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Abstract: Here, an inventory model of an item during its seasonal time is 
considered where duration of the season of the item is imprecise in nature in 
non-stochastic sense, i.e., fuzzy in nature. Demand of the item is price 
dependent and unit cost of the item is time dependent. Unit cost is a decreasing 
function at the beginning of the season and an increasing function at the end of 
the season and is constant during the remaining part of the season. The model is 
formulated to maximise the average proceeds out of the system from the 
planning horizon which is fuzzy in nature. As optimisation of fuzzy objective is 
not well defined, optimistic/pessimistic return of the objective function  
(using possibility/necessity measure of fuzzy event) is optimised. A fuzzy 
simulation process is proposed to evaluate this optimistic/pessimistic return. A 
genetic algorithm (GA) is developed based on entropy theory where region of 
search space gradually decreases to a small neighbourhood of the optima. This 
is named as region reducing genetic algorithm (RRGA) and is used to solve the 
model. The model is illustrated with some numerical examples and some 
sensitivity analyses have been done. In a particular case when planning horizon 
is crisp the model is solved via RRGA. 

Keywords: fuzzy planning horizon; seasonal product; region reducing genetic 
algorithm; RRGA; fuzzy simulation; EOQ. 
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1 Introduction 

For items like paddy, wheat, pulses, potato, onion, etc., it is normally observed that price 
of the item decreases with time at the beginning of the production season due to 
availability in the market and reaches to a minimum value. Price of the item remains 
constant at this minimum value during the major part of the season due sufficient 
availability of the item in the market and towards the end of the season due to scarcity, 
cost again increases gradually and reaches its off season value. This price remains stable 
during the remaining part of the year. A considerable number of research work has been 
done for seasonal products by several researchers (Zhou et al., 2004; Chen and Chang, 
2007; Panda et al., 2008; Banerjee and Sharma, 2010a, 2010b). In most of these research 
works it is assumed that price of the item decreases with time or demand increases with 
time. But the above mentioned real life phenomenon of a seasonal product is overlooked 
by the researchers. The another shortcoming of these research work is the assumption of 
the duration of the season of such products as finite crisp value. Although the duration of 
the season for an item is finite it varies from year to year due to environmental changes. 
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So it is worthwhile to assume this duration as a fuzzy parameter. The aim of this research 
work is twofold: 

• Firstly to model price of a seasonal product as a function f1(t) of time which 
decreases monotonically for a duration H1 at the beginning of the season and reaches 
a minimum value f1(H1). The price remains at this value f1(H1) during a period H2. 
Then it again follows an increasing function f2(t) and after a period H3 it reaches the 
off season value, i.e., f1(0) = f2 (H1 + H2 + H3). 

• Secondly to model the season length (H1 + H2 + H3) as an imprecise parameter. 

Here, inventory model for a seasonal product is developed whose demand depends upon 
the unit cost of the product. Unit cost of the product is time dependent. During the 
beginning of the period as availability of the item gradually increases, unit cost decreases 
monotonically with time and reaches a constant value when availability of the item 
becomes stable. Unit cost remains constant until the items availability again decreases 
towards the end of the season. Then as availability decreases, unit cost gradually 
increases and reaches its value as it was at the beginning of the season and then the 
season ends. Here linear increasing and decreasing rate of unit cost function is 
considered. It is assumed that time horizon of the season is fuzzy in nature. In fact three 
parts in which unit cost function can be divided are considered as fuzzy number. The 
model is formulated to maximise optimistic/pessimistic return of the profit from the 
system for the season (Maiti and Maiti, 2006; Maiti, 2008, 2011). Optimistic/pessimistic 
return of the profit function is obtained using possibility/necessity measure on fuzzy 
event and a simulation approach is proposed to find this optimistic/pessimistic return of 
the profit (Liu and Iwamura, 1998a, 1998b). A genetic algorithm (GA) is developed 
based on entropy theory where region of search space is gradually decreases to a small 
neighbourhood of the optima (Bessaou and Siarry, 2001). This is named as region 
reducing genetic algorithm (RRGA) and is used to solve the model when planning 
horizon is crisp. When this algorithm is used to solve the fuzzy model using fuzzy 
simulation process to evaluate the optimistic/pessimistic return of the profit, the 
algorithm is named as fuzzy simulation-based region reducing genetic algorithm 
(FSRRGA). The model is illustrated with some numerical examples and some sensitivity 
analyses have been presented. 

