Total Pages-05

RNLKWC/U.G.-CBCS/IS/MTMH-C-102/21

2021

Mathematics

[HONOURS]

(CBCS)

(B.Sc. FirstSemester End Examinations-2021)

MTMH-C102

(Algebra)

Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks Candidates are required to give their answers in their own words as far as practicable Illustrate the answers wherever necessary

Group – A [<u>CLASSICAL ALGEBRA</u>]

1. Answer any FOUR questions: 4x2=8

a) If $f(x) = x^4 - 3x^3 + 10x^2$ express f(x+3) as polynomial in x.

b) $x^3 - 3px - q$ has a factor of the form $(x - \alpha)^2$, show that $q^2 + 4p^3 = 0$

- (2)
- c) If a and b are positive real numbers and a+b=4 prove that

$$\left(a+\frac{1}{a}\right)^2 + \left(b+\frac{1}{b}\right)^2 \ge \frac{25}{2}$$

d) Find fourth roots of (-1)

e) Find mod z and amp z (principal amplitude) when

$$z = 1 + \cos 2\theta + iSin2\theta, \frac{\pi}{2} < \theta < \pi$$

- f) Find the quotient and reminder when $x^6 + x^3 + 1$ is divided by x+1.
- 2. Answer any ONEquestions 5x1=5
 - a) If *n* be an odd positive integer prove that the equation $x^{2n} 1 = 0$ and $x^n 1 = 0$ have the same number of special roots.
 - b) Solve the equation $x^4 10x^3 + 35x^2 50x + 24 = 0$ by Ferrari's method.
- 3. Answer any ONE question

- 10x1=10
- a) i) If A and G be the arithmetic mean and geometric mean respectively of n positive real numbers a_1, a_2, \dots, a_n prove that

if
$$K > 0, (K + A)^n \ge (K + a_1)(K + a_2)...(K + a_n) \ge (K + G)^n$$

ii) If Z_1, Z_2 are two non-zero complex numbers, Prove that

$$2|Z_1 + Z_2| \ge \left(|Z_1| + |Z_2|\right) \left| \frac{Z_1}{|Z_1|} + \frac{Z_2}{|Z_2|} \right|$$
5+5

- b) i) If α , β , γ be the root of the equation $x^3 + px^2 + qx + r = 0$ then find the equation whose roots are $\beta^2 + \gamma^2 - \alpha^2$, $\gamma^2 + \alpha^2 - \beta^2$, $\alpha^2 + \beta^2 - \gamma^2$.
 - ii) If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $t^4 + t^2 + 1 = 0$ and *n* is a positive integer, prove that $\alpha^{2n} + \beta^{2n} + \gamma^{2n} + \delta^{2n} = 4\cos\frac{2n\pi}{3}$

Group – B [*ABSTRACT ALGEBRA - I*]

- 2x2=4
- a) Find two integer *u* and *v* satisfying 54u + 24v = 30

4. Answer any TWO questions

- b) Let A be a set of n elements and B be a set of m elements. Show that if $n \le m$ the total number of injective mappings from A to B is $\frac{m!}{(m-n)!}$
- c) Show that the number of different reflective relations on a set of *n* elements is $2^{n^2} n$
- 5. Answer any TWO questions 5x2=10
 - a) If a and b are integers, not both zero, then show that \exists integers u and v such that g(a,b) = au + bv
 - b) Prove that $I^n 3^n 6^n + 8^n$ is divisible by 10 for all $n \in \square$

c) Arelation β is defined on □ by "xβy" of and only if x² - y² is divisible by 5 for x, y ∈ □. Prove that β is an equivalence relation on □. Show that there are three distinct equivalence classes.

Group – C [*LINEAR ALGEBRA*]

6. Answer any FOUR question

- a) Prove that $adj A^{-1} = (adj A)^{-1}$ for a non-singular matrix A.
- b) Let *V* be a vector space over a field *F*, then $-1\alpha = \alpha$

c) Is
$$S = \{(x, y, z) \in \square^3 : x - 2y + z = 0\}$$
 a subspace of \square^3 .

- d) Find the eigen value of the idempotent matrix.
- e) Define linear mapping.
- f) Define linear sum of two subspaces.

7. Answer any ONE question

- 5x1=5
- a) Define dimension of a vector space. Given $\{1, 1+x, x+x^2\}$

as basis of $P_2(x)$ over \Box and the inner product defined as

$$(f,g) = \int_{-1}^{1} f(x)g(x)dx$$
 where $f,g \in P_2(x)$. Construct an

orthonormal basis of $P_2(x)$ from given set.

- b) Define rank of the matrix. Determine the conditions for the system of equations has only one solution, many solutions, no solution : x + y + z = 1, x + 2y z = b, $5x + 7y + az = b^2$
- 8. Answer any ONE question
 - a) i) Find the orthonormal basis of the row space of the matrix
 - $\begin{pmatrix} 1 & 2 & 0 \\ 1 & 0 & -1 \\ 2 & 2 & 1 \end{pmatrix}$

ii) If S and T be two non-empty finite subsets of a vertex space V over a field F and each element of T is a linear combination of the Vectors of S. Then (T) $L(T) \subset L(S)$

5+5

10x1=10

b) i) Find a matrix \underline{P} such that $P^{-1}AP$ is a diagonal matrix

where
$$A = \begin{pmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

ii) Show that the quadratic form $x^2 + y^2 + 2xy + 2yz$ is indefinite. 5+5

[The End]

4x2=8