resulting seismic perturba-
tions at various points. Actually, this is the inverse shortest path problem.

Another possible application actually changes the real costs. Assume
that we are given a road network and some facility in it. The aim is to
place the facility in such a way that the maximum distance to the cus-
tomers is minimal. However, we are often faced with the situation that the
facility already exists and cannot be relocated with reasonable costs. In
such a situation, we may want to modify the network as little as possible
(improving roads costs), such that the location of the facility becomes op-
timum (or such that the distances to the customers do not exceed some
given bounds). This is an example of the inverse center location problem.
When modeling traffic networks, a further option is to impose tolls in order
to enforce an efficient use of the network (Dial [14]). The choice of the
word ‘inverse optimization’ was motivated in part by the widespread use of
inverse methods in other fields, see Marlow [31] and Engl et al. [17].

1.4. Organization of the Paper. In Section 2, we present the data struc-
ture and construction of the tree TTRP . In Section 3, we discuss the inverse
1-center. Some notations are also presented in this section. In Section 4, we
present an algorithm to get inverse 1-center of the modified vertex weighted
tree corresponding to the trapezoid graph G. The time complexity is also
calculated in this section. In Section 5, we give a conclusion.

2. Construction of the Tree

Let i be a pre-specified vertex which is to be an inverse 1-center. In this
section our aim is to construct a minimum heighted tree, as root i, with
two branches of level difference either zero or one.

Let the vertex i be the root of the tree. Then we find all adjacent vertices
to i corresponding to the trapezoid and set them as child (leaves) of i.
Next consider the vertices k and j, where k = max{bk or dk : (k, i) ∈ E},
j = max{bj or dj : (j, i) ∈ E, k 6= j and bj < bk or dj < dk}, and set
them as a vertices on the main path and mark them. Next, find all adjacent
trapezoids to the vertices k and j and set them as respective child (leaves).
This process continues until all trapezoids are marked. In this way, we
construct a rooted tree with two branches with level difference either zero
or one.
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The proposed combinatorial algorithm to construct the tree TTRP is as
follows:
Algorithm TRP-TREE
Input: Weighted trapezoid graph G with four corner points [ai, bi, ci, di],
i = 1, 2, . . . , n, and T = 1, 2, . . . , n be the set of n trapezoids.
Output: The rooted tree TTRP with two branches of the trapezoid graph
G.
Step 1. Set root = i and compute N(i) = the open neighborhood of i =
{v : (v, i) ∈ E}.
Step 2. If |N(i)| = 1, then end.
If |N(i)| > 1 and i is the starting trapezoid, i.e., i = 1, then go to Step 3.
If |N(i)| > 1 and i is the end trapezoid, i.e., i = n, then go to Step 4.
If |N(i)| > 1 and i is an trapezoid between 1 and n, i.e., 1 < i < n, then
go to Step 5.
Step 3. Set N(i) as the child of the root i and mark them.
Step 3.1. Set k = max{bk or dk : (k, i) ∈ E}, j = max{bj or dj : (j, i) ∈
E, k 6= j andbj < bk or dj < dk}.
Step 3.2. Find unmarked adjacent of j and k and if N(j)

⋂
N(k) = φ, then

m1 = max{bm1 or dm1 : (m1, k) ∈ E,m1 ∈ N(k)} and set all unmarked
N(k) as the child of k and mark them and m2 = max{bm2 or dm2 :
(m2, j) ∈ E,m2 ∈ N(j)} and set all unmarked N(j) as the child of j and
mark them.
else m′1 = max{bm′

1
or dm′

1
∈ N(k) ∩N(j)} set as child

of j and {N(k) ∪N(j)− {m′1}} as child of k and mark and find
m′′1 = max{N(k) ∪N(j)− {m′1}}.
Step 3.3. This process is continued until all trapezoids are marked.
Step 3.4. Compute the trapezoid tree TTRP .
Step 4. Set N(i) as the child of the root i and mark them.
Step 4.1. Set j′ = min{aj′ or cj′ : (j′, i) ∈ E}, k′ = min{ak′ or ck′ :
(k′, i) ∈ E, k′ 6= j′ and a′j < a′k or c′j < c′k}.
Step 4.2. Find unmarked adjacent of j′ and k′ and if N(j′)

⋂
N(k′) = φ,

then r1 = min{ar1 or cr1 : (r1, j
′) ∈ E, r1 ∈ N(j′)} and set all

unmarked N(j′) as the child of j′ and mark them and r2 = min{ar2 or cr2 :
(r2, k

′) ∈ E, r2 ∈ N(k′)} and set all unmarked
N(k′) as the child of k′ and mark them.
else r′1 = min{ar′1 or cr′1 : r′1 ∈ N(′k) ∩N(j′)} set as child of j′

and {N(k′) ∪N(j′)− {r′1}} as child of k′ and mark and find
r′′1 = min{N(k′) ∪N(j′)− {r′1}}.

