2022

Mathematics

[Honours]

(B.Sc. First Semester End Examination-2022) PAPER-MTMH GE-101

(Numerical Methods and Differential Calculus-I)

Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

Group-A

[Numerical Methods]

1. Answer any seven questions:

 $7 \times 2 = 14$

- a) Prove that $\Delta \nabla = \Delta \nabla$.
- b) If $\pi = 3.142$ instead of $\frac{22}{7}$, calculate the absolute, relative and percentage error.
- c) Find the loss of significant figures by subtracting 0.4329 from 0.4331.
- d) Prove that $\frac{\Delta}{\nabla} \frac{\nabla}{\Delta} = \Delta + \nabla$, symbols have usual meaning.

- e) Construct the difference table upto second order of $y = 3x^2 + 5$ for x = 2, 4, 6, 8, 10
- f) Find f(x) when its first difference is $x^3 + 4x^2 + 2x + 7$
- g) Find the third degree polynomial which passes through the points (0, -1), (1, 1), (2, 1) and (3, -2)
- h) What is mean by the degree of precision of a quadrature formula?
- i) Why does the approximate value of $\int_0^1 x dx$ calculated by Trapezoidal rule becomes free inherent error?
- j) If a number 0.000012 is approximated to 0.000009, find the number of significant digits for such approximation.
- k) When Newton's Raphson method fails for computing the real root of the equation f(x) = 0.

2. Answer any two questions:

$$2 \times 5 = 10$$

- (a) Describe Euler's method in solving a differential equation.

 Comment on accuracy of Euler's method in solving a differential equation.
- (b) Find the value of $\sqrt{2}$ correct upto four significant from the following table

x :	1.9	2.1	2.3	2.5	2.7
\sqrt{x}	1.3784	1.4491	1.5166	1.5811	1.6432

- (c) Describe Gauss-seidal method for solving the system of linear equations.
- (d) What is the lowest degree polynomial which takes the following values:

x:	0	1	2	3	4	5
f(x)	1	4	9	16	25	36

Hence find f(6) and f(0.5)

3. Answer any one question:

 $1 \times 10 = 10$

(a) (i) Describe the iteration method for computing a simple root of an equation f(x)=0.

Why iteration method is also called as fixed point iteration?

- (ii) Calculate the values of f(x) for x = 0.21 from the following table $x : 0.20 \quad 0.22 \quad 0.24 \quad 0.26 \quad 0.28 \quad 0.30$ $f(x) : 1.6596 \ 1.6698 \ 1.6804 \ 1.6912 \ 1.7024 \ 1.7139$
- (b) (i) Compute y(0.8) by R-K method correct upto five decimal places from the equation. $\frac{dy}{dx} = xy$, y(0) = 2, taking h = 0.2.
 - (ii) Solve the system of equations by Gauss-Elimination method

$$x + 2y + z = 0$$

$$2x + 2y + 3z = 3$$

$$-x - 3y = 2$$

Group-B

[Differential Calculus-I]

4. Answer any three questions:

 $3 \times 2 = 6$

(a) If In =
$$\int_0^{\pi/2} Sin^n x dx = \frac{n-1}{n} I_{n-2}$$
 then find $\int_0^{\pi/2} Sin^2 x dx$

- (b) Find the nth derivative of $x^3 \log x$.
- (c) Determine the asymptotes of the curve $x^3 + 2x^2y - 4xy^2 - 8y^3 + 8y - 4x - 1 = 0$

(d) Find the curvature of the curve
$$y^2 = 4ax$$
 at $(a, 2a)$ point

(e) Write down the properties of hyperbolic sine function and two properties of hyperbolic cosine function.

5. Answer any two questions:

 $2 \times 5 = 10$

- (a) If $y = (Sinh^{-1}x)^2$ prove that $(1+x^2)y_{n+2} + (2n+1)xy_{n+1} + n^2y_n = 0$ using Leibnitz's rule.
- (b) Find the envelope of the family of straight lines $\frac{x}{a} + \frac{y}{b} = 1$ where the parameters a and b are related by $a^2 + b^2 = c^2$ c being constant.
- (c) Find the area bounded by $y = 6 + 4x x^2$ and the chord joining (-2, -6) and (4, 6)

6. Answer any one question

 $1 \times 10 = 10$

(a) (i) If $y^{1/m} + y^{-1/m} = 2x$ prove that

$$(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$$

(ii) Evaluate
$$\underset{x\to 0}{Lt} \left(\frac{Sinx}{x}\right)^{1/x}$$
 4

- (b) (i) Find the area of the surface generated by revolving about the y-axis the part of the asteroid $x = a\cos^3\theta$, $y = a\sin^3\theta$ that lies in the first quadrant.
 - (ii) Find the point of inflexion, if any of the curve $y(a^2 + x^2) = x^3$

RNLKWC/B.Sc./CBCS/IS/MTMH GE-101/22