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Abstract

An inventory model with stock-dependent demand and two storage facilities under inflation and time value of money is
developed where the planning horizon is stochastic in nature and follows exponential distribution with a known mean. The
model is a order-quantity reorder-point problem where shortages are not allowed. Two rented storehouses are used for
storage – one (say RW1) at the heart of the market place and the other (say RW2) little away from the market place.
At the beginning, the item is stored at both RW1 and RW2. The item is sold from RW1 and as the demand is stock-depen-
dent, the units are continuously released from RW2 to RW1. Replacement of the item occurs when its inventory level
reaches its reorder point (Qr). The model is formulated to maximize the total expected proceeds out of the system from
the planning horizon. A genetic algorithm (GA) is developed based on entropy theory where region of search space is grad-
ually decreases to a small neighborhood of the optima. This is named as region reducing genetic algorithm (RRGA) and is
used to solve the model. The model is illustrated with some numerical examples and some sensitivity analyses have been
done.
� 2006 Published by Elsevier Inc.
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1. Introduction

In the existing literature, inventory models are generally developed under the assumption of finite or infinite
planning horizon. Extensive research work has been done in this direction and are available in the standard
literatures [1,14,23,26]. But there are many real life situations where these assumptions are not valid, e.g., for a
seasonal product, though planning horizon is normally assumed as finite and crisp in nature, but, in every year
it fluctuates depending upon the environmental effects and it is better to estimate this horizon as a stochastic
parameter with some feasible distribution. In 1983, Gurnani [13] pointed out that an infinite planning horizon
is of rare occurrence because the costs are likely to vary disproportionately and because of change in product
specifications and design or its abandonment or substitution by another product due to rapid development of
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technology. Chung and Kim [6] also suggested that the assumption of the infinite planning horizon is not
realistic and called for a new model which relaxes the assumption of the infinite planning horizon. Moon
and Yun [21] developed an EOQ model where the planning horizon is a random variable following exponen-
tial distribution. Moon and Lee [22] developed an EOQ model for an item with random lifetime of the product
under inflation and time value of money. They assumed exponential and normal distribution for the life time
of the item and proposed simulation approach for solution when expected value of the objective is difficult for
calculation.

In an inventory management, different types of demand are considered – constant, stock-dependent, time-
dependent, probabilistic demand, etc. According to Levin et al. [16], ‘‘the presence of inventory has a motiva-
tional effect on the people around it’’. In the present competitive market, the inventory/stock is decoratively
displayed through electronic media to attract the customers and thus to push the sale. Schary and Baker [25]
and Wolfe [28] also established the impact of product availability for simulating demand. Mandal and Phauj-
der [17], Datta and Pal [7] and other considered linear form of stock-dependent demand, i.e. D = c + dq where
as Urban [27], Giri et al. [11], Mandal and Maiti [18] and Maiti and Maiti [19] and others took the demand of
the form D = dqb.

During the last few decades, the monetary situation of most of the countries, affluent or otherwise, has
changed a lot due to large scale inflation and consequent sharp decline in the purchasing power of money.
As a result several efforts have been made by researchers to reformulate the optimal inventory management
policies taking into account inflation, time value of money, etc. The initial attempt in this direction was made
by Buzacott [5] in 1975. He dealt with an EOQ model with inflation subject to different types of pricing pol-
icies. In the subsequent year, Bierman et al. [4] shows that the inflation rate does not affect the optimal order-
quantity perse; rather, the difference between the inflation rate and the discount rate affects the optimum order
quantity. Several authors then extended these works to make the more realistic inventory model under infla-
tion. Datta and Pal [8] studied the effect of internal and external inflation in an inventory model with time-
dependent demand rate, Dey and Maiti [10] considered inflationary effect when lead time is fuzzy. But none
has considered two storage inventory model under inflation, especially when demand is stock-dependent and
planning horizon is random.

Now-a-days due to globalization of market with the introduction of multi-nationals in the business, there is
a trend among the business houses specially middle order retailers and small retailers of different multi-
national products to compete with each other for sale and as a result, they use the decorative showroom at
the selling point to boost their items in addition to a separate warehouse for storage. As a result, in the impor-
tant market places like super markets, municipality markets, etc., it is almost impossible to have a big show-
room/shop due to the scarcity of space and very high rent. Normally, moderate and big business houses
operate through two rented houses – one, smaller in size, is in the heart of the market place and other with
large capacity little away from the market place. During last two decades, two-warehouse inventory models
have been developed and solved by many researchers [3,15,24]. Till now, most of the two storage problems
have been formulated with one own house and another rented one. But normally, both are rented houses, rent
at the market place being higher than that at far-away places [19].