2 Literature review 

Items considered in inventory control problems are broadly classified into – seasonal and 
normal products. The products whose demands are normally stable throughout the year 
are treated as normal product. Demand of these items are mainly constant (Ruiz-Torres 
and Santiago, 2007; Mahata and Goswami, 2010), stock-dependent (Jain et al., 2008; 
Guchhait et al., 2010) or price dependent (Maiti and Maiti, 2006; Pal et al., 2009). The 
products which are mostly found at a particular period of time in the year are termed as 
seasonal product. Fruits like mango, orange, etc., vegetables like cabbage, cauliflower, 
etc., sea fish like hilsa, winter garments, X-mass cake are some examples of seasonal 
items. 

These items are found in the market for a particular period in each year and demand 
of these items increases at the beginning of the season, in the mid of the season it 
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becomes steady and towards the end of the season it decreases and becomes asymptotic. 
A considerable number of research paper has been published in this direction. Chen and 
Chang (2007) developed a seasonal demand inventory model with variable lead time and 
resource constraints. Panda et al. (2008) developed an inventory model for perishable 
seasonal products with ramp-type time dependent demand. Banerjee and Sharma (2010b) 
studied optimal procurement and pricing policies for inventory models with price and 
time dependent seasonal demand. They (Banerjee and Sharma, 2010a) developed another 
inventory model for seasonal demand with option to change the market. Tripathi (2012) 
developed an EOQ model for deteriorating items with linear time dependent demand rate 
under permissible delay in payments. So demand of seasonal product is normally time 
dependent. 

On the other hand there are some items whose stable demand exists throughout the 
year, but at the time of their grown due to sufficient availability price decreases  
and so demand increases (e.g., rice, wheat, pulses, etc.). The time of grown of these items 
are treated as season of these items. For these types of products it is normally observed 
that due to production of the items in the field by the farmers price of these  
items decrease with time at the beginning of the season and reach to a minimum value. 
Price of the item remains constant at this minimum value during the major part of the 
season and towards the end of the season it again increases gradually and reaches its off 
season value. As unit price influences the demand, demand increases with time at  
the beginning of the season and reaches to its maximum value. Demand of the item 
remains constant at this maximum value during the major part of the season and towards 
the end of the season it again decreases gradually and reaches to its off season level. 
Inventory practitioners overlooked the natural phenomenon of these types of items. In 
this research work an attempt has been made to developed an inventory model of this 
type of items. 

After the introduction of fuzzy set theory by Zadeh (1965), it has been applied to 
different fields of optimisation including inventory control problems. In the last two 
decades extensive research work has been done on inventory control problems in fuzzy 
environment (Lee et al., 1991; Lam and Wong, 1996; Roy and Maiti, 2000; Mandal and 
Maiti, 2002; Kao and Hsu, 2002; Bera et al., 2012). These problems considered different 
inventory parameters as fuzzy numbers which render fuzzy objective function. As 
optimisation in fuzzy environment is not well defined some of these researcher transform 
the fuzzy parameters as equivalent crisp number or crisp interval and then the objective 
function is transformed to an equivalent crisp number/interval (Maiti and Maiti, 2007; 
Bera et al., 2012). Some of the researchers (Mandal and Maiti, 2002) set the fuzzy 
objective as fuzzy goal whose membership function as a linear/non-linear fuzzy number 
and try to optimise this membership function using Bellman-Zadeh’s principle (Bellman 
and Zadeh, 1970). Maiti and Maiti (2006) propose a technique where instead of objective 
function pessimistic return of the fuzzy objective is optimised. They use necessity 
measure on fuzzy event to determine this pessimistic return and proposes fuzzy 
simulation process to find this return function. Recently Maiti (2008, 2011) proposes a 
technique where possibility/necessity measure of objective function (fuzzy profit) on 
fuzzy goal is optimised to find optimal decision. In this research work, approach followed 
by Maiti and Maiti (2006) is used to find optimal decision for the decision maker (DM) 
for fuzzy inventory model. 
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3 Possibility/necessity in fuzzy environment 