Step 4.3. This process is continued until all trapezoids are marked.
Step 4.4. Compute the trapezoid tree TTRP .
Step 5. Set N(i) as the child of the root i and mark them.
Step 5.1. Set p = max{bp or dp : (p, i) ∈ E}, q = min{aq or cq : (q, i) ∈
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E} and p 6= q.
Step 5.2. Set p′ = max{bp′ or dp′ : (p′, p) ∈ E, p′ ∈ N(p)} and set all
unmarked N(p) as the child of p and marked.
Step 5.3. Set q′ = min{aq′ or cq′ : (q′, q) ∈ E, q′ ∈ N(q)} and set all
unmarked N(q) as the child of q and marked.
Step 5.4. This process is continued until all trapezoids are marked.
Step 5.5. Compute the interval tree TTRP .
Step 6. Put weight wj(> 0) to the vertex j in TTRP corresponding to the
trapezoid j of the trapezoid graph G.
end TRP-TREE.

Illustration of the Algorithm TRP-TREE. Let i = 1 be the pre-
specified vertex which is the root whose level is 0. Next, the open neigh-
borhood of 1 is N(1) = {2, 3, 4}, where the vertices of N(1) as the child of
the root 1 and put them at level 1. Next, 4 has the maximum bi among
the trapezoids of N(1) corresponding to the vertices of the graph G and 2
has the next maximum di among the trapezoids of N(1) corresponding to
the vertices of the graph G. Next, the open neighborhoods of 4 and 2 are
N(4) = {5, 6} and N(2) = {5, 6}, respectively, where the vertices of N(4)
and N(2) as the child of the roots 4 and 2 and put them at level 2. Next,
6 has the maximum bi among the trapezoids of N(4) corresponding to the
vertices of the graph G and 5 has the next maximum bi among the trape-
zoids of N(2) corresponding to the vertices of the graph G. Next, the open
neighborhoods of 6 and 5 are N(6) = {7} and N(5) = {9}, respectively,
where the vertices of N(6) and N(5) as the child of the roots 6 and 5 and
put them at level 3. Next 7 has the maximum di among the trapezoids
of N(6) corresponding to the vertices of the graph G and 9 has the maxi-
mum di among the trapezoids of N(5) corresponding to the vertices of the
graph G. Next the open neighborhoods of 7 and 9 are N(7) = {8, 10} and
N(9) = {8, 10}, respectively, where the vertices of N(7) and N(9) as the
child of the roots 7 and 9 and put them at level 4. Finally we construct the
rooted tree TTRP with root i = 1 (see Figure 3).

Now we have the following important observation on TTRP .

Lemma 2.1. The tree TTRP formed by Algorithm TRP-TREE is a span-
ning tree.

Proof. As per the construction of the graph TTRP by maximum bi or di,
i = 1, 2, . . . , n, in trapezoid diagram we get n vertices and n − 1 edges.
Also, there is no repetition of the vertices, as we search only unmarked
vertices, so this is a graph without any circuit. Therefore, the tree TTRP is
a spanning tree. Hence, we have the result. �
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Lemma 2.2. The tree TTRP formed by Algorithm TRP-TREE is a BFS
tree with minimum height.

Proof. Actually, steps of the algorithm indicate the steps of BFS technique
in the trapezoid graph. Thus, the tree formed by Algorithm TRP-TREE
is the BFS tree. Again, we traverse the trapezoid graph with respect to
maximum bi or di until all unmarked trapezoids are marked. As in each
step we move on the trapezoid, its height to be minimum. �

Also, the time complexity of Algorithm TRP-TREE to compute the tree
TTRP is given below.

v
u v v
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v v
v v
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2(3)

5(4)

9(7)

10(8)

3(4)
4(6)

6(4)
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Level

0

1

2

3

4

Figure 3. Tree TTRP of the trapezoid graph G.
Theorem 2.3. The time complexity of Algorithm TRP-TREE is O(n),
where n is the number of vertices of the tree.