Here, a two storage inventory model for an item is developed whose demand depends upon the displayed
inventory level. It is assumed that planning horizon is stochastic in nature and follows exponential distribu-
tion with a known mean and optimal decision is made considering the effect of inflation and time value of
money on different inventory costs. The model is a order-quantity reorder-point problem where shortages
are not allowed. Two rented storehouses are used for storage – one (say RW1) at the heart of the market place
from where the item is sold and the other (say RW2) little away from the market place where most of the
inventory is stored. Here, the size of RW1 is finite but that of RW2 has unlimited capacity. The units are sold
from RW1 and are continuously released from RW2 to RW1 (as the demand is stock-dependent). Replace-
ment of the item occurs when its inventory level reaches its reorder point (Qr). The model is formulated to
maximize the total expected profit from the system for the planning horizon. A genetic algorithm (GA) is
developed based on entropy theory where region of search space is gradually decreases to a small neighbor-
hood of the optima. This is named as region reducing genetic algorithm (RRGA) and is used to solve the
model. The model is illustrated with some numerical examples and some sensitivity analyses have been
performed.
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2. Region reducing genetic algorithm

Genetic algorithms are exhaustive search algorithms based on the mechanics of natural selection and gen-
esis (crossover, mutation, etc.) and have been developed by Holland, his colleagues and students at the Uni-
versity of Michigan (cf. [12]). Because of its generality and other advantages over conventional optimization
methods it has been successfully applied to different decision making problems.

Generally a GA starts with a single population [12,20], randomly generated in the search space. One of
the difficulties of GAs is that they often converge too quickly and tend to make quickly uniform the pop-
ulation of the chromosomes. Consequently they are easily trapped into local optima of the objective func-
tion. This difficulty is mainly due to the premature loss of diversity of the population during the search. To
overcome this difficulties, Bessaou and Siarry [2] proposes a genetic algorithm where initially more than one
population of solutions are generated. Genetic operations are done on every populations a finite number of
times to find a promising zone of optimum solution. Finally a population of solutions is generated in this
zone and genetic operations are done on this population a finite number of times to get a final solution.
Again the theoretical convergence towards the global optima of a GA, operating with a constant probability
of crossover pc, is ensured if the probability of mutation pm(k) follows a given decreasing law, in function of
the generation number k [9]. Following Bessaou and Siarry [2] a genetic algorithm is developed using the
entropy generated from information theory, where promising zone is gradually reduces to a small neighbor-
hood of the optimal solution. This algorithm is named as RRGA and is used to solve our model. The algo-
rithm is given below:

RRGA Algorithm

1. Initialize probability of crossover pc and probability of mutation pm.
2. Set iteration counter T = 0.
3. Generate M sub-populations of solutions, each of order N, from search space of optimization problem

under consideration, such that the diversity among the solutions of each population is maintained.
Diversity is maintained using the entropy originating from information theory (cf. Section 2.1(b)). Solu-
tions for each of the population are generated randomly from the search space in such a way that the
constraints of the problem are satisfied. Let P1,P2, . . . ,PM be these populations.

4. Evaluate fitness of each solution of every populations.
5. Repeat

A. Do for each sub-populations Pi.
a. Select N solutions from Pi, for mating pool using Roulette-wheel selection process [20] (one solu-

tion may be selected more than once). Let this set be P 1
i .

b. Select solutions from P 1
i , for crossover and mutation depending on pc and pm respectively.

c. Make crossover on selected solutions for crossover.
d. Make mutation on selected solutions for mutation.
e. Evaluate fitness of the child solutions.
f. Replace the parent solutions with the child solutions.
g. Replace Pi with P 1

i .

B. End Do
C. Reduce probability of mutation pm.
6. Until number of generations < Maxgen1, where Maxgen1 represents the maximum number of genera-
tions to be made on initial populations.

7. Select optimum solutions from each sub-populations and S* be the best among these solutions.
8. Select a neighborhood V(T) of S*.
9. Repeat

a. Generate a population of solutions of size N in V(T). Let it be P.
b. Evaluate fitness of each solutions.
c. Initialize probability of mutation pm.
d. Repeat
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(i) Select N solutions from P for mating pool using Roulette-wheel selection process. Let this set be P1.
(ii) Select solutions from P1 for crossover and mutation depending on pc and pm respectively.

(iii) Make crossover on selected solutions for crossover.
(iv) Make mutation on selected solutions for mutation.
(v) Evaluate fitness of the child solutions.

(vi) Replace the parent solutions with the child solutions.
(vii) Replace P with P1.

