Total Pages-05

RNLKWC/U.G.-CBCS/IIIS/MTMH-C303/21

2021

Mathematics

[HONOURS]

(CBCS)

(B.Sc. Third End Semester Examinations-2021)

MTMH-C303

Full Marks: 60

Time: 02 Hrs

The figures in the right hand margin indicate marks Candidates are required to give their answers in their own words as far as practicable Illustrate the answers wherever necessary

[REAL ANALYSIS - II]

- 1. Answer any TEN questions: 10x2=20
 - a) Let f, g be defined on $AC\Re$ to \Re and c be a limit point of A.

If
$$\lim_{x \to c} f$$
 and $\lim_{x \to c} f$ exists, does it follows that $\lim_{x \to c} g(x)$

exists.

- b) Show that f(x) = |x| is continuous on \Re
- c) Suppose $f: \mathfrak{R} \to \mathfrak{R}$ and $g: \mathfrak{R} \to \mathfrak{R}$ are continuous on \mathfrak{R} and that f(x) = g(x) for all rational x. Prove that . $f(x) = g(x) \forall x \in \mathfrak{R}$

- d) Prove that $f(x) = 2 \ln x + \sqrt{x} 2$ has root in the interval (1,2)
- e) Show that $f(x) = x^3 3x^2 x + 3$ has three zeroes in [-2, 4]
- f) Use Mean value theorem prove that $|Sinx - Siny| \le |x - y| \forall x, y \in \Re$
- g) Let f, g are differentiable on \Re s.t. f(0) = g(0) and $f'(x) \le g'(x) \forall x \ge 0$ Show that $f(x) \le g(x)$ for all $x \ge 0$
- h) Find the supremum of f(x) where $f(x) = \frac{x}{x^2 + 1} \forall x \in (-1, 1)$
- i) Examine if $\lim_{x \to 0} Cotx$ exists
- j) Prove that log *Sinx* is continuous on $\left(0, \frac{\pi}{2}\right)$
- k) Using sequential criterion for limit to show that $\lim_{x \to 0} \frac{1}{x} Sin \frac{1}{x} \text{ does not exists.}$
- Let a function f: ℜ → ℜ is continuous on ℜ and μ∈ℜ.
 Prove that the set Set {x ∈ ℜ: f(x) ≠ μ} is an open set.
- m) Verify Mean value theorem for the function $f(x) = 4 - (6-x)^{\frac{2}{3}}$ on [5, 7]
- n) State Rolle's theorem for polynomial functions

- (3)
- o) Use Mean value theorem to prove that

$$0 < \frac{1}{\log(1+x)} - \frac{1}{x} < 1 \forall x > 0$$

2. Answer any FOURquestions5x4=20

a) Let
$$C \in \Re$$
 and $f: (c, \alpha) \to \Re$ and $f(x) > 0$ for all $x \in (c, \alpha)$
show that $\lim_{x \to c} f(x) = \alpha$ if and only it $\lim_{x \to c} \frac{1}{f(x)} = 0$

b) Define $g: \mathfrak{R} \to \mathfrak{R}$ by g(x) = 2x is rational = x+3 if x is irrational.

Find all points at which f(x) is continuous

- c) Let g: ℜ → ℜ satisfy the relation f(x + y) = f(x). f(y) for all x, y ∈ ℜ Prove that if f is continuous at x=0 then g is continuous at every point in ℜ. And if we have g(a) = 0 for some a ∈ ℜ then g(x) = 0∀x ∈ ℜ
- d) Let f: ℜ → ℜ be continuous on ℜ. A point c ∈ ℜ is said to be fixed point of f if f(c) = c holds. Prove that the set of all fixed points of f is a closed set.
- e) Let $f(x, y) = \frac{x^2 y}{x^4 + y^2}$. Discuss the existence of the limit of f(x, y) as $(x, y) \rightarrow (0, 0)$
- f) A function f is twice differentiable on [a, b] and f(a) = f(b) = 0. If f(c) > 0 for some $c \in (a,b)$ Prove that there exists a point ξ in (a, b) such that $f''(\xi) < 0$

3. Answer any TWO question

a) i) Let f, g defined on $A \subseteq \Re$ to \Re and e be a limit point of

10x2=20

A. Suppose that f is bounded on a n.b.d of c and $\lim_{n \to \infty} \frac{1}{2} \lim_{n \to \infty} \frac{1$

$$x \to c$$
 $g(x) = 0$ then prove that $x \to c$ $fg = 0$

ii) Function f and g are defined on \Re by f(x) = x+1 and

$$g(x) = \begin{cases} 2, & \text{if } x \neq 1 \\ 0, & \text{if } x = 1 \end{cases}$$

I) Find $\lim_{x\to 1} g(f(x))$ and compare with the value of $g(\lim_{x\to 1} f(x))$

- II) Find $\frac{\lim f(g(x))}{x \to 1}$ and compare with the value of $f\begin{pmatrix}\lim g(x)\\x \to 1\end{pmatrix}$
- b) i) Let f: D→R when D⊂R and closed and bounded interval and [a,b]⊂D and f(x) is continuous on D. If f(a), f(b) < 0 then prove that f(x) =0 has a solution in (a,b)
 - ii) Let $f(x, y) = \frac{x^3 + y^3}{x y}$ when $x \neq y$, and = 0, x = y show

that both partial derivatives of f(x, y) at (0, 0) exists and not continuous at (0,0).

- (5)
- c) i) Let f:[a,b]→R be such that it is differentiable on [a,b] and function has equal value at both end points. Prove that there is a point (c, f(c)) on the curve y = f(x) at which tangent is parallel to the x-axis and c ∈ (a,b)
 - iii) If f is differentiable on [0, 1]. Show that the equation $f(1) f(0) = \frac{(e-1)f'(x)}{ex}$ has at least one solution in
 (0,1)

[The End]