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Probability and Statistics

1. Answer any ten questions: 10x2=20

(@) If Var(x)=1, Ver(y)=3and x, y are uncorrelated, then

find the value of Var(2x+3y)

(b) Let us consider three events 4, B, (" in a random experiment.
If A and B are independent and B and C are independent.
Does it follow that A and (" are independent? Justify.

(c) Prove that diSll’ibllliOﬂ of sample is a statistical image of the

distribution of the population.



{2)
(d) Prove that correlation coefficient is independent of choice of
origin and units of measurement

(¢) For what values of ¢ and c, is the function f, is given by

i

co'
Si=q i’ Is a positive integer
0, otherwise

a possible probability mass function.

(£) A card is drawn from a pack and repeated 260 times. Find the
probability of obtaining queen of hearts 4 times.

(g) Find the variance of y’ (n) distribution from its moment

generating function.
(h) Show that the first absolute moment about the mean for the

T }2
normal (m, ¢ ) distribution is ,/|— o
i3

(i) Tor the random experiment of tossing a coin, a random variable
X is defined by X(H)=0& X(I')=1. Find the probability

distribution function of X,

. lim
(J) Prove that A, =(x=a)where 4, = (u A <X < aJ
n—oo n

(k) ' 1°(x) be the distribution function of a random variable X, then

show that PlasX <h)=F(b) - I'(a - 0)

(3)
(1) Let P be a point on a line segment of length 2a. Find the
probability of the event (4P:PB<K) . Assume that P is

untformly distributed on 4B.

(m) Let 7} and 7, be two statistics with E(7;)=26, +8, and

E(T,)=6, - 20, . Find the unbiased estimators of §, and 8,

(n) Define Alternative hypothesis and null hypothesis.

(0) Give an example of a distribution where the random variables

X and Y are uncorrelated although X and Y are dependent.

2. Answer any four questions: 4x5=20
(a) Let £(x) be a probability distribution function of a random

variable X. Then show that G(x) is also function where
G(x) = lj‘”" f()dr, h#0
2k Sah ’ '

(b) A straight linc is drawa through a fixed point (/1,/.1) (A> O)
making an angle X which is chosen at random in the interval
(0, ) with the y-axis. Prove that the intercept on the y-axis,
Y has a Cauchy distribution with paramcler(l, ,u).

(¢) The numbers X, X;......X, arc independently chosen at

random in the interval (¢, ). Prove that the probability



(4)
density function of the random variable X=min{X;,
| Xs,.....,Xu}is given by

nb—x)""

, a<x<b
(b-a)

f(x}=

| d) A random sample of size 10 was drawn from a normal
population with an unknown mean and variance 44.1. The
observations are 65, 71, 80, 76, 78, 82, 68, 72, 65, 81. Find

the 95% confidence interval for the population mean.

15 -1t
—= | 7 ""dt =0.025
N2 ,J;ﬁ
() For a normal (m,o) distribution, show that
fyy =135 (26— ™ k=123.... and
Mo =0, k=0, 12,.... where f¢, be the kthorder central

moment of the distribution.

() State and prove Tchebycheff”s inequality

3. Answer any two questions: 2x10=20
. . ns’ .,
(a) (i) Let X be normally distributed. Then show that P is ¥

distributed with (n-1) degrees of freedom, where n is the size of

2 - : . Y. \'
the sample, 8° is the sample variance and ¢ = var(.Y').

(5)
(i) For a pair of variables X and Y, the transformation
(X, Y )—-)(U, V)given by the rotation of axes through a
constant angle ai.e. U= Xcosa + Ysine,

V=-Xsina+Ycosa.If Uand V are uncorrelated then

prove that
2 2 2 2 2
0, t0, =0, +0, ando,0, =0,0,yl-p° 34245

(b) () Let X is normally distributed with E(x)=y and
Var(x)=4. We are going to test the hypothesis Ho: pH=-1
against the hypothesis #, : =1 on the basis of a sample of

size 10:x,, x,,..., x,, . If the critical region w is given by
W ={:(x, %, X )X + 22, +3x, +...+10x, > 0} then find

the power of the test. Given that

j""e’z'du =0.4192

1
V2m -0

(it) If (X, Y) has the general bivariate distribution, show

that
X ’ X Y Y :
_ . -m, —-m,
( mLJ —2[)( s ]{ ’J+( : J (1= p*)
o, o T, o,
has »” distribution with 2 degrees of freedom. 5+5

(¢) (i) I alincar relation exists between two variables x and y,

then prove that 7 =+1 where ris the correlation coefficient.



(6)
(i) Let x,,x5,.ccn... ,x, sample of size n drawn from a
population with variance o’ . Find the variance of the
sample mean and mean of the sample variance. Give a

suitable statistic that is unbiased estimate of population

variance. 3+(343+1)
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