(viii) Reduce probability of mutation pm.

e. Until number of generations < Maxgen2, where Maxgen2 represents the maximum number of gen-

erations to be made on this population.
f. Update S* by the best solution found.
g. Reduce the neighborhood V(T).
h. Increment T by 1.
10. Until T < Maxgen3, where Maxgen3 represents the maximum number of times for which the search
space to be reduced.
2.1. RRGA procedures for the proposed model

(a) Representation: A ‘K-dimensional real vector’ X = (x1,x2, . . . ,xK) is used to represent a solution, where
x1,x2, . . . ,xK represent different decision variables of the problem such that constraints of the problem are
satisfied.

(b) Inialization: At this step M sub-populations, each of size N are randomly generated in the search space
in such a way that diversity among the solutions of each of the populations is maintained and the constraints
of the problem are satisfied. Let Xl1,Xl2, . . . ,Xln, are the solutions of lth population Pl, l = 1,2, . . . ,M. Diver-
sity can be maintained using the entropy originating from information theory. Entropy of jth variable for the

lth population Pl can be obtained by the formula: EjðP lÞ ¼
PN

i¼1

PN
k¼iþ1 � pik logðpikÞ, where pik represents the

probability that the value of jth variable of ith solution (Xli(j)) is different from the one of the jth variable of

the kth solution (Xlk(j)) and is determined by the formula: pik ¼ 1� jX liðjÞ�X lkðjÞj
Uj�Lj

, where [Lj,Uj] is the variation

domain of the jth variable. The average entropy E(Pl) of the lth sub-population Pl is taken as the average of

the entropies of the different variables for the population, i.e. EðP lÞ ¼ 1
K

PK
j¼1Ej. It is clear that if Pl is made-up

of same solutions, then E(Pl) vanishes and more varied the solutions, higher the value of E(Pl) and the better is
its quality. So to maintain diversity, every time a new solution is randomly generated for Pl from the search
space, the entropy between this one and the previously generated individuals for Pl is calculated. If this value is
higher than a fixed threshold E0, fixed from the beginning, the current chromosome is accepted. This process is
repeated until N solutions are generated. Following the same procedure all the sub-populations Pl,
l = 1,2, . . . ,M are generated. This solution sets are taken as initial sub-populations.

(c) Fitness value: Value of the objective function due to the solution X, is taken as fitness of X. Let it be f(X).
(d) Selection process for mating pool: The following steps are followed for this purpose:

(i) For each population Pi, find total fitness of the population F ¼
PN

j¼1f ðX ijÞ.
(ii) Calculate the probability of selection prij of each solution Xij by the formula prij = f(Xij)/F.

(iii) Calculate the cumulative probability qrij for each solution Xij by the formula qrij ¼
Pj

k¼0prik.
(iv) Generate a random number ‘r’ from the range [0, . . . , 1].
(v) If r < qri1 then select Xi1 otherwise select Xij(2 6 j 6 N) where qrij�1 6 r < qrij.

(vi) Repeat step (iv) and (v) N times to select N solutions for mating pool. Clearly one solution may be
selected more than once.

(vii) Selected solution set is denoted by P 1
i in the proposed FSRRGA algorithm.
(e) Crossover:

(i) Selection for crossover: For each solution of P 1
i generate a random number r from the

range [0, . . . , 1]. If r < pc then the solution is taken for crossover, where pc is the probability of
crossover.
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(ii) Crossover process: Crossover taken place on the selected solutions. For each pair of coupled
solutions Y1 and Y2 a random number c is generated from the range [0, . . . , 1] and Y1 and Y2 are
replaced by their offspring’s Y11 and Y21 respectively where Y11 = cY1 + (1 � c)Y2, Y21 =
cY2 + (1 � c)Y1.
(f ) Mutation:

(i) Selection for mutation: For each solution of P 1
i generate a random number r from the range

[0, � � � , 1]. If r < pm then the solution is taken for mutation, where pm is the probability of mutation.
(ii) Mutation process: To mutate a solution X = (x1,x2, . . . ,xK) select a random integer r in the range

[1, . . . ,K]. Then replace xr by randomly generated value within the boundary of rth component
of X.
(g) Reduction process of pm: Let pm(0) is the initial value of pm. pm(T) is calculated by the formula
pm(T) = pm(0)exp(�T/a), where a is calculated so that the final value of pm is small enough (10�2 in our case).

So a ¼Maxgen1= log½pmð0Þ
10�2 � for initial populations Pi, i = 1,2, . . . ,M and a ¼Maxgen2= log½pmð0Þ

10�2 � for the pop-

ulation P(T) in the promising zone.
(h) Reduction process of neighborhood: V(0) is the initial neighborhood of S*. V(T) is calculated by the for-

mula V(T) = V(0)exp(�T/a), where a is calculated so that the final neighborhood is small enough (10�2 in our

case). So a ¼Maxgen3= log½V ð0Þ
10�2�.
3. Assumptions and notations for the proposed models

The following notations and assumptions are used in developing the models.

