End Semester Examination, 2022

Semester - III
Physics

PAPER - CC-5T

Full Marks: 40

Time: 2 Hours

The Figures in the right hand margin indicate marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any five questions:

- 5x2=10
- a) Check the singularity of the equation

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + l(l+1)y = 0$$
 at $x = +1$ and $x = -1$. 2

- b) Prove that, $P'_{n+1}(x) P'_{n-1}(x) = (2n+1)Pn(x)$ 2
- c) Write down the three dimensonal wave equation in cylindrical co-ordinates.
- d) Show that, $\frac{d}{dx} \{x^n J_n(x)\} = x^n J_{n-1}(x)$ 2
- e) What is the value of Fourier Series at the point of discontinuity?
- f) What is Dirichlet's condition?
- g) Express $7x^3 + 2x 3$ in terms of Legendre polynomials.

(Turn Over)

h) If $f = \frac{5x^3y^4}{z^5}$ and errors in x, y, z be 0.0001, compute the maximum proportional error when x = 0.001, y = 0.01 and z = 0.1.

Group - B

Answer any four of the following questions:

4x5 = 20

- 2. What are Bessel's functions? Prove that the function $J_n(x)$ is the coefficient of Z^n in the expansion of $e^{x/2}(z-\frac{1}{z})$.
- 3. Solve the differential equation by power series solution :- $(1-x^2)\frac{d^2y}{dx^2} 2x\frac{dy}{dx} + 2y = 0$.

 about x = 0.
- 4. i) State Normal law of errors.
 - ii) By using the principle of least squares, find the equation of best fit straight line in the following data:-

$$x \to 0$$
 5 10 15
 $y \to 12$ 15 17 22 1+3

5. Using the method of seperation of variables, solve the spherical form of Laplace's equation. 5

6. Find half range cosine series of the function f(x) = 1 + x $0 \le x \le 2$ And hence prove that,

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\Pi^2}{8}$$
 3+2=5

7. Find the relation between Beta and Gamma functions. 5

Group - C

Answer any one of the following: 1x10=10

8. Deduce generating functions of Hermite Polynomials and show that:

$$\frac{1}{e}Cosh2x = \sum_{n=0}^{\alpha} \frac{1}{2n!} H_{2n}(x)$$
 6+4

9. Find out the permanent temperature within a solid sphere of radius unity when one half of the surface of the sphere is kept at constant temperature 0°c and the other half of the surface of the sphere is kept at 1°c.