2022

Mathematics

[Honours]

(B.Sc. First Semester End Examination-2022) PAPER-MTMH C101

(Calculus, Geometry & History of Mathematics)

Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

Group-A

[Calculus]

1. Answer any two questions

 $2 \times 2 = 4$

- (a) Evaluate $\lim_{x\to\pi/2} (tanx)^{cosx}$
- (b) Evaluate the area bounded by the parabola $y^2 = 4ax$ and any double ordinate of it,

say
$$x = x_1$$
.

(c) Find if there is any point of inflexion on the curve $y-3=6(x-2)^5$

2. Answer any two questions

 $2 \times 5 = 10$

- (a) Prove that the eight points of intersection of the asymptotes of the curve $xy(x^2 y^2) + a(x^2 + y^2) a^3 = 0$ with the curve lie on a circle whose centre is at the origin
- (b) Find the reduction formula of $\int \frac{\sin^m x}{\cos^n x} dx$ where m and n are positive integers greater than 1.

Hence find the value of $\int \frac{\sin^5 x}{\cos^6 x} dx$

(c) Let. $P_n = D^n(x^n \log x)$ Prove that the recurrence relation $P_n = n \cdot P_{n-1} + (n-1)!$

Hence show that
$$P_n = n! \left(\log x + 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right)$$

3. Answer any one question

 $1 \times 10 = 10$

- (a) (i) Determine the envelope of the circles described on the radii vectors of the curve $r^n = a^n cosn\theta$ as diameter.
 - (ii) Find the value of p and q such that

$$\lim_{x\to 0} \frac{x(1-pCosx)+qSinx}{x^3} = \frac{1}{3}$$

- (iii) Proved that the curve $y = 2\sqrt{ax}$ is concave to the foot of the ordinate everywhere except at the origin.

 4+4+2
- (b) (i) Find the volume of the solid generated by revolving the Cardioide $r = a(1 + \cos\theta)$ about the initial line.

(ii) Find the perimeter of the Cardioide $r = a(1 - \cos\theta)$ and show that the arc of the upper half of the curve is bisected at $\theta = \frac{2\pi}{3}$.

Group-B

[Geometry]

4. Answer any six question

 $6 \times 2 = 12$

- (a) Find the point on the conic $\frac{l}{r} = 1 \cos \theta$ which has the smallest radius vector
- (b) A variable plane passes through a fixed point. Show that locus of the foot of the perpendicular from the origin to the plane is a sphere.
- (c) Reduce the equation $5x^2-2y^2-30x+8y$ to the form $ax^2+by^2=1$ by proper translation of axes without rotation.
- (d) Find the value of k for which the plane 2x-2y+z+k=0 touches the sphere $x^2+y^2+z^2-2x-4y-2z-3=0$
- (e) If 2x=y=2z be one of the line of the set of three mutually perpendicular generators of the cone 11yz+6zx-14xy=0 then find the equations of the other two.
- (f) Prove that radius of a circle do not alter due to rigid body motion.
- (g) Find the equation of the cylinder generated by the straight lines parallel to the z-axis and passing through the curve of intersection of the plane 1x+my+nz=p and the surface $x^2+y^2+z^2=1$

- (h) Find the condition that the straight line $\frac{1}{r} = a\cos\theta + b\sin\theta$ may touch the circle $r=2k\cos\theta$
- (i) Find the equation of the straight lines in which the plane 2x + y z = 0 cuts the cone $4x^2 y^2 + 3z^2 = 0$

5. Answer any one question

 $1 \times 5 = 5$

- (a) Reduce the equation $x^2-5xy+y^2+8x-20y+15$ to its canonical form and determine the type of the conic represented by it.
- (b) Show that the perpendiculars from the origin to the generators of the hyperboloid $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$ lie upon the cone $\frac{a^2(b^2 + c^2)^2}{x^2} + \frac{b^2(a^2 + c^2)^2}{y^2} = \frac{c^2(a^2 b^2)^2}{z^2}$

6. Answer any one question

 $1 \times 10 = 10$

- (a)(i)Prove that the locus of a point for which three mutually perpendicular tangent lines can be drawn to the paraboloid $ax^2 + by^2 + 2z = 0$ is $ab(x^2 + y^2) + 2(a+b)z = 1$
 - (ii) If P and Q be the variable points on the conic $\frac{1}{r} = 1 e \cos \theta$ with vertical angle α and β where $\alpha \beta = 2\gamma = \text{constant}$, then show that the chord PQ touches the conic $\frac{1}{r}\cos \gamma = 1 e \cos \gamma \cos \theta$ and that this conic has the same directrix as the original one.

- (b) (i) Two spheres of radii r_1 and r_2 cut orthogonally. Prove that radius of their common circle is $\frac{r_1r_2}{\sqrt{r_1^2+r_2^2}}$
 - (ii) The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the co-ordinate areas at A, B, C. Find the equation of the cone generated by the straight lines drawn from O to meet the circle ABC 5+5

Group-C

[History of Mathematics]

7. Answer any two questions

 $2 \times 2 = 4$

- (a) What is Sulbasutra? State Katyayana Sulbasutra.
- (b) Write some propositions of Thales in Geometry.
- (c) What was Euclid Contribution to mathematics?.

8. Answer any one question

 $5 \times 1 = 5$

- (a) Write down the contribution of Pythagorasin Geometry and music related to mathematics.

 3+2
- (b) Discuss Euclidean constructions, the classical Problems, and their role in the history of Greek –mathematics, Discuss Euclid's elements.

 3+2