End Semester Examination, 2022

Semester - V (Hons.)

Physics

PAPER - DSE-1T

Full Marks: 60

Time: 3 Hours

The Figures in the right hand margin indicate marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any ten questions:

10x2=20

a) If $\{p_i, q_i\}, \{q_i, p_i\}$ are the Lagranges brackets and $[p_i, p_j], [q_i, p_j]$ are the poissons brackets then prove the following identity.

$$\sum_{i=1}^{n} \{p_i, q_j\} [p_i, p_j] + \sum_{i=1}^{n} \{q_i, q_j\} [q_i, p_j] = 0$$

- b) Show that phase trajectory of one dimensional harmonic oscillator is an ellipse. 2
- c) A bead moves on a circular wire. Specify the type of constraint.
- d) A spaceship is receding from earth at a speed of 0.21c. A light from the spaceship appears as yellow ($\lambda = 589.3nm$) to an observer on earth. What would be its colour as seen by the passenger of the spaceship?

(Turn Over)

e)	Find the relation between relativistic energy and
	momentum. 2
f)	In a ventury meter, usually the length of the di-
	vergent outlet part is made longer compared to
	that of the converging inlet part. Why?
g)	If the kinetic energy of a particle of rest mass m ₀
	is equal to its rest mass energy. What is the mo-
	mentum of the particle in units of moc.
	Where c→ speed of light in vacuum. 2
h)	Given that the linear transformation of a
	generalised co-ordinate q and the corresponding
	momentum p, $Q = q + 4ap$, $P = q + 2p$ is canonical,
	what is the value of the constant a? 2
i)	If the half life of an elementary particle moving
,	with speed 0.9c in the laboratory frame is
	5×10^{-8} sec, then what is the proper half life of the
	particle?
j)	Give the expression for angular momentum in
37	terms of inertia tensor.
k)	
K)	Didito Lilo Dollowii D Illovi Onio
1)	Consider the Lagrangian $L = \frac{1}{2}(\alpha \dot{q}^2 - \beta q^2)$, where
	α , β are constants. Find the Hamiltonian of the
	system. 2
m)	What are the benefits of using Lagrangian and
	Hamiltonian mechanics over the Newtonian me-
	chanics?
RNLK	WC/VS/PHYSICS/DSE-1T/22

n)	What	is for	ur vect	or?	What	is the	difference	be-
	tween	four	vector	and	usual	vector	s?	2

o) Why for small oscillation, the corresponding potential becomes harmonic in nature?

Group - B

Answer any <u>four</u> questions from the following: $4 \times 5 = 20$

Consider a particle of mass m executing motion in 3D under a central force potential given by,
 V(r) = Br^a

Where a and B are constants and r denotes the radial distance from the origin of the co-ordinate system. The angular momentum of the particle is J and the total energy is E.

- a) Calculate the minimum permissible value of energy E for a given J.
- b) Derive the expression for the radius of a stable circular orbit.
- c) Calculate the frequency of small oscillation (radial) about the stable circular orbit. 2+2+1
- 3. Explain Hamilton Jacobi's method taking the example of a 1D harmonic oscillator.
- Describe the Hamiltonian and Hamilton's equation of motion for a charged particle moving in an electromagnetic field.

5.	What do you know by 'proper time'? Show	that the
	proper time is an invariant quantity.	2+3
6.	A meson of mass Π comes to rest and	disinte-

grate into meson of mass µ and neutrino of zero rest mass. Show that the kinetic energy of motion 5

of μ meson is $T = \frac{(\Pi - \mu)^2}{2\Pi}c^2$.

- 7. i) Write down the difference between laminar flow and turbulent flow. 2
 - ii) What do you mean by viscosity?
 - iii) What is continum hypothesis of fluid parcel? 1
 - iv) What is the definition of fluid?

Group - C

Answer any two questions: $2 \times 10 = 20$

- 8. i) Explain what is meant by "virtual displacement". 2
 - ii) State the D'Alembert principle. 2
 - iii) Write down the Lagrangian of a particle moving under a central force. Find the equation of motion. Is there any cyclic co-ordinate in the system? 2+3+1
- 9. i) Write down the postulates of Special Theory of Relativity.
 - ii) Consider the potential energy V(x) of a particle as given by $V(x) = 3x^4 - 8x^3 - 6x^2 + 24x$

Determine the points of stable and unstable equilibrium. 3 RNLKWC/VS/PHYSICS/DSE-1T/22

iii) Two similar springs with spring constant k, hang vertically downyard from a rigid support with two equal masses m attached to them as shown in the figure. Show that the normal mode frequencies for small oscillation (vertically) are given by

$$\omega \pm = \sqrt{\frac{k}{2m}(3 \pm \sqrt{5})} \ . \tag{5}$$

Vertical motion of spring-mass system

- 10. a) Given, $\vec{L} = \vec{r} \times \vec{p}$ calculate the poisson brackets between the components of \tilde{L} , viz, {Li, Lj}_{P,B}
 - b) A particle in 3D, is subjected to a potential of the form $V(\gamma,t) = \frac{\alpha(t)}{\gamma^6} + \frac{\beta(t)}{\gamma^{12}}$ Which of the following are conserved quantities? Argue in each case.
 - Energy of the particle.
 - Linear momentum of the particle.
 - iii) Angular momentum of the particle.
 - iv) The Laplace-Runge-Lenz vector. 6+4
- 11. A classical system with one degree of freedom is described by the lagrangian,

$$L = \frac{1}{2}mx^2 + \frac{a}{x} - \frac{b}{x^2}$$

Where both a and b are positive.

- i) Obtain the Hamiltonian for this system.
- ii) Find the value of x for which the system has a stable equilibrium point.
- iii) Consider tiny perturbations about the equilibrium position and obtain the frequency of the small amplitude oscillations.

 2+2+6