Proof. Step 1 and Step 2 each take O(n) time, since the arcs are sorted
and the root is selected from n arcs. Step 3 can be computed in O(n) time,
since the number of arcs is n. Since the end points of the arcs are sorted,
the maximum element (vertex) from a set of vertices can be computed in
O(n) time. Again, the intersection of two finite sets of n elements (number
of vertices) can be executed in O(n) time. Thus, Step 4 and Step 5 can
be computed in O(n) time. Since the weight of each vertex in tree TTRP

corresponds to the weight of the trapezoids, then the trapezoid graph is
placed on the corresponding vertex, so Step 6 can be executed in O(n)
time. Hence, overall time complexity of our proposed Algorithm TRP-
TREE is O(n) time, where n is the number of vertices of the weighted
trapezoid graph. �

Thus, the tree TTRP of the trapezoid graph is formed. The tree TTRP

of the trapezoid graph G (Figure 1) is shown in Figure 3.
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3. Inverse 1-center

In this section we discuss inverse 1-center.
Now before going to our proposed algorithm, we introduce some nota-

tions for our algorithmic purpose. Let i be the pre-specified vertex in G.

Ri : Longest path to the vertex i.
Li : Another longest path to the vertex i.
w(Ri) : Sum of weights of the vertices except the vertex i of the

path Ri.
w(Li) : Sum of weights of the vertices except the vertex i of the

path Li.
wlow(v) : Minimum weight of the vertex in the graph G.
wupp(v) : Maximum weight of the vertex in the graph G.
wmin : min{w(Li), w(Ri)}.
wmax : max{w(Li), w(Ri)}.
w1 : min{w(v), v ∈ G}.
w2 : max{w(v), v ∈ G}.
k1 : The number of vertices in such a path between Li, Ri

whose weight is maximum, except the vertex i.
k2 : The number of vertices in such a path between Li, Ri

whose weight is minimum, except the vertex i.
TTRP : Weighted tree corresponding to the circular-arc graph G.
T ′TRP : Modified tree of the tree TTRP corresponding to the

trapezoid graph G.
w∗(Ri) : Sum of weights of the vertices except the vertex i of the

path Ri after modification.
w∗(Li) : Sum of weights of the vertices except the vertex i of the

path Li after modification.
To find the inverse 1-center, we discuss the following cases.
Case 1. If the sum of weights of one side of the vertex i is equal to the

sum of weights of other side, i.e., w(Li) = w(Ri), then i is the center as
well as the inverse 1-center of the graph.

Case 2. If w(Li) 6= w(Ri), then we have the following six cases.
Case 2.1. wmin is equal to the product of the number of vertices except

the vertex i in the path whose weight is maximum and minimum weight of
the vertex in the graph, i.e., wmin = k1w1.

Case 2.2. wmin is greater than the product of the number of vertices
except the vertex i in the path whose weight is maximum and minimum
weight of the vertex in the graph, i.e., wmin > k1w1.

Case 2.3. wmin is less than the product of the number of vertices except
the vertex i in the path whose weight is maximum and minimum weight of
the vertex in the graph, wmin < k1w1.

10 MISSOURI J. OF MATH. SCI., VOL. 31, NO. 1
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Case 2.4. wmax is equal to the product of the number of vertices except
the vertex i in the path whose weight is minimum and maximum weight of
the vertex in the graph, wmax = k2w2.

Case 2.5. wmax is greater than the product of the number of vertices
except the vertex i in the path whose weight is minimum and maximum
weight of the vertex in the graph, wmax > k2w2.

Case 2.6. wmax is less than the product of the number of vertices except
the vertex i in the path whose weight is minimum and maximum weight of
the vertex in the graph, i.e., wmax < k2w2.

Under the above conditions, we modify the tree TTRP with the help of
the following non-linear semi-infinite (or nonlinear) optimization model.