(i) Inventory system involves only one item.
(ii) Two rented warehouses RW1 and RW2 are used to store the item.

(iii) Location of RW1 is at the heart of the market place and RW2 is little away from the market place.
(iv) Item is sold from RW1 and are continuously filled up from RW2.
(v) q(t) is the inventory level at time t.

(vi) Q0 is the capacity of RW1 and capacity of RW2 is unlimited.
(vii) H is the planning horizon and is stochastically governed by exponential distribution with parameter k,

its density function f(H) = ke�kH.
(viii) Demand D(q) of the item is dependent on the stock of RW1 and is of the form:
DðqÞ ¼
aþ bQ0 for q > Q0;

aþ bq for q 6 Q0:

�

(ix) Q is the order quantity and Qr the reorder point.
(x) N is the number of fully accommodated cycles to be made during the time horizon and T is the length of

a cycle.
(xi) Time horizon (H) ends during the (N + 1)th cycle.

(xii) tl is the last cycle length. So tl = H � NT.
(xiii) cp is the purchase cost per unit quantity in $.
(xiv) cs is the selling price per unit quantity in $ which is a mark-up m of the purchase cost cp, i.e, cs = mcp.
(xv) co is the ordering cost in $, which depends on order size and is of the form co = co1 + co2Q.

(xvi) ch1 and ch2 are the holding costs per unit quantity per unit time in $ at RW1 and RW2 respectively.
(xvii) csr is the reduced selling price per unit quantity in $ which is a mark-up m0 of purchase cost, i.e.,

csr = m0cp.
(xviii) i and r are the inflation and discount rates respectively and R = r � i.

(xix) ct represents transportation cost in $ per unit item from RW2 to RW1.
(xx) Tj�1 is the ordering time of jth cycle where Tj = jT for j = 1,2, . . . ,N + 1.

(xxi) t0 is the depletion time of the item at RW2.
(xxii) Lead time is negligible.

(xxiii) Here Qr and T are decision variables and Z is the expected total profit during H.
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4. Model development and analysis

In the development of the model, we assume that the business starts with an amount Qr + Q and at the
beginning of every intermediate cycle company purchases an amount Q units of the item. Among these units
at first RW1 is fulfilled and the remaining units are stored at RW2. Demands of the item are met using the
stocks of RW1 and are continuously filled up from RW2. When stock level drops to reorder level Qr at
RW1 after exhausting the stock at RW2, order for next cycle is placed (cf. Figs. 1a and 1b). Item remains
at the end of planning horizon H is sold at a reduced price in a lot. It is clear from the assumption that
Qr 6 Q0.

4.1. Formulation for N full cycles

Duration of jth (1 6 j 6 N) cycle is [(j � 1)T, jT] and at the beginning of the cycle inventory level at RW1 is
Q0 and at RW2 is Q + Qr � Q0. So instantaneous state q(t) of the item during (j � 1)T 6 t 6 jT is given by
dqðtÞ
dt
¼
�ðaþ bQ0Þ for qðtÞ > Q0;

�ðaþ bqÞ for q 6 Q0:

�
ð1Þ
Solving the above differential equation using the initial condition at t = Tj, Q = Qr, we get
qðtÞ ¼
ðQþ QrÞ � ðaþ bQ0Þðt � T j�1Þ for T j�1 6 t 6 T j�1 þ t0;
1
b ðaþ bQ0Þe�bðt�T j�1�t0Þ � a
� �

for T j�1 þ t0 6 t 6 T j;

(
ð2Þ
where
t0 ¼
Qþ Qr � Q0

aþ bQ0

:

Present value of holding cost at RW2 for jth (1 6 j 6 N) cycle, H2j, is given by
H2j ¼ ch2

Z T j�1þt0

T j�1

fqðtÞ � Q0ge�Rt dt ¼ Kh2e�RT j�1 ; ð3Þ
Fig. 1a. Inventory situation when NT 6 H 6 NT + t0.



Fig. 1b. Inventory situation when NT + t0 6 H<(N + 1)T.
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where
Kh2 ¼ ch2

Qþ Qr � Q0

R

� �
ð1� e�Rt0Þ � ðaþ bQ0Þ

1� e�Rt0

R2
� t0e�Rt0

R

� �� 	
: ð4Þ
So present value of holding cost at RW2 for first N cycles, H2N is given by
H2N ¼
XN

j¼1

H2j ¼
XN

j¼1

Kh2e�RT j�1 ¼ Kh2S1; ð5Þ
where
S1 ¼
XN

j¼1

e�RT j�1 ¼ 1� e�NRT

1� e�RT
ð6Þ
and present value of expected holding cost at RW2 for first N cycles, EH2N is given by
EH2N ¼ Kh2ES1; ð7Þ

where ES1 is the expected value of S1 and is calculated in Appendix A.

