End Semester Examination, 2021 Semester - V Physics

PAPER - CC-12T

Full Marks: 40
Time: 2 Hours

Group - A

Answer any five questions:-

5x2=10

- 1.a) A plane makes intercepts of 1, 2 and 3A on the crystallographic axes of an orthorhombic crystal with a:b:c=3:2:1. Determine the Miller indices of this plane.
 - b) Define geometrical structure factor. How is it related to the atomic scattering factor?
 - c) Calculate the glancing angle on the cube (100) of a rocksalt crystal ($a = 2.814 \,\mathrm{\mathring{A}}$) corresponding to second order diffraction maximum for x-rays of wavelength 0.710.
 - d) What is the essential difference between the classical and quantum theory of paramagnetism?
 - e) Explain the term 'Polarization catastrophe'.
 - f) What is the relative magnetic permeability of a type-I super conductor?
 - g) Find the total polarizability of CO_2 , if its susceptibility is 0.985×10^{-3} . Density of CO_2 is 0.977 kg/m³.
 - h) Write a short note on electronic polarization.

Group - B

4x5=20

Answer any four questions:-

2.a)	Why X-rays are used for crystal structure analy-
	sis?
b)	What is Bragg's law of crystal dittraction and give
	its significance. How does Bragg reflection differ
	from ordinary reflection? $2+(2+1)$
3.a)	What are Brillouin zones?
b)	Discuss the construction of the first two Brillouin
	zones for a square lattice with diagram. $1+(2+2)$
4.a)	What is piezoelectric effect?
b)	$\mathrm{D}\mathrm{y}^{3+}$ has outer electric configaration of $4\mathrm{f}^96\mathrm{s}^0$.
	Calculate effective number of Bohr magneton and
	magnetic susceptibility for a salt containing one
	kg mole of Dy^{3+} ions at 300K. 1+4
5.	Using the equation for local field, obtain the
	Clausius-Mossti relation for dielectric solids. 5
6.a)	Why is ionic polarizability found to be rather in-
	sensitive to temparature?
b)	Determine the percentage of ionic polarizability
	in the sodium chloride crystal which has the opti-
	cal index of reflection and static diclectric con-
	stant as 1.5 and 5.6 respectively. 2+3
7.a)	Show that the susceptibility of a ferro magnetic
	material obeys the Curie-Weiss law when

temparature is above the curie temparature.

RNLKWC/IIIS/PHYSICS/CC12T/21

b) What is exchange interaction? How does it help to explain magnetism? 2+3

Group - C

Answer any one questions:

1x10=10

- 8.a) Define reciprocal lattice. What is Bragg's condition in terms of reciprocal lattice.
 - Starting from $2\vec{K}\cdot\vec{G} = G^2$ obtain the diffraction condition $2d \sin \theta = n\lambda$
 - b) Find out the primitive translational vectors of reciprocal lattice for a space lattice defined by the following primitive translational vectors:

$$\vec{a} = 2(\hat{j} + \hat{k}), \ \vec{b} = 2(\hat{k} + \hat{i}), \ \vec{c} = 2(\hat{i} + \hat{j})$$

- c) The first order reflections from (100) planes for a bcc crystal are absent while reflections of the same order from (200) planes are present. Explain.4+4+2
- 9.a) What is diamagnetism? Derive an expression for diamagnetic susceptibility using Langevin's theory). Discuss the temparature dependence of suceptibility.
 - b) Calculate the diamagnetic susceptibility of alomic hydrogen in the ground state at S.T.P. using the

wave function
$$-\psi(r) = \frac{1}{(\pi a_0^3)^{\frac{1}{2}}} e \times p\left(-\frac{r}{a_0}\right)$$

Where $a_0 = 0.46 \stackrel{0}{A}$, the atomic radius.1+4+2+3=10