Minimize
∑

v∈V (TTRP )

{c+(w(v))x(w(v)) + c−(w(v))y(w(v))}

subject to
maxv∈V (TTRP ) dw(v, i) ≤ maxv∈V (TTRP ) dw(v, p),
for all p ∈ TTRP (or p ∈ V (TTRP )),
w(v) = w(v) + x{w(v)} − y{w(v)} for all v ∈ V (TTRP ),
x{w(v)} ≤ w+{w(v)}, for all v ∈ V (TTRP ),
y{w(v)} ≤ w−{w(v)}, for all v ∈ V (TTRP ),
x{w(v)}, y{w(v)} ≥ 0, for all v ∈ V (TTRP ),

where w(v) is the modified vertex weight, w+{w(v)} = wupp(v)−w(v), and
w−{w(v)} = w(v) − wlow(v) are the maximum feasible amounts by which
w(v) can be increased and reduced, respectively, i.e., wlow(v) ≤ w(v) ≤
wupp(v) and x{w(v)} and y{w(v)} are the maximum amounts by which
the vertex weight w(v) is increased and reduced, respectively, c+(w(v)) is
the non-negative cost if w(v) is increased by one unit, and c−(w(v)) is the
non-negative cost if w(v) is reduced by one unit. Every feasible solution
(x, y) with x = {x(w(v)) : v ∈ V (TCIR)} and y = {y(w(v)) : e ∈ V (TTRP )}
is also called a feasible modification of the inverse 1-center location problem.

Now we prove the following results.

Lemma 3.1. If wmin = k1w1 in TTRP , then w∗(Li) = w∗(Ri) by reducing
the weights of all vertices except the vertex i, i.e., root i up to the minimum
weight, maintaining the bounding condition in the path whose weight is
maximum and i is the inverse 1-center.

Proof. If k1 is the number of vertices in the maximum weighted path Li

or Ri and w1 is the minimum weight of the vertex among the vertices in
TTRP as well as Li or Ri, then there is a scope to reduce the weight of each
vertex up to w1. As k1 vertices exist in the path Li or Ri, we can reduce
the weight at least k1w1 and hence, reduce the weight of the path Li or Ri

MISSOURI J. OF MATH. SCI., SPRING 2019 11
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to become k1w1. Again, we have wmin = k1w1. In this way, we can balance
the weights of both paths. So we get the modified tree of the tree TTRP ,
say T ′TRP . Again, since the trapezoid graph is arbitrary, our assumption is
true for any trapezoid graphs.

Finally in T ′TRP , we have w∗(Li) = w∗(Ri), which implies that i is the
inverse 1-center of the given weighted trapezoid graph. Hence, the result
follows. �

Lemma 3.2. If wmin > k1w1 in TTRP , then w∗(Li) = w∗(Ri) by reducing
the weights of some vertices except the root i and maintaining the bounding
condition in the path whose weight is maximum and i is the inverse 1-center.

Proof. Since we can decrease the weight of each vertex except the root up
to minimum weight of the vertex in TTRP , we can reduce the weight in
the path whose weight is maximum in such a way that the least weight of
the path becomes k1w1. Again, we have wmin > k1w1. Therefore, we can
decrease the weights (wmax − wmin) from the vertices except the root i in
the path whose weight is maximum using the conditions of the non-linear
semi-infinite optimization model technique. In this way, we can balance
the weights of both paths. So we get the modified tree of the tree TTRP ,
say T ′TRP . Again, since the trapezoid graph is arbitrary, our assumption is
true for any trapezoid graphs.

Finally in T ′TRP , we have w∗(Li) = w∗(Ri), which implies that i is the
inverse 1-center of the given weighted trapezoid graph. Hence, we have the
result. �

Lemma 3.3. If wmin < k1w1 in TTRP , then w∗(Li) = w∗(Ri) by reducing
the weights of all vertices up to the minimum weight, except the root i
maintaining the bounding condition in the path whose weight is maximum,
and enhance the weights of some vertices except the root i in the path whose
weight is minimum and i is the inverse 1-center.