Present value holding cost at RW1, H1j, is given by
H1j ¼ ch1

Z T j�1þt0

T j�1

Q0e�Rt dt þ
Z T j

T j�1þt0

qðtÞe�Rt dt

" #
¼ Kh1e�RT j�1 ; ð8Þ
where
Kh1 ¼
ch1Q0

R
1� e�Rt0

 �

þ ch1

b
aþ bQ0

bþ R

� �
e�Rt0 � e�bðT�t0Þ�RT
� 


� a
R

e�Rt0 � e�RT
� 
� 	

: ð9Þ
So present value of holding cost at RW1 for first N cycles, H1N is given by
H1N ¼
XN

j¼1

H1j ¼
XN

j¼1

Kh1e�RT j�1 ¼ Kh1S1 ð10Þ
and the present value of expected holding cost at RW1 for first N cycles, EH1N is given by
EH1N ¼ Kh1ES1: ð11Þ
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Present value selling price SPj is given by
SPj ¼ cs

Z T j�1þt0

T j�1

ðaþ bQ0Þe�Rt dt þ
Z T j

T j�1þt0

ðaþ bqðtÞÞe�Rt dt

" #
¼ Kspe�RT j�1 ; ð12Þ
where
Ksp ¼
csðaþ bQ0Þ

R
1� e�Rt0

 �

þ csðaþ bQ0Þ
bþ R

fe�Rt0 � e�ðbþRÞTþbt0g: ð13Þ
So present value of selling price for first N cycles, SPN is given by
SPN ¼
XN

j¼1

SPj ¼
XN

j¼1

Kspe�RT j�1 ¼ KspS1 ð14Þ
and present value of expected selling price for first N cycles, ESPN is given by
ESPN ¼ KspES1: ð15Þ
Present value transportation cost TCj, is given by
TCj ¼ ct

Z T j�1þt0

T j�1

ðaþ bQ0Þe�Rt dt ¼ K tce
�RT j�1 ; ð16Þ
where
K tc ¼
ctðaþ bQ0Þ

R
1� e�Rt0

 �

:

So present value of transportation cost for first N cycles, TCN is given by
TCN ¼
XN

j¼1

TCj ¼
XN

j¼1

K tce
�RT j�1 ¼ K tcS1 ð17Þ
and present value of expected transportation cost for first N cycles, ETCN is given by
ETCN ¼ K tcES1: ð18Þ

Present value purchase cost PCj is given by
PCj ¼
cpQe�RT j�1 for j ¼ 2; . . . ;N ;

cpðQþ QrÞ for j ¼ 1:

�
ð19Þ
So the present value of purchase cost for first N cycles, PCN is given by
PCN ¼
XN

j¼1

PCj ¼ cpQr þ cpQS1: ð20Þ
So the present value of expected purchase cost for first N cycles, EPCN is given by
EPCN ¼ cpQr þ cpQES1: ð21Þ

Present value ordering cost OCj is given by
OCj ¼
ðco1 þ co2QÞe�RT j�1 for j ¼ 2; . . . ;N ;

co1 þ co2ðQþ QrÞ for j ¼ 1:

�
ð22Þ
So present value of ordering cost for first N cycles, OCN is given by
OCN ¼
XN

j¼1

OCj ¼ co2Qr þ ðco1 þ co2QÞS1: ð23Þ
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So the present value of expected ordering cost for first N cycles, EOCN is given by
EOCN ¼ co2Qr þ ðco1 þ co2QÞES1: ð24Þ
So total expected profit from these N cycle Z1 is given by
Z1 ¼ ESPN� EPCN� ðEH1Nþ EH2NÞ � EOCN� ETCN: ð25Þ
4.2. Formulation for last cycle

Duration of last cycle is [TN,H]. Now two cases may arise – Case-1: TN 6 H 6 TN + t0, Case-II:
TN + t0 6 H 6 T(N + 1). In both the cases at the beginning of the cycle inventory level at RW1 is Q0 and
at RW2 is Q + Qr � Q0. So instantaneous state q(t) of the item during NT 6 t 6 H is given by
dqðtÞ
dt
¼
�ðaþ bQ0Þ for qðtÞ > Q0;

�ðaþ bqÞ for q 6 Q0:

�
ð26Þ
Solving the above differential equation we get
qðtÞ ¼
ðQþ QrÞ � ðaþ bQ0Þðt � T N Þ for TN 6 t 6 TN þ t0;
1
b ðaþ bQ0Þe�bðt�T N�t0Þ � a
� �

for TN þ t0 6 t 6 T ðN þ 1Þ:

