**Total Pages-07** 

RNLKWC/U.G.-CBCS/VS/MTMH-DSE-501/19

#### 2021

# **Mathematics**

#### [HONOURS]

# (CBCS)

(B.Sc. Fifth End Semester Examinations-2021)

## MTMH-DSE-501

## Full Marks: 60

Time: 03 Hrs

The figures in the right hand margin indicate marks Candidates are required to give their answers in their own words as far as practicable Illustrate the answers wherever necessary

#### **Linear Programming Problem**

#### 2x10=20

- a) Explain what is meant by a linear programming problem.
- b) Do the vectors (1,2,3), (4,5,6) and (3,6,9) form a basis for E<sup>3</sup>?
- c) State Fundamental theorem of LPP.

1. Answer any TEN questions:

- d) Under what condition on LPP will have unbounded solution and infinite solution ?
- e) Define hyper plane and convex set.

- f) What are the difference between transportation problem and assignment problem ?
- g) Express x = [4, 5] as a linear combination of a = [1, 3], b = [2, 2]
- h) Describe a two-person Zero Sum game.
- i) Explain the following terms :

i) Pure strategies ii) Mixed strategies

j) For what value of K, the game with the following pay off matrix is strictly determinable ?

Players B

$$\begin{array}{cccc}
B_{1} & B_{2} & B_{3} \\
Player A & A_{1} \begin{pmatrix} k & 6 & 2 \\ -1 & k & -7 \\ A_{3} \begin{pmatrix} -1 & k & -7 \\ -2 & 4 & k \end{pmatrix}
\end{array}$$

- k) Show that the feasible solution  $x_1 = 1, x_2 = 1, x_3 = 0$  and
  - $x_4 = 2$  to the system :

$$x_{1} + x_{2} + x_{3} = 2$$
  

$$x_{1} + x_{2} - 3x_{3} = 2$$
  

$$2x_{1} + 4x_{2} + 3x_{3} - x_{4} = 4$$
  

$$x_{i} \ge 0, i = 1, 2, 3, 4$$

is not basic.

- 1) Find the half spaces defined by the hyperplane  $2x_1 + 3x_2 + 4x_3 + 5x_4 = 7$  in which the points (1,2,3,4) and (1,2,3,-4) lie.
- m) Find the initial basis feasible solution of the transportation problem by North-West- corner method.

|        |   | Desti | nation |   |    | $a_i$ |
|--------|---|-------|--------|---|----|-------|
| Origin | 2 | 11    | 10     | 3 | 7  | 4     |
|        | 1 | 4     | 7      | 2 | 1  | 8     |
|        | 3 | 9     | 4      | 8 | 12 | 9     |
| $B_i$  | 3 | 3     | 4      | 5 | 6  |       |

n) Find the dual of the following problem

Max  $Z = 6x_1 - 3x_1$ 

Sub to  $3x_1 + 2x_2 \le 25$ 

 $x_1 \ge 4 \qquad x_1, x_2 \ge 0$ 

o) Find the Extreme point if any of the set

 $X = \{(x, y) / |x| \le 1, |y| \le 1\}$ 

- 2. Answer any FOUR questions 4x5=20
  - a) Solve graphically the following L.P.P *Minimize.*  $z = 2x_1 + 3x_2$  *Subject to*  $5x_1 + 9x_2 \le 45$  $2x_1 + 3x_2 \ge 6$

$$x_2 \le 4$$
, and  $x_1, x_2 \ge 0$ 

(4)