Proof. Since we can decrease the weight of each vertex up to the minimum
weight of the vertex in TTRP , we can reduce the weights of the vertices
except the root in the path whose weight is maximum in such a way that
the least weight of the path becomes k1w1. Again, we have wmin < k1w1.
Therefore, we can increase the weights (k1w1−wmin) to the vertices, except
the root, in the path whose weight is a minimum using the conditions of
the non-linear semi-infinite optimization model technique. In this way, we
can balance the weights of both paths. So we get the modified tree of the
tree TTRP , say T ′TRP . Again, since the trapezoid graph is arbitrary, our
assumption is true for any trapezoid graphs.
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Finally in T ′TRP , we have w∗(Li) = w∗(Ri), which implies that i is the
inverse 1-center of the given weighted trapezoid graph. Hence, we have the
result. �

Lemma 3.4. If wmax = k2w2 in TTRP , then w∗(Li) = w∗(Ri) by enhanc-
ing the weights of all vertices up to a maximum weight, except the root i,
maintaining the bounding condition in the path whose weight is minimum
and i is the inverse 1-center.

Proof. If k2 is the number of vertices in the minimum weighted path Li

or Ri and w2 is the maximum weight of the vertex among the vertices in
TTRP as well as Li or Ri, then there is a scope to increase the weight of
each vertex up to w2. Since there are k2 vertices in the path Li or Ri, we
can enhance the weight at most k2w2 and hence, the weight of the path
Li or Ri becomes k2w2. Again, we have wmax = k2w2. In this way, we
can balance the weights of both paths. So we get the modified tree of the
tree TTRP , say T ′TRP . Again, since the trapezoid graph is arbitrary, our
assumption is true for any trapezoid graphs.

Finally in T ′TRP , we have w∗(Li) = w∗(Ri), which implies that i is the
inverse 1-center of the given weighted trapezoid graph. Hence, the result
follows. �

Lemma 3.5. If wmax > k2w2 in TTRP , then w∗(Li) = w∗(Ri) by en-
hancing the weights of all vertices up to the maximum weight except root i
which maintains the bounding condition in the path whose weight is mini-
mum and reducing the weights of some vertices except the root i in the path
whose weight is maximum and i is the inverse 1-center.

Proof. Since we can increase the weight of each vertex up to the maximum
weight of the vertex in TTRP , we can enhance the weights of all vertices
except the root i in the path whose weight is minimum in such a way that
its greatest weight of the path becomes k2w2. Again, we have wmax > k2w2.
Therefore, we can reduce the weights (wmax−k2w2) to some vertices except
the root in the path whose weight is maximum, using the conditions of the
non-linear semi-infinite optimization model technique. In this way, we can
balance the weights of both paths. So we get the modified tree of the
tree TTRP , say T ′TRP . Again, since the trapezoid graph is arbitrary, our
assumption is true for any trapezoid graphs.

Finally in T ′TRP , we have w∗(Li) = w∗(Ri), which implies that i is the
inverse 1-center of the given weighted trapezoid graph. Hence, we have the
result. �

Lemma 3.6. If wmax < k2w2 in TTRP , then w∗(Li) = w∗(Ri) by en-
hancing the weights of some vertices except the root i by maintaining the

MISSOURI J. OF MATH. SCI., SPRING 2019 13



B. JANA, S. MONDAL, AND M. PAL

bounding condition in the path whose weight is minimum and i is the inverse
1-center.

Proof. Since we can increase the weight of each vertex up to the maximum
weight of the vertex in TTRP , we can enhance the weights of the vertices,
except the root i, in the path whose weight is minimum in such a way that
its greatest weight of the path becomes k2w2. Again, we have wmax < k2w2.
Therefore, we can increase the weights (wmax − wmin) to some vertices,
except the root i, in the path whose weight is minimum using the conditions
of the non-linear semi-infinite optimization model technique. In this way,
we can balance the weights of both paths. So we get the modified tree of
the tree TTRP , say T ′TRP . Again, since the trapezoid graph is arbitrary,
our assumption is true for any trapezoid graphs.

Finally in T ′TRP , we have w∗(Li) = w∗(Ri), which implies that i is the
inverse 1-center of the given weighted trapezoid graph. Hence, the result
follows. �

4. Algorithm and its complexity

In this section, we propose a combinatorial algorithm for the inverse 1-
center location problem on the weighted tree TTRP . The main idea of our
proposed algorithm follows.