(
ð27Þ
Case-1: TN 6 H 6 TN + t0

Present value of holding cost at RW2 for last cycle in this case, H2L1, is given by
H2L1 ¼ ch2

Z H

TN
fqðtÞ � Q0ge�Rt dt

¼ ch2
Qþ Qr � Q0

R
ðe�RNT � e�RH Þ þ ðaþ bQ0Þ

ðH � NT Þe�RH

�R
þ 1

R2
ðe�RNT � e�RH Þ

� �� 	
: ð28Þ
Present value of holding cost at RW1 for last cycle in this case, H1L1, is given by
H1L1 ¼ ch1

Z H

TN
Q0e�Rt dt ¼ ch1Q0

R
ðe�RNT � e�RH Þ: ð29Þ
Present value of selling price at RW1 for last cycle in this case, SPL1, is given by
SPL1 ¼ cs

Z H

TN
ðaþ bQ0Þe�Rt dt ¼ csðaþ bQ0Þ

R
ðe�RNT � e�RH Þ: ð30Þ
Present value of expected selling price at RW1 for last cycle in this case, ESPL1, is given by
ESPL1 ¼
csðaþ bQ0Þ

R
ðES3 � ES4Þ: ð31Þ
Present value of transportation cost for last cycle in this cases, TCL1, is given by
TCL1 ¼ ct

Z H

TN
ðaþ bQ0Þe�Rt dt ¼ ctðaþ bQ0Þ

R
ðe�RNT � e�RH Þ: ð32Þ
Stock in hand at the end of the cycle QH1, is given by
QH1 ¼ ðQþ QrÞ � ðaþ bQ0ÞðH � TNÞ: ð33Þ
Present value of selling price of QH1 at t = H, SPQH1, is given by
SPQH1 ¼ csr½ðQþ QrÞ � ðaþ bQ0ÞðH � TNÞ�e�RH : ð34Þ
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Case-II: TN + t0 6 H 6 T(N + 1)
Present value of holding cost at RW2 for last cycle in this case, H2L2, is given by
H2L2 ¼ ch2

Z TNþt0

TN
fqðtÞ � Q0ge�Rt dt

¼ ch2

Qþ Qr � Q0

R
ð1� e�Rt0Þ þ ðaþ bQ0Þ

t0e�Rt0

R
þ 1

R2
ðe�Rt0 � 1Þ

� �� 	
e�RNT : ð35Þ
Present value of holding cost at RW1 for last cycle in this case, H1L2, is given by
H1L2 ¼ ch1

Z TNþt0

TN
Q0e�Rt dt þ

Z H

TNþt0

qðtÞe�Rt dt
� 	

¼ ch1Q0

R
ð1� e�Rt0Þe�RNT þ ch1

b
ðaþ bQ0Þ

e�Rt0 e�RNT � e�bt0 e�bðH�NT Þ�RH

bþ R
� a

R
ðe�Rt0 e�RNT � e�RH Þ

� 	
:

ð36Þ

Present value of selling price for last cycle in this case, SPL2, is given by
SPL2 ¼ cs

Z TNþt0

TN
ðaþ bQ0Þe�Rt dt þ

Z H

TNþt0

ðaþ bqðtÞÞe�Rt dt
� 	

¼ csðaþ bQ0Þ
R

ð1� e�Rt0Þe�RNT þ csðaþ bQ0Þ
bþ R

ebt0�RNTfe�ðbþRÞt0 � e�ðbþRÞTg: ð37Þ
Present value of transportation cost for last cycle in this cases, TCL2, is given by
TCL2 ¼ ct

Z TNþt0

TN
ðaþ bQ0Þe�Rt dt ¼ ctðaþ bQ0Þ

R
ð1� e�Rt0Þe�RNT : ð38Þ
Stock in hand at the end of the cycle QH2 is given by
QH2 ¼
1

b
½ðaþ bQ0Þebt0 e�bðH�NT Þ � a�: ð39Þ
So present value of reduced selling price of QH2 at t = H, SPQH2, is given by
SPQH2 ¼
csr

b
½ðaþ bQ0Þebt0 e�bðH�NT Þ � a�e�RH : ð40Þ
Expected costs in the last cycle

Present value of expected holding cost at RW2 for last cycle, EH2L, is given by
EH2L ¼
X1
N¼0

