2022

Chemistry

[Inorganic]

[First Semester]

Paper - CC2T

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group - A

1. Answer any five questions :

 $2 \times 5 = 10$

- (i) Give the name and symbol for each of the atoms which have the ground state electronic configurations in their outer shells :
 - (a) $3s^23p^63d^64s^2$
 - (b) $5s^25p^6$

(Turn Over)

- (ii) give the value of the four quantum numbers for each electron in the ground state for
 - (a) the oxygen atom
- (b) the scandium atom.
- (iii) Find the pH of 0.01(M) CH₃COOH solution. (pk_a=4.74)
- (iv) HNO₃, HCl and H₂SO₄ appear equally strong in water but their strength differ in acetic acid medium. Explain.
- (v) Arrange the different types of radii in order of increasing size for a given element: Van der Waals radius, anion radius, cation radius, covalent radius.
- (vi) Why is the electron affinity of chlorine is greater than that the fluorine?
- (vii) SnCl₂ is reducing while PbCl₂ is neither reducing nor oxidising explain.
- (viii) The solubility of silver chloride is 0.0015 g dm⁻³. Calculate its solubility product.

Group - B

2.	Ans	swer <u>any four</u> questions : $5\times4=2$
	(a)	Electron affinity of gold is very high – explain.
	(b)	Arrange BF ₃ , BCl ₃ , BI ₃ in order of their Lewis acidit with justification.
	(c)	The solubility of sparingly soluble in water increase in presence of added salt without common ion explain.
3.	(a)	Why does atomic radius decrease in moving from le to right along a period?
	(b)	Explain why radii of the following ions will be different though each possesses 2s ² 2p ⁶ configuration in the outermost shell O ²⁻ , F ⁻ , Na ⁺ , Al ³⁺ ? What will be the order of increasing radius of these ions?
4.	(a)	CaO + $P_4O_{10} \xrightarrow{\Delta}$? Predict the product and hence explain the reaction by Lux-Flood concept.
	(b)	Show that for aqueous solutions, the protonic defination of acids is practically equivalent to the Arrhenius defination, but for bases, the protonic defination covers more compounds.

- (a) 'Disproportionation of Hg₂²⁺ is facilitated in presence of S²⁻ or CN⁻ or SCN⁻ justify.
 - (b) Calculate the solubility producct of AgCl from the following data :

Ag \mid KCl \mid 0.1m, saturated with AgCl \mid Calomel (0.1N)

$$E_{\text{Cell}} = 0.0494 \text{V}, \ E_{\text{Cal}}(0.1 \text{N}) = 0.3338 \text{V}$$

$$E_{\text{Ag}^{+}|\text{Ag}}^{\text{o}} = 0.8 \text{V}$$

Mean activity coefficient 0.1 molal KCl=0.77 3

- 6. (a) In what respect, spectrum of He⁺ will differ from that of H-atom?
 - (b) From the following EMF diagram, calculate the values of $E^o_{FeO^{2-}/Fe^{2+}}$ and $E^o_{Fe^{2+}/Fe}$

of
$$E^{\circ}_{FeO_4^{2//Fe^{2+}}}$$
 and $E^{\circ}_{Fe^{2+}/Fe}$

$$FeO_4^{2-} \xrightarrow{2.20V} Fe^{3+} \xrightarrow{0.76V} Fe^{2+} \xrightarrow{?} Fe$$

$$1.08V$$

- 7. (a) Discuss inert pair effect.
 - (b) After calcium, electons enter the 4s orbital before going to the 3d orbitals. But when a transition metal ionizes the 4s electrons are removed first. Why? 3

B.Sc. RNLK-/Chemistry/CC2T/22

(Continued)

3

2

Group - C

3.	Answer any one question. $10 \times$		
	(a)	Justify the Lewis acid strength runs in the sequer	ice :
		BCl ₃ > AlCl ₃ > GaCl ₃ (for O-donor lewis-base)	
		GaCl ₃ > AlCl ₃ > BCl ₃ (for S-donor lewis base)	2

- (b) Calculate the energy of an electron in the Bohr orbit of hydrogen atom with n=3.
- (c) The ionic radius of Cl⁻ is greater than the mean of the radii of F and Br⁻ whereas that of Br⁻ is less than the mean of the radii of Cl⁻ and I⁻ Discuss.
- (d) Calculate the [H⁺], [OH⁻] and pH of a solution prepared by deluting 20 ml of 0.1 M HCl to 1 litre. 3
- 9. (a) What is radial distribution function? Show diagramatically the variation of radial distribution function with 'r' for the 3s, 3p and 3d orbitals in a hydrogen atom.
 - (b) Why the first ionization potential of Cu is higher than that of K, whereas the second ionisation potentials are in the reverse order?

- (c) Draw the acid-base neutralisation curve for
 - (i) Strong acid by strong base.
 - (ii) Weak acid by weak base.
- (d) H₃BO₃ is very weak acid (pka=9.2), but in presence any cis-1, 2 diol, it behaves as strong acid. Explain.

(1+3)+2+2+2