Let TTRP be a weighted tree corresponding to the trapezoid graphG with
n vertices and (n − 1) edges. Let V be the vertex set and E be the edge
set. Let i be any non-pendant specified vertex in the tree TTRP which is
the inverse 1-center. First, we calculate the path whose weight is maximum
from i to any pendant vertex of TTRP . Let L and R be the left and right
paths from i in which weights are maximum with respect to the sides. Let
w(Li), w(Ri) be the sum of weights of the vertices except the root of the
paths Li, Ri, respectively, with respect to the vertex i. If w(Li) = w(Ri),
then i is the center as well as the inverse 1-center of the graph. If w(Li) 6=
w(Ri), then six cases may arise. In the first case, if wmin = k1w1 in TTRP ,
where w1 = min{w(v), v ∈ G}, wmin = min{w(Li), w(Ri)}, k1 is the
number of vertices in such path between Li, Ri whose weight is maximum,
except the root i, and wmin > 0, then w∗(Li) = w∗(Ri) by reducing the
weights of all vertices up to minimum weight except the vertex i, i.e., root i
maintaining the bounding conditions (Section 3) in the path whose weight is
maximum and i is the inverse 1-center. In the second case, if wmin > k1w1

in TTRP , where w1 = min{w(v), v ∈ G}, wmin = min{w(Li), w(Ri)},
k1 is the number of vertices in such path between Li, Ri whose weight
is maximum, except the root i and wmin > 0, then w∗(Li) = w∗(Ri) by
reducing the weights of some vertices except the root i maintaining the
bounding conditions (Section 3) in the path whose weight is maximum and
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i is the inverse 1-center. In the third case, if wmin < k1w1 in TTRP , where
w1 = min{w(v), v ∈ G}, wmin = min{w(Li), w(Ri)}, k1 is the number of
vertices in such path between Li, Ri whose weight is maximum, except the
root i and wmin > 0, then w∗(Li) = w∗(Ri) by reducing the weights of all
vertices up to minimum weight except the root i maintaining the bounding
conditions (Section 3) in the path whose weight is maximum and enhance
the weights of some vertices except the root i in the path whose weight is
minimum and i is the inverse 1-center. In the fourth case, if wmax = k2w2

in TTRP , where w2 = max{w(v), v ∈ G}, wmax = max{w(Li), w(Ri)},
k2 is the number of vertices in such path between Li, Ri whose weight
is minimum, except the root i and wmax > 0, then w∗(Li) = w∗(Ri) by
enhancing the weights of all vertices up to maximum weight except the root
i maintaining the bounding conditions (Section 3) in the path whose weight
is minimum and i is the inverse 1-center. In the fifth case, if wmax > k2w2

in TTRP , where w2 = max{w(v), v ∈ G}, wmax = max{w(Li), w(Ri)},
k2 is the number of vertices in such path between Li, Ri whose weight
is minimum, except the root i and wmax > 0, then w∗(Li) = w∗(Ri) by
enhancing the weights of all vertices up to maximum weight except the root
i maintaining the bounding conditions (Section 3) in path whose weight is
minimum and reducing the weights of some vertices except the root i in
the path whose weight is maximum and i is the inverse 1-center. In the
sixth case, if wmax < k2w2 in TCIR, where w2 = max{w(v), v ∈ G},
wmax = max{w(Li), w(Ri)}, k2 is the number of vertices in such path
between Li, Ri whose weight is minimum, except the root i and wmax > 0,
then w∗(Li) = w∗(Ri) by enhancing the weights of some vertices except the
root i maintaining the bounding conditions (Section 3) in the path whose
weight is minimum and i is the inverse 1-center.

Our proposed algorithm to the inverse 1-center location problem of the
tree corresponding to the trapezoid graph G follows.

Algorithm 1-INV-TRP-TREE
Input: Weighted trapezoid graph G = (V,E) with its trapezoid represen-
tation Ti = [ai, bi, ci, di], i = 1, 2, . . . , n.
Output: Vertex i as the inverse 1-center of the trapezoid graph G = (V,E)
with the help of its tree T ′TRP .
Step 1. Construction of the tree TTRP with root i (Algorithm TRP-
TREE).
Step 2. Compute the paths Ri and Li.
Step 3. Calculate w(Li) and w(Ri).
Step 4. Modification of the tree TTRP

