2021

Mathematics

[HONOURS]

(CBCS)

(B.Sc. Fifth End Semester Examinations-2021)

MTMH-C502

Full Marks: 60 Time: 02 Hrs

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as

far as practicable

Illustrate the answers wherever necessary

Group - A

Partial differential equation

1. Answer any SIX questions:

6x2=12

- a) Define 'Domain of dependence' of one dimensional wave equation.
- b) Find a solution of the P.D.E.

$$u = x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2$$

c) Classify the P.D.E
$$y^3 u_{xx} - (x^2 - 1) u_{yy} = 0$$

d) Consider the P.D.E
$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$$
, $0 < x \le 1, t > 0$

If
$$u\left(\frac{1}{3},0\right) = 1$$
, $u\left(\frac{1}{3},\frac{2}{3}\right) = \frac{1}{2}$, $u\left(0,\frac{1}{3}\right) = \frac{3}{4}$

then find
$$u\left(\frac{2}{3}, \frac{1}{3}\right)$$

e) Let, u(x, t) be solution of the P.D.E

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, -\infty < x < \infty, t > 0$$

IC:
$$u(x,0) = \cos x$$
, $u_t(x,0) = 1$

Then find
$$u\left(\pi, \frac{\pi}{2}\right)$$

- f) Define complete solution and singular solution
- g) Give the geometric interpretation of Language's solution of a linear partial differential equation
- h) Solve the P.D.E px + qy = z
- i) Eliminate the arbitrary constants a and b from $z = ax + by + a^2 + b^2$ and obtain the P.D.E.

2. Answer any TWO questions

2x5=10

- a) Obtain the equivalent canonical form of the equation $u_{xx} + 2u_{xy} + u_{yy} = 0$ and hence solve it.
- b) Solve the P.D.E:

$$(x^3 + 3xy^2)p + (y^3 + 3x^2y)q = 2z(x^2 + y^2)$$

c) Obtain the characteristics of the equation pq = xy and determine the integral surface which passes through the curve z = x, y = 0

3. Answer any TWO question

10x2=20

- a) i) Find the integral surface satisfying 4yzp + q + 2y = 0 and passing through $y^2 + z^2 = 0$, x + z = 2
 - ii)Find the solution of the Cauchy problem 6+4

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, -\infty < x < \infty, t > 0 \text{ subject to the initial}$$

conditions
$$u(x,0) = \begin{cases} x+1, & \text{if } -1 \le x \le 0 \\ 1-x, & \text{if } 0 \le x \le 1 \\ 0, & \text{elsewhere} \end{cases}$$

and
$$u_{t}(x,o) = \begin{cases} 1, & \text{if } -1 \le x \le 1 \\ 0, & \text{elsewhere} \end{cases}$$

- b) i) Find the solution of the heat equation $\frac{\partial T}{\partial t} 3 \frac{\partial^2 T}{\partial x^2} = 0, \ 0 \le x \le 2, \ t > 0 \text{ subject to the boundary}$ conditions $T(0,t) = T(2,t) = 0, \ t \ge 0$ and initial condition $T(x,0) = x, \ 0 \le x \le 2 \text{ where } T(x,t) < \alpha \text{ as } t \to \infty$
 - ii) Find the complete and singular solution of $2xz px^2 2qxy + pq = 0$ 5
- c) i) Obtain the solution of the wave equation $u_{tt} = c^2 u_{xx}$, 0 < x < 2, $t \ge 0$ under the following conditions

i)
$$u(0,t) = 0$$
, $u(2,t) = 0$

ii)
$$u(x,0) = Sin^3 \frac{\pi x}{2}, u_t(x,0) = 0$$
 5

ii) Solve the Cauchy's problem

$$u_{tt} - c^2 u_{xx} = x + t$$
 with the initial conditions
$$u(x,0) = 0, u_t(x,0) = Sinhbx$$
 5

Group - B

Metric Space - II

4. Answer any Four questions:

4x2 = 8

- a) Show that the function $f(x) = \frac{1}{x}$ mapping the real line into it self is continuous evere where on the real line except at the origin.
- b) If in a matric space (X,d) the distance between two sets A and B is a positive real number then show that the sets are separated.
- c) Show that the collection $A = \{A_n = (-n, n) : n \in \square \}$ is an open cover of the real line.
- d) Define sequential compactness of a metric space with an example.
- e) Define compact matric space with an example.
- f) Define component of a metric space with an example.

5. Answer any ONE question

10x1=10

- a) i) Prove that continuous image of a connected set is connected.
 - ii) State and prove the Banach's fixed point theorem. 5+5
- b) i) Show that the composition of two continuous functions is continuous.
 - ii) State and prove Heine-Borel theorem. 2+(2+6)

[The End]