Total Pages-05

RNLKWC/U.G.-CBCS/IIIS/MTMH-C302/21

2021

Mathematics

[HONOURS]

(CBCS)

(B.Sc. ThirdEnd SemesterExaminations-2021)

MTMH-C302

<u>Graph theory – II & Linear Algebra - II</u>

Full Marks: 60

Time: 02 Hrs

The figures in the right hand margin indicate marks Candidates are required to give their answers in their own words as far as practicable Illustrate the answers wherever necessary

Group – A [*Graph – Theory - II*]

- 1. Answer any TWO questions: 2x2=4
 - a) Prove that the centre Z(S₃) is normal in S₃, where S₃ is symmetric group.
 - b) Let, G =(Z₆,+), $H = \{\overline{0},\overline{3}\}$. Then obtain all the elements of the quotient group G/H
 - c) Let, G be a group of order 8 and x be an element of G of order 4. Show that . x² ∈ Z(G)

- 2. Answer any TWO questions
 - a) Find all the homomorphism from the group $(z_{10},+)$ to $(z_{15},+)$
 - b) Let, G be a group in which $(ab)^3 = a^3b^3$ for all $a, b \in G$.

.Prove that $H = \{x^3 : x \in G\}$ is a normal subgroup of G

c) Find the number of elements of order 5 in the group $Z_{15}xZ_{10}$.

3. Answer any ONE question

a) i) state and prove Cauchy's theorem for finite abelian group.
ii) G is a multiplicative group of order 8. Prove that \$\phi:G → G\$ defined by \$\phi(x) = x^3, x ∈ G\$ is an omorphism.

6+4

5x2 = 10

10x1 = 10

- b) i) Let, G₁, G₂ be two groups and Z(G₁), Z(G₂) be their respective centres. Prove that Z(G₁) X Z(G₂) is the centre of the group G₁×G₂
 - ii) Examine if the mapping is a homomorphism : $G=S_3$ and $\phi: G \to G$ is defined by $\phi(x) = x^2, x \in S_3$
 - iii) Show that an abelian group of order 15 is cyclic. 6+2+2

Group – B

[Linear Algebra - II]

1. Answer any EIGHT questions

8x2=16

a) Give the definition of linear dependence and linear independence.

- b) What do you mean by basic of a vector space.
- c) What do you mean by nullity and rank of a linear mapping ?
- d) Let V and W be vector space over a Field F and T: V → W
 be a linear map then prove that T(θ) = θ' where θ and θ' are zero element in V and W resp.
- e) The mapping $T: \mathfrak{R}^3 \to \mathfrak{R}^3$ defined by $T(x_1, x_2, x_3) = (x_1 + 1, x_2 + 1, x_3 + 1), (x_1, x_2, x_3) \in \mathfrak{R}^3$ Examine that *T* is linear or not.
- f) Give the definition and example of linear sum of two subspaces.
- g) Let S be the subset of \Re defined by $S = \{(x, y, z) \in \Re^3 : y = Z = 0\}$. then prove that S is a subspace of \Re^3
- h) What do you mean by composition of linear mapping?
- i) Let V be a vector space over a field F, and U and W be two subspaces. Then which subspace is the smallent subspace of V containing the subspaces U and W and why ?
- j) Find the condition on x, y so that the set of vectors is linearly dependent in $\Re^3\{(x, y, 1), (y, 1, x), (1, x, y)\}$
- k) Let S and T be linear mapping of \Re^3 to \Re^3 defined by $s(x, y, z) = (z, y, x), (x, y, z) \in \Re^3$ and $T(x, y, z) = (x + y + z, y + z, z), (x, y, z) \in \square^3$ determine TS and ST

(4)

 l) Give an example of a linear operator T on a vector space V such that KerT = ImT

2. Answer any TWO questions

- 5x2=10
- a) Prove that the subset D[a, b] of all real values differentiable function defined on [a, b] is a subspace of c[a, b]
- b) D and T are linear mapping on the real vector space P_4

defined by
$$D(p(x)) = \frac{d}{dx} p(x), p(x) \in P_4$$

 $T(p(x)) = x \frac{d}{dx} p(x), p(x) \in P_4$

Relative to the basis $(1,x, x^2, x^3)$ of P_4 , determine the matrix of each of the linear mappings D and T.

c) Find the dimension of the subspace $S \cap T$, where S and T are subspace of the vector space \Re^4 given by

$$S = \{(x, y, z, w) \in \Re^{4} : x + y + z + w = 0\}$$
$$T = \{(x, y, z, w) \in \Re^{4} : 2x + y - z + w = 0\}$$

3. Answer any ONE question

- 1x10=10
- a) i) If {α₁, α₂,..., α_n} be a basis of a finite dimensional vector space V over a field F, then prove that any linearly independent set of vectors in V contains at most n vectors
 ii) Two subspaces of R³ are U = {(x, y, z): x + y + z = 0} and W = {(x, y, z): x + 2y z = 0}. Find dimU, dimU ∩ W 7+3

- b) $T: \mathfrak{R}^3 \to \mathfrak{R}^3$ be a linear map, find *KerT* and Im *T* when *T* maps the basis vector
 - i) (1,0,0), (0,1,0), (0,0,1) of \Re^3 to vector (0,1,0), (0,0,1), (1,0,0)
 - ii) (0,1,1), (1,0,1), (1,1,0) of \Re^3 to vector (2,1,1), (1,2,1), (1,1,2) respectively. 5+5

[The End]