Step 4.1. If w(Li) = w(Ri), then i is the 1-center of TTRP .
Step 4.2. If w(Li) 6= w(Ri), then
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Step 4.2.1. If wmin = k1w1 in TTRP , then w∗(Li) = w∗(Ri) by reducing
the weights of all vertices except the vertex i, i.e., root i up to minimum
weight maintaining the bounding condition in the path whose weight is
maximum, then go to Step 4.3.
Step 4.2.2. If wmin > k1w1 in TTRP , then w∗(Li) = w∗(Ri) by reducing
the weights of some vertices except the root i maintaining the bounding
condition in the path whose weight is maximum, then go to Step 4.3.
Step 4.2.3. If wmin < k1w1 in TTRP , then w∗(Li) = w∗(Ri) by reducing
the weights of all vertices except the root i up to minimum weight main-
taining the bounding condition in the path whose weight is maximum and
enhance the weights of some vertices except the root i in the path whose
weight is minimum, then go to Step 4.3.
Step 4.2.4. If wmax = k2w2 in TTRP , then w∗(Li) = w∗(Ri) by enhancing
the weights of all vertices except the root i up to maximum weight main-
taining the bounding condition in the path whose weight is minimum, then
go to Step 4.3.
Step 4.2.5. If wmax > k2w2 in TTRP , then w∗(Li) = w∗(Ri) by enhanc-
ing the weights of all vertices except the root i up to maximum weight
maintaining the bounding condition in path whose weight is minimum and
reducing the weights of some vertices except the root i in the path whose
weight is maximum, then go to Step 4.3.
Step 4.2.6. If wmax < k2w2 in TTRP , then w∗(Li) = w∗(Ri) by enhancing
the weights of some vertices except the root i maintaining the bounding
condition in the path whose weight is minimum, then go to Step 4.3.
Step 4.3. Modified tree T ′TRP of the trapezoid tree TTRP with w∗(Li) =
w∗(Ri), and i is the inverse 1-center.
end 1-INV-TRP-TREE.

Using Algorithm 1-INV-TRP-TREE, we can find the inverse 1-center lo-
cation problem on any vertex weighted tree. Justification of this statement
follows the following illustration.
Illustration of the Algorithm 1-INV-TRP-TREE to the tree TTRP

in Figure 3. Let i = 1 be the pre-specified vertex of the tree TTRP which
is to be inverse 1-center. Next, we find the longest path Li from the vertex
1 to other the vertex 10, i.e., the path 1 → 2 → 5 → 9 → 10 and find
another longest path Ri from 1 to the vertex 8 does not contain any vertex
of the path Li except 1, i.e., the path 1→ 4→ 6→ 7→ 8.

Next, calculate the weights of the paths Li and Ri. Let w(Li) and w(Ri)
be the sum of the weights of the vertices except the root i = 1 of the paths
Li and Ri, respectively. Here, w(Li) = 22 and w(Ri) = 28. Therefore,
w(Li) 6= w(Ri). Therefore, wmin = w(Li) = 22 and wmax = w(Ri) = 28.
Again, k1 = 4 and w1 = 3, then k1w1 = 12. Therefore, wmin > k1w1.
Next, calculate (wmax−wmin). Therefore, (wmax−wmin) = (28−22) = 6.
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Therefore, we can decrease the weights (wmax − wmin) from the vertices
except the root i in the path whose weight is maximum using the conditions
of the non-linear semi-infinite optimization model technique (Section 3).
Now, we subtract the weight 3 from the weight of the vertex 4 in Ri, again
we subtract the weights 1, 2 from the weights of the vertices 6, 7 respectively
in Ri, then we get w∗(Ri) = {(6− 3) + (4− 1) + (5− 2) + 13} = 22. Again,
w∗(Li) = wmin = w(Li) = 22. Hence, we get w∗(Li) = w∗(Ri). Therefore,
the vertex 1 is the inverse 1-center.

