2022

Economics [HONOURS]

(CBCS)

(B.Sc. First Semester End Examination-2022)

PAPER-CC2

[Mathematical Methods in Economics-I]

Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

Group-A

- 1. Answer any ten questions of the following:
- 10x2 = 20
- a) How many subsets can be obtained from the following set?

$$S = \{x, y, z\}$$

- b) Examine whether the equation $x^2-3x+10$ has real roots or not
- c) Given the utility function $U = x_1^2 + x_2^2$ find out the slop of the indifference curve.
- d) It MR=40, AR=60; find out the elasticity of demand.
- e) Write the next four terms of the following sequence:0,3,8,15,.....
- f) For two sets A & B if $B \subseteq A$ then what will be B-A?
- g) Distinguish between local maxima and global maxima of a function.
- h) Find the point of maxima on the curve $y = x^3 6x^2 + 9x 2$

- i) Find the elasticity of demand for the demand function $Q = 33-4P^2$ at P = 3
- j) If $AR = 46 3Q^2$, find MR when Q = 2
- k) Evalute $\int_{2}^{5} e^{2x} dn$
- l) Define null set.
- m) If A = $\{1, 2, 3, 4\}$ B = $\{3, 4, 5, 6\}$ C = $\{6, 1, 8\}$ Find $A \cup (B \cap C)$
- n) Define range and domain of a function
- o) Define continuity of a function.

Group-B

Answer any four questions of the following:

4x5 = 20

- Average cost function (AC) of a firm is given by AC = x² 6x +
 The maximum production capacity of the firm is 50 units.
 Find the ranges of output for which AC is increasing.
- 3. Show that $\frac{Lt}{x \to \infty} \frac{a_1 x + b_1}{a_2 x + b_2} = \frac{a_1}{a_2}$
- 4. The demand curve of a consumer is given by $\frac{P^{-\alpha}}{q} = \frac{\beta}{q}$, where $\alpha \& \beta$ are two constants. Prove that elasticity of demand is equal to $-\alpha$

- 5. The marginal cost (MC) function of a company is given by $MC=75 +20x 3x^2$ Find out the total cost function when fixed cost is 1000
- 6. Discuss the nature of time path $y_t = 5\left(-\frac{1}{10}\right)^t + 4$
- 7. Find the intertemporal equilibrium price and whether equilibrium is stable

$$Q_d = 19 - 6P + Q_s = 6p_{t-1} - 5$$

8. The demand function of a good is given by P=8-q³. Find out the consumers surplus if it is told that the commodity is a free good.

Group -C

Answer any two questions:

2x10 = 20

- Define first and second order conditions of maximisation of a function y=f(x). The revenue R(Q) and wst C(Q) functions of a firm and given by R = 1200Q 2Q² & C = Q³ -16.25Q² + 1528.5Q + 2000. Find out maximum profit maximising output. Also find out maximum profit.
- 10. Distinguish between a difference equation and a differential equation. Given $D_t = 40 10P_t$ & $St = 2+9P_{t-1}$ find the intertemporal equilibrium price. Comment on the stability

2+6+2

- 11. i) Given $f(x) = -\sqrt{(5+x)(5-x)}$ prove that $\frac{Lt}{x \to 1} \frac{f(x) f(1)}{x 1} = \frac{1}{2\sqrt{6}}$
 - ii) In a competitive market demand and supply are given by $P^d=3-4q \& P^s=4+3q$ Find equilibrium price quantity. Also comment on economic significance of the equilibrium. 5+5
- 12. Give $Y = -\frac{L^3}{3} + 2L^2 + 12L$ where Y=production & L = labour employed, find the maximum amount of labour beyond which average return from labour starts falling.