- b) Prove that the set of all feasible solutions of an L.P.P. is a convex set :
- c) Use duality to solve the following L.P.P

$$\begin{aligned} Max \, Z &= 3x_1 + x_2 \\ Subject \ to \ \ \begin{array}{l} x_1 + x_2 \leq 1 \\ 2x_1 + 2x_2 \geq 2, x_1, x_2 \geq 0 \end{aligned} \end{aligned}$$

d) Determine the optimal basic feasible solution to the following transportation problem :

|       | 1 | 2 | 3  | 4 | $a_i$ |
|-------|---|---|----|---|-------|
| 1     | 2 | 3 | 11 | 7 | 6     |
| 2     | 1 | 0 | 6  | 1 | 1     |
| 3     | 5 | 8 | 15 | 9 | 10    |
| $B_j$ | 7 | 5 | 3  | 2 | 1     |

e) Using dominance principle, solve the game whose pay-off matrix is given by

|          | Player B |   |   |   |  |  |
|----------|----------|---|---|---|--|--|
| Player A | 1        | 7 | 3 | 4 |  |  |
|          | 5        | 6 | 4 | 5 |  |  |
|          | 7        | 2 | 0 | 3 |  |  |

- f) Define optimal strategies in a  $m \times n$  matrix game. Show that the set of optimal strategies for each player is a matrix game in a convex set.
- g) Solve the following L.P.P. by using two-phase simplex method.

Min 
$$z = x_1 + x_2$$
  
Subject to  $2x_1 + 4x_2 \ge 4$   
 $x_1 + 7x_2 \ge 7$   
 $x_1, x_2 \ge 0$ 

- 3. Answer any TWO questions10x2=20
  - a) i) If for any basic feasible solution X<sub>B</sub> of an L.P.P, at any iteration of simplex algorithm z<sub>j</sub> −c<sub>j</sub> ≥ 0 for all the non-basic vectors of A, then X<sub>B</sub> is an optimal solution.
    ii) Reduce the feasible solution x = 2 x = 1 x = 1 of the

ii) Reduce the feasible solution  $x_1 = 2, x_2 = 1, x_3 = 1$  of the system of equations

$$x_1 + 4x_2 - x_3 = 5$$

$$2x_1 + 3x_2 + x_3 = 8$$

to a basic feasible solution

b) i)Define L.P.P form of Transportation problem. Find optimal solution and corresponding cost of Transportation in the following T.P.

(6)

|                  | <b>D</b> <sub>1</sub> | D <sub>2</sub> | D <sub>3</sub> | D <sub>4</sub> | $a_i$ |
|------------------|-----------------------|----------------|----------------|----------------|-------|
| $\overline{O_1}$ | 19                    | 20             | 50             | 10             | 7     |
| O <sub>2</sub>   | 70                    | 30             | 40             | 60             | 9     |
| O <sub>3</sub>   | 40                    | 8              | 70             | 20             | 18    |
| $b_j$            | 5                     | 8              | 7              | 14             |       |

ii) Show that the set of all feasible solution to a L.P.P is a closed convex set.

c) i)Every extreme point of the convex set of feasible solutions of the system

 $Ax = b, x \ge 0$ 

corresponds to a basic feasible solution.

ii) Obtain the dual of the following primal L.P.P.

Max 
$$z = 3x_1 + x_2 + 2x_3 - x_4$$

Subject to  $2x_1 - x_2 + 3x_3 + x_4 = 1$  $x_1 + x_2 - x_3 + x_4 = 3$ 

 $x_1, x_2 \ge 0$ ,  $x_3$  and  $x_4$  are unrestricted in sign.

d) i) A furniture manufacturer plans to make only two products - chairs and tables from his available resources. He has 400 board feet of wood and 450 man-hours A chair requires 5 board feet of wood and 10 man-hours and yields a profit of Rs. 40, while one table requires 20 board feet of wood and 15 man-hours and yields a profit of Rs. 60. Pose an L.P.P, so that he can maximize his profit.

ii) Solve the following game graphically :

| $\mathbf{D}_1  \mathbf{D}_2  \mathbf{D}_3  \mathbf{D}_4$ | $\mathbf{B}_1$ | $B_2$ | $B_3$ | $B_4$ |
|----------------------------------------------------------|----------------|-------|-------|-------|
|----------------------------------------------------------|----------------|-------|-------|-------|

| $A_1$ | 2 | 2 | 3 | -1 |
|-------|---|---|---|----|
| $A_2$ | 4 | 3 | 2 | 6  |