Z NTþt0

NT
H2L1ke�kH dH þ

Z ðNþ1ÞT

NTþt0

H2L2ke�kH dH
� 	

¼ ch2

Qþ Qr � Q0

R
ðES3 � ES4Þ þ ðaþ bQ0Þ

ES5 � TES2

�R
þ 1

R2
ðES3 � ES4Þ

� �� 	

þ ch2

Qþ Qr � Q0

R
ð1� e�Rt0Þ þ ðaþ bQ0Þ

t0e�Rt0

R
þ 1

R2
ðe�Rt0 � 1Þ

� �� 	
ES7; ð41Þ
where expressions of ES2, ES3, ES4, ES5 and ES7 are given in Appendix A.
Present value of expected holding cost at RW1 for last cycle in this case, EH1L1, is given by
EH1L1 ¼
X1
N¼0

Z NTþt0

NT
H1L1ke�kH dH þ

Z ðNþ1ÞT

NTþt0

H1L2ke�kH dH
� 	

¼ ch1Q0

R
ðES3 � ES4Þ þ

ch1Q0

R
ð1� e�Rt0ÞES7

þ ch1

b
ðaþ bQ0Þ

e�Rt0 ES7 � e�bt0 ES9

bþ R
� a

R
ðe�Rt0 ES7 � ES8Þ

� 	
; ð42Þ
where expressions of ES8 and ES9 are given in Appendix A.
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Present value of expected selling price for last cycle, ESPL, is given by
ESPL ¼
X1
N¼0

Z NTþt0

NT
SPL1ke�kH dH þ

Z ðNþ1ÞT

NTþt0

SPL2ke�kH dH
� 	

¼ csðaþ bQ0Þ
R

ðES3 � ES4Þ þ
csðaþ bQ0Þ

R
ð1� e�Rt0ÞES7

þ csðaþ bQ0Þ
bþ R

ebt0fe�ðbþRÞt0 � e�ðbþRÞTgES7: ð43Þ
Present value of expected transportation cost from RW2 to RW1 for last cycle, ESPL1, is given by
ETCL ¼
X1
N¼0

Z NTþt0

NT
TCL1ke�kH dH þ

Z ðNþ1ÞT

NTþt0

TCL2ke�kH dH
� 	

¼ ctðaþ bQ0Þ
R

ðES3 � ES4Þ þ
ctðaþ bQ0Þ

R
ð1� e�Rt0ÞES7: ð44Þ
Present value of expected reduced sell revenue of the quantity at hand at the end of the last cycle, ESPQH,
is given by
ESPQH ¼
X1
N¼0

Z NTþt0

NT
SPQH1ke�kH dH þ

Z ðNþ1ÞT

NTþt0

SPQH2ke�kH dH
� 	

¼ csr½ðQþ QrÞES4 � ðaþ bQ0ÞðES5 � TES2Þ� þ
csr

b
½ðaþ bQ0Þebt0 ES9 � aES8�: ð45Þ
Present value of ordering cost for last cycle in both the cases, OCL, is given by
OCL ¼ ðco1 þ co2QÞe�RTN : ð46Þ

Present value of expected ordering cost for last cycle, EOCL, is given by
EOCL ¼ ðco1 þ co2QÞES6; ð47Þ

where ES6 represents expected value of e�RTN and is calculated in Appendix A.

Present value of purchase cost for last cycle in both the cases, PCL, is given by
PCL ¼ cpQe�RTN : ð48Þ

Present value of expected purchase cost for last cycle, EPCL, is given by
EPCL ¼ cpQES6: ð49Þ

Thus, total expected profit from last cycle Z2 is given by
Z2 ¼ ðESPLþ ESPQHÞ � EPCL� ðEH1Lþ EH2LÞ � EOCL� ETCL: ð50Þ
4.3. Total expected profit

Incorporating all the cases and subcases, the total expected profit during the planning horizon H, Z is given
by
Z ¼ Z1þ Z2; ð51Þ

where Z1 and Z2 are given by Eqs. (25) and (50) respectively.

5. Numerical Illustration

Following parametric values are assumed to illustrate the proposed model.
Q0 ¼ 30; a ¼ 75; b ¼ 1:15; k ¼ 0:1; i ¼ 0:07; r ¼ 0:15; cp ¼ 30; cs ¼ 42;

csr ¼ 20; ch2 ¼ 1:5; ch1 ¼ 2:5; ct ¼ 1; co1 ¼ 200; co2 ¼ 1:2:



Table 1
Results obtained for the model via RRGA

T Qr Z

0.86 7.89 5176.03

Table 2
Results obtained for the model for different R

R T Qr Z

0.08 0.86 2.80 4807.98
0.09 0.85 0.06 4488.63
0.10 0.83 0.04 4204.26
0.11 0.81 0.04 3948.29
0.12 0.79 0.04 3716.77
0.13 0.77 0.04 3506.43
0.14 0.75 0.04 3314.57
0.15 0.74 0.04 3138.91
0.16 0.72 0.04 2977.53

