Total Pages-06

RNLKWC/U.G.-CBCS/IS/MTMH-C-101/21

2021

Mathematics

[HONOURS]

(CBCS)

(B.Sc. First Semester End Examinations-2021)

MTMH-C101

Calculus, Geometry & History of Mathematics

Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks Candidates are required to give their answers in their own words as far as practicable Illustrate the answers wherever necessary

Group – A [*Calculus*]

- 1. Answer any TWO questions: 2x2=4
 - a) If the function $f(x) = ax^3 + bx^2$ has a point of inflexion at

(1, 2) then find the values of *a* and *b*.

b) If
$$I_n = \int_{0}^{\frac{\pi}{4}} \tan^n x \, dx$$
 show that $I_{n+1} + I_{n-1} = \frac{1}{n}$, *n* being positive integer>1.

- c) If $\lim_{x \to 0} \frac{Sin 2x + aSinx}{x^3}$ be finite then find the value of a and the limit.
- d) Find the volume generated by the revolution about x axis of the area bounded by the loop of the curve $y^2 = x^2(2-x)$.
- 2. Answer any twoquestions 2x5=10

a) If
$$I_n = \int_{0}^{\pi/2} \cos^{n-2} x \sin nx \, dx$$

show that $2(n-1)I_n = 1 + (n-2)I_{n-1}$ and hence deduce

$$I_n = \frac{1}{n-1} \tag{3+2}$$

b) State Leibnitz rule for nth derivative. Show that

$$\frac{d^{n}}{dx^{n}}\left(\frac{x^{n}}{1+x^{2}}\right) = n!Siny\left\{Siny - {}^{n}c_{1}\cos y\,Sin2y + {}^{n}c_{2}\,\cos 2y\,Sin3y - \dots\right\}$$

1+4

1x10=10

c) What do you mean by rectilinear asymptote? Find the asymptotes of the curve $y^3 - xy^2 - x^2y + x^3 + x^2 - y^2 - 1 = 0$

3. Answer any ONE question

a) i) Prove that the length of the loop of the curve $x = t^2$, $y = t - t \frac{3}{3}$ is $4\sqrt{3}$

ii) Find the envelope of the straight line $\frac{x}{a} + \frac{y}{b} = 1$ where

parameters a and b are connected by $a^2 + b^2 = c^2$.

- b) i) Find the range of values of x for which the curve y = 3x⁵-40x³+3x-20 is concave upwards or downwards. Find also the points of inflexion. 2+2+1
 ii) Find the area about the x-axis included between the
 - 11) Find the area about the x-axis included between the parabola $y^2 = ax$ and the circle $x^2 + y^2 = 2ax$

Group – B [*Geometry*]

4. Answer any SIX questions

6x2=12

a) Show that the locus of point whose distance from the pole is equal to its distance from the straight line $r \cos \theta + k = 0$ is

$$2r Sin^2 \theta / 2 = k$$

- b) For what values of *a* and *f* so that the equation $ax^2 - 20xy + 25y^2 - 14x + 2fy - 15 = 0$ represents a conic without any centre ?
- c) What angle the axes be turned to remove the term *xy* from $x^2 + 2\sqrt{3} xy y^2 = 4$?
- d) Find the radius of the circle $3x^2 + 3y^2 + 3z^2 + x - 5y - 2 = 0, x + y = 2$

- e) Show that the straight line $\frac{x-2}{1} = \frac{y}{-2} = \frac{x-4}{1}$ touches the sphere $x^2 + y^2 + z^2 \frac{2}{3}x y \frac{4}{3}z = \frac{22}{3}$ at (1, 2, 3). f) Show that the straight line $\frac{x-2}{2} = \frac{y-3}{-6} = \frac{z-1}{1}$ meets the meets the conicoid $\frac{x^2}{16} + \frac{y^2}{9} - \frac{z^2}{4} = 1$
- g) Find the equation of cone with vertex (1, 2, 3) and the guiding curve is $y^2 = 4ax$, z = 0
- h) Find the equation of cone which passes through the coordinates axes as well as two lines $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$ and $\frac{x}{3} = \frac{y}{-1} = \frac{z}{1}$
- i) Find the equation of cylinder whose generators are parallel to x-axis and which passes through the curve of intersection of the plane 2x - 3y + z = 2 and the surface $3y^2 - 5z^2 = 10x$
- 5. Answer any ONE questions

1**x**5=5

a) Obtain the focus of the parabola $\sqrt{ax} + \sqrt{by} = 1$.

If its axis passes through a fixed point, show that the locus of the focus is a rectangular hyperbola.

- b) Find the equation of the sphere which passes through the points (2, 0, 0), (0, 2, 0) and (0, 0, 2) and has a least possible radius.
- 6. Answer any ONE question 1x10=10
 - a) (i) A variable sphere passes through the points (0,0,±c) and cuts the straight lines

$$y = x + and,$$

$$z = cj$$

$$y = -x + and,$$

$$z = -c$$

at the points P and P'. If PP' = 2a, a constant, then show that the centre of the sphere lies on the circle

$$z = 0, x^{2} + y^{2} = (a^{2} - c^{2})\cos ec^{2}2\alpha$$

(ii) Prove that the conditions that the line of section of the plane lx + my + nz = 0 and the cones $ax^2 + by^2 + cz^2 = 0$, fyz + gzx + hxy = 0 may be coincident, are $\frac{bn^2 + cm^2}{fmn} = \frac{cl^2 + an^2}{gnl} = \frac{am^2 + bl^2}{hlm}$ 6+4

b) (i) Find the director sphere of the conicoid $ax^2 + by^2 + cz^2 = 1$

(ii) Show that six normal &can be drawn from any point $P(\alpha, \beta, \nu)$ to the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Group – C [*History of Mathematics*]

7. Answer any TWO question

2**x**2=4

- a) Write the names of two Italian mathematics in the 17th century.
- b) How did Pythagoras relate mathematies to music?
- c) State BaudhayanaSulbasutra and KatyayanaSulbasutra.

8. Answer any ONE question

5x1=5

- a) Write down the names and contributions of some Mathematicians in 17th Century.
- b) Write some contributions of Brahmagupta in Indian Mathematics.

[The End]