The above illustration gives the following table.
Now, we have the modified tree T ′TRP (Figure 4) with modified vertex

weight. ts t t
tt

t t
t t

1(5)

2(3)

5(4)

9(7)

10(8)

3(4)
4(6− 3)

6(4− 1)

7(5− 2)

8(13)

Level
0

1

2

3

4

Figure 4. Modified tree T ′TRP of the tree TTRP .
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Pre-specified vertex of the tree TTRP i = 1
Longest path Li from vertex 1 1→ 2→ 5→ 9→ 10
to vertex 10
Longest right path Ri from vertex 1 1→ 4→ 6→ 7→ 8
to vertex 8
Weight of path Li except vertex i = 1 w(Li) = 22
Weight of path Ri except vertex i = 1 w(Ri) = 28
wmin = w(Li) 22
wmax = w(Ri) 28
Number of vertices in Ri except i = 1 k1 = 4
Minimum weight of the vertex in the w1 = 3
graph
k1w1 12
wmin > k1w1

wmax = wmin 30− 27 = 3
Reduce the weights of the vertices (6− 3) + (4− 1) + (5− 2) + 13
except vertex i = 1 in Ri

w ∗ (Li) 22
w ∗ (Ri) = w(Ri) 22
The weights of w ∗ (Li) and w ∗ (Ri) w ∗ (Li) = w ∗ (Ri)
are equal
The vertex which is inverse 1-center i = 1

Next we shall prove the following important result.

Lemma 4.1. Algorithm 1-INV-TRP-TREE correctly computes the inverse
1-center of the weighted trapezoid graph.

Proof. Let i be the pre-specified vertex in TTRP . We prove that i is the
inverse 1-center. First, by Step 1, we constructed the tree TTRP (as per
Section 2) with root i, and by Step 2, we computed the longest paths Ri

and Li from i to the tree TTRP . By Step 3, we calculated the weight of the
paths Li and Ri from i except i, i.e., w(Li) and w(Ri). In Step 4, if w(Li) =
w(Ri), then i is the vertex one center as well as inverse 1-center of TTRP

(Step 4.1). But if w(Li) 6= w(Ri), then we modified the tree TTRP under the
conditions of the non-linear semi-infinite optimization model (Step 4.2). By
Step 4.3, we modified the circular-arc tree TTRP , we get the weights w∗(Li)
and w∗(Ri) of both sides of i and we get w∗(Li) = w∗(Ri). Therefore,
i is the inverse 1-center. Hence, Algorithm 1-INV-TRP-TREE correctly
computes the inverse 1-center for any vertex weighted tree. �

We have another important observation in the tree T ′TRP given by the
Algorithm 1-INV-TRP-TREE.
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Lemma 4.2. The specified vertex i in the modified tree T ′TRP is the inverse
1-center.

Proof. By Algorithm 1-INV-TRP-TREE, we get w∗(Li) = w∗(Ri) in the
modified tree T ′TRP . Therefore, the specified vertex i in the modified tree
T ′TRP is the inverse 1-center. �

The following describe the time complexity of the algorithm to compute
inverse 1-center problem on the weighted tree corresponding to the weighted
trapezoid graph G.

Theorem 4.3. The time complexity to find inverse 1-center problem on a
given weighted trapezoid tree T ′TRP corresponding to the weighted trapezoid
graph G is O(n), where n is the number of vertices of the graph.

Proof. Step 1 takes O(n) time, since the adjacency relation of the trapezoid
graph can be tested in O(1) time. Step 2, i.e., the longest weighted path
from i to vi can be computed in O(n) time, if TTRP is traversed in a depth-
first-search manner. Step 3 takes O(n) time to compute the sum of the
weights of the paths. Also, Step 4.1 takes O(1) time. In the computation of
k1 and k2, i.e., the number of vertices in Ri and Li takes O(n) time, so each
repetition of Step 4.2 takes O(n) time (since the comparison of two numbers
and distribution of the excess weight takes O(n) time, so, each repetition
of Step 4.2.1 to 4.2.6 can be computed O(n) time). Also, modification of
weights in either Ri or Li takes O(n) time as TTRP contains n vertices
and (n − 1) edges, so Step 4.3 can be executed in O(n) time. Hence,
overall time complexity of our proposed Algorithm 1-INV-TRP-TREE is
O(n) time, where n is the number of vertices of the trapezoid graph. �

5. Concluding Remarks

In this paper, we investigated the inverse 1-center location problem with
vertex weights on the tree corresponding to the weighted trapezoid graph
G. First, we developed minimum height trees with two branches of level
difference either zero or one of the trapezoid graphs. Second, we modified
the tree maintaining the bounding conditions to get inverse 1-center. The
time complexity of our proposed algorithm is O(n), where n is the number
of vertices of the trapezoid graph G. This idea can be applied to solve the
1-center location problem to other graphs.
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