Total Pages-04

Full Marks: 60

RNLKWC/B.Sc.-CBCS/IIIS/COS-C5T//21

2021

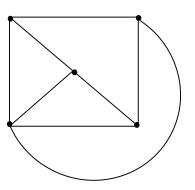
Computer Science [HONOURS]

(CBCS)

(B.Sc. Third Semester End Examination-2021)

PAPER-C5T

Time: 03 Hrs


The figures in the right hand margin indicate marks Candidates are required to give their answers in their own words as far as practicable Illustrate the answers wherever necessary

Group-A

Answer any TEN questions of the following: 2x 10=20

- 1. Suppose p, q are two propositions. Show the truth table for the proposition $p \rightarrow q$.
- 2. What do you mean by tautology? Give an example of a formula which is tautology.
- 3. Suppose, X={1,2,3,4,5}, Y={2,4,6,8,9}. Find (X-Y).
- 4. Consider the word: "college". How many different strings can be formed with only these characters where every string is of 7-characters?
- 5. Find sum of degress of all the vertices of the following graph.

RNLKWC/B.Sc.-CBCS/IIIS/COS-C5T.//21

- 6. Define Ω notation.
- 7. What is Hamiltonian circuit?
- 8. What is Poset?
- 9. Obtain the principal disjunctive normal from of $qV(pV \sim q)$

10 Prove that $(A \cap B)^1 = A^1 \cup B^1$

- 11 If the function of $f: R \to R$ defined by $f(x) = x^2$ find $f^{-1}(4)$.
- 12 In a group of 13 children, there must be least how many who were born in the same month?
- 13 Define Eulerian and Hamiltonian graph
- 14 Construct truth table $pV \sim q \Rightarrow p$.
- 15 If $A=\{0,1,2\}$, find all subsets of A.

(3)

<u>Group-B</u>

Answer any FOUR questions of the following: 5x4 = 20

- 1. Prove that 1+3+5+...+(2m-1)=m² using principle of mathematical induction.
- 2. How many 5-digit numbers \geq 45000 can be formed with 1,2,3,4,5,6,7 where repetation of digits are not allowed?
- 3. a) Consider the set D₃₀ which contains all divisons of 30 and the divides relation. Draw the Hasse diagram of $\langle D_{30}, | \rangle$

b) Find lub (3,5)

- 4. a) What do you mean by equivalence relation?
 b) Consider a relation R= {(1,2), (2,3), (1,3), (3,2), (3,3)}. Is R transitive? Explain your answer.
- 5. Find the solution of following recurrence relation. $y_n = y_{n-1} + y_{n-2}, n \ge 2, y_0 = 1, y_1 = 2$
- 6. Find a minimum spanning tree of the following weighted graph.

(4)

<u>Group –C</u>

Answer any TWO questions of the following: 10x2 = 20

- 1. a) Write a short note on graph colouring.
 - b) Given a complete graph of four vertices, how many colors we need to properly color this graph?
 - c) What do you mean by planar graph? Give one example of non planar graph. 3+2+(3+2)
- 2. a) Prove or disprove the statement

$$"((P \to R) \lor (Q \to R)) \to ((P \land Q) \to R) \text{ is a tautology"}$$

- b) Explain injective function with example.
- c) Find characteristics roots of the recurrence relation:

$$b_n = 2b_{n-1} + b_{n-2}, n \ge 2, b_0 = 0, b_1 = 1$$
 5+3+2

- 3. a) Out of 7 consonants and 4 vowels how many words of 3 consonants and 2 vowels can be formed.
 - b) Consider the relation R defined as follows,

Find the reflexive, symmetric and transitive closure of R using composition of relation

- $R=\{(0,1), (1,2), (2,3)\}$ on $A=\{0,1,2,3\}$ 5+5
- 4. a) Show that $x^2 + x + 1$ is $\theta(x^2)$.

b) Show that the graph K_5 is non-planar. 5+5