Table 3
Results obtained for the model for different k

k T Qr Z

0.11 0.86 3.53 4861.82
0.12 0.86 0.06 4588.03
0.13 0.85 0.06 4344.48
0.14 0.83 0.04 4124.81
0.15 0.82 0.04 3925.64
0.16 0.81 0.04 3744.34
0.17 0.79 0.04 3578.65
0.18 0.78 0.04 3426.72
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For the above parametric values, results are obtained via RRGA and presented in Table 1.
For the above parametric values, results are obtained for different values of R, i.e., for different resultant

effect of inflation and time value of money on expected profit and presented in Table 2. It is observed that as R

increases expected profit Z decreases, which agrees with reality.
Again for the above parametric values, results are obtained for different values of k, i.e., for different mean

values of stochastic planning horizon H and presented in Table 3. It is observed that as k increases expected
profit Z, decreases. It happens because as k increases mean value of H, 1/k decreases, which in turn decreases
the expected length of planning horizon. Here, the total expected profit during the planning horizon is opti-
mized. So as expected value of planning horizon decreases, expected value of total profit decreases.

6. Conclusion

For the first time an inventory model with stock-dependent demand with two storage facilities is developed
for a random planning horizon considering the effect of inflation and time value of money on different inven-
tory costs. To solve the model a genetic algorithm is developed where diversity among the solutions of the
populations is maintained using entropy theory and as iteration proceeds search space gradually decreases
to the optima. The reason for adaptation of this model is twofold.

Firstly it is very difficult to define time horizon of an inventory problem precisely – specially for seasonal
goods, which are normally stochastic in nature, which render stochastic planning horizon for the model.
Another reason for the adaptation of the model is the crisis of having large space in the important market
place, which did not exist few years ago. Earlier two-warehouse models deal with one own warehouse
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(OW) at the market place and one rented storehouse (RW) at a distant away. The holding cost at OW is
assumed to be less than that of RW. But in real life, now-a-days, it is the reverse as normally, both warehouses
are hired. Hence the holding cost at the main marketing place is more than that at the distant storage house.
Such a realistic situation has been considered in this model. So, from the economical point of view, the pro-
posed model will be useful to the business houses in the present context as it gives a better inventory control
system.

Appendix 1

1 Z NðTþ1Þ �NRT �kT
ES1 ¼
X
N¼0 NT

1� e

1� e�RT
ke�kH dH ¼ e

1� e�ðkþRÞT ; ð52Þ

ES2 ¼
X1
N¼0

Z NTþt0

NT
Ne�RHke�kH dH

¼
X1
N¼0

k
kþ R

f1� e�ðkþRÞt0gNe�ðkþRÞNT

¼ k
kþ R

f1� e�ðkþRÞt0gSN ; where

SN ¼
X1

N¼0
Ne�ðkþRÞNT ¼ e�ðkþRÞT

1� e�ðkþRÞT ; ð53Þ

ES3 ¼
X1
N¼0

Z NTþt0

NT
e�RNT ke�kH dH ¼

X1
N¼0

ð1� e�kt0Þe�ðkþRÞNT ¼ 1� e�kt0

1� e�ðkþRÞT ; ð54Þ

ES4 ¼
X1
N¼0

Z NTþt0

NT
e�RHke�kH dH ¼ k

kþ R
f1� e�ðkþRÞt0g
f1� e�ðkþRÞTg ; ð55Þ

ES5 ¼
X1
N¼0

Z NTþt0

NT
He�RHke�kH dH

¼ k
TSNf1� e�ðkþRÞt0g � t0e�ðkþRÞt0

f1�e�ðkþRÞT g

kþ R
þ 1� e�ðkþRÞT

ðkþ RÞ2f1� e�ðkþRÞTg

2
4

3
5; ð56Þ

ES6 ¼
X1
N¼0

Z NðTþ1Þ

NT
e�RNT ke�kH dH ¼ 1� e�kT

1� e�ðkþRÞT ; ð57Þ

ES7 ¼
X1
N¼0

Z NðTþ1Þ

NTþt0

e�RNT ke�kH dH ¼ e�kt0 � e�kT

1� e�ðkþRÞT ; ð58Þ

ES8 ¼
X1
N¼0

Z NðTþ1Þ

NTþt0

e�RHke�kH dH ¼ k
kþ R

e�ðkþRÞt0 � e�ðkþRÞT

1� e�ðkþRÞT ; ð59Þ

ES9 ¼
X1
N¼0

Z NðTþ1Þ

NTþt0

e�ðbþRÞH ebNT ke�kH dH ¼ k
kþ bþ R

fe�ðkþbþRÞt0 � e�ðkþbþRÞTg
f1� e�ðkþRÞTg : ð60Þ
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