Total Pages-05

2021

Mathematics

[Generic]

(CBCS)

(B.Sc. FirstSemester End Examinations-2021)

MTMH-GE-101

[Numerical Methods and Differential Calculus – I]

Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks Candidates are required to give their answers in their own words as far as practicable Illustrate the answers wherever necessary

Group – A [*Numerical Methods*]

- 1. Answer any SEVEN questions: 7x2=14
 - a) Why relative error is better indicator of the accuracy of a computation than absolute error ?
 - b) Prove that $\Delta \nabla f(x) = \Delta f(x) \nabla f(x)$ where Δ and ∇ are forwarded backward operator respectively.
 - c) Prove that third order difference of $f(x) = x^2 + 2x + 1$ is zero
 - d) Define relative error and percentage error with an example.

- e) Write down the sufficient condition for the convergence of the Gauss-Seidel iteration method.
- f) Why iteration methods is called as fixed point iteration ?
- g) Show that the sum of Lagrangian functions is 1.
- h) Show that Simpson's $\frac{1}{3}$ rule is exact for a polynomial of degree 3.
- i) Why Newton's Raphson method is called method of tangent?
- j) Define degree of precision for numerical integration. What is the degree of precision of Simpson's $\frac{1}{3}$ rule?
- k) Find the missing term in the following table.

x	:	0	1	2	3	4
f(x)	:	1	3	9	-	81

2. Answer any twoquestions

5x2=10

- a) Describe the Newton's Raphson methods for computing a simple root of an equation f(x) = 0 What is the sufficient condition for Newton's Raphson method ?
- b) Solvethe system of equation by Gauss Seidel method correct upto three significant figures.

- (3)
- 3x + y + z = 32x + y + 5z = 5x + 4y + z = 2
- c) (i) Find the percentage error in $f(x) = 2x^3 4x$ at

x = 1 when error inx is 0.04.

(ii) Find the interpolating polynomial using any method from the following table

x	0	1	2	3	4	5
У	-3	-5	-11	-15	-11	7

3. Answer any ONE question

a) i) Establish the general quadrature formula based on Newton's forward interpolation formula. Hence deduce Simpson's $\frac{1}{3}$ rule. 4+1

ii) Evaluate
$$\int_{0}^{1} \frac{xdx}{1+x}$$
 by Trapezoidal rule, taking six intervals.

Calculate absolute error if occurs.

4+1

10x1 = 10

b) i) Given $\frac{dy}{dx} = y^2 - x^2$, y(0) = 2. Find y(0.1) and y(0.2) by second order RungeKuttamethod.and by second order Runge –Kutta method. 5 ii) Determine the largest eigen value and corresponding

eigen vector for the matrix
$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
 5

Group – B [*Differential Calculus - I*]

4. Answer any THREE questions

2x3=6

5x2=10

- a) Find the reduction formula for $\int Sec^n x dx$, *n* being positive integer >1.
- b) Find $\frac{\lim_{x \to 0} \frac{x Sinx Cosx}{x^3}}{x^3}$
- c) If $y = \log(ax + b)$ then find y_n .
- d) Find the points of inflexion on the curve $x = (\log y)^3$
- e) Find the length of the circumference of a circle of radius *a*.
- 5. Answer any TWO questions
 - a) State Leibnitz's rule for nth order differentiation. If $y = \cos(m Sin^{-1}x)$ then show that 4+1

$$(1-x^{2})y_{n+2} - (2n+1)xy_{n+1} + (m^{2}-n^{2})y_{n} = 0$$

b) Find the volume of the solid generated by revolving the cardiode $r = a(1 - \cos \theta)$, about the initial line. 5

c) Evaluate the reduction formula for $\int \tan^n x \, dx \, n$ being positive integer > 1. Hence find $\int_{0}^{\pi/4} \tan^4 x \, dx$. 4+1

6. Answer any ONE question 1x10=10

a) (i) Find the asymptotes of the cubic

$$x^{3} - 2y^{3} + xy(2x - y) + y(x - y) + 1 = 0$$

(ii) Find the value of p and q

(ii) Find the value of p and q such that

$$\lim_{x \to 0} \frac{x(1-p\cos x) + qSinx}{x^3} = \frac{1}{3}$$
5

b) (i) Find the envelope of the curve $y = mx + \frac{a}{m}$, *m* being a

parameter and *a* is a constant.

(ii) If
$$I_{m,n} = \int_{0}^{\frac{\pi}{2}} \cos^{m} x \ Sinx \, dx$$
 where *m*, *n*are positive integer,

show that

$$I_{m,m} = \frac{1}{2^{m+1}} \left[2 + \frac{2^2}{2} + \frac{2^3}{3} + \dots + \frac{2^m}{m} \right]$$
 5

[The End]