Let ℜ represents the set of real numbers and A%  and B%  be two fuzzy numbers with 
membership functions Aµ %  and Bµ %  respectively. Then taking degree of uncertainty as the 
semantics of fuzzy number, according to Liu and Iwamura (1998a, 1998b): 

( ) ( ){ }Pos  sup min ( ),  ( ) ,  ,  ,   BAA B µ x µ y x y x y= ∈ℜ% %
% %  (1) 

where the abbreviation Pos represent possibility and  is any one of the relations >, <, =, 

≤, ≥. Analogously if B%  is a crisp number, say b, then 

( ) { }Pos  sup ( ),  ,   AA b µ x x x b= ∈ℜ%
%  (2) 

On the other hand necessity measure of an event A B% %  is a dual of possibility measure. 
The grade of necessity of an event is the grade of impossibility of the opposite event and 
is defined as: 

( ) ( )Nes 1 PosA B A B= −% %% %  (3) 

where the abbreviation Nes represents necessity measure and A B% %  represents 
complement of the event .A B% %  

If ,A B∈ℜ% %  and ( , )C f A B=% % %  where f : ℜ × ℜ → ℜ be a binary operation  
then membership function µC˜ of C˜ can be obtained using fuzzy extension principle 
(Zadeh, 1965, 1973) as 

( ){ }( )  sup min ( ),  ( ) ,  ,  ,  and  ( , ),BC Az µ x µ y x y z f x y zμ = ∈ℜ = ∀ ∈ℜ% % %  (4) 

3.1 Triangular fuzzy number 

A triangular fuzzy number (TFN) A%  is specified by the triplet (a1, a2, a3) and is defined 
by its continuous membership function ( ) :  [0,  1]Aµ x X →%  as follows (cf., Figure 1): 

1
1 2

2 1

3
2 3

3 2

if   

( ) if   

0 otherwise

A

x a
a x a

a a
a x

µ x a x a
a a

−⎧ ≤ ≤⎪ −⎪
⎪ −

= ≤ ≤⎨ −⎪
⎪
⎪
⎩

%  
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Figure 1 Triangular fuzzy number 

 

4 Optimisation of fuzzy objective using possibility/necessity measure 

A general single-objective unconstrained mathematical programming problem is of the 
following form: 

    max                ( ,  )
subject to              

f x
x X

ξ
∈

 (5) 

where x is a decision vector, ξ is a vector of crisp parameters, f(x, ξ) is the return function, 
X is the search space. In the above problem when ξ is a fuzzy vector ,ξ%  then return 

function ( , )f x ξ%  becomes imprecise in nature. In that case the statement maximise 

( , )f x ξ%  is not well defined. In that situation one can maximise the optimistic 
(pessimistic) return, z, corresponding to the objective function using possibility 
(necessity) measure of the fuzzy event { |  ( , ) }f x zξ ξ ≥% %  as suggested by Liu and Iwamura 
(1998a, 1998b), Maiti and Maiti (2006). So when ξ is a fuzzy vector one can convert the 
above problem (5) to the following equivalent possibility/necessity constrained 
programming problem (analogous to the chance constrained programming problem). 

( ){ }
    max                

subject to          pos nes ,

                           

z

f x z

x X

ξ ξ β≥ ≥

∈

% %  (6) 

where β is the predetermined confidence level for fuzzy objective, pos{.} (nes{.}) 
denotes the possibility (necessity) of the event in {.}. Here the objective value z should be 
the maximum that the objective function ( , )f x ξ%  achieves with at least possibility 
(necessity) β, in optimistic (pessimistic) sense. 

4.1 Fuzzy simulation 

The basic technique to deal problem (6) is to convert the possibility/necessity constraint 
to its deterministic equivalent. However, the procedure is usually very hard and 
successful in some particular cases (Maiti and Maiti, 2006). Liu and Iwamura (1998a, 
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1998b) proposed fuzzy simulation process to determine optimum value of z for the 
problem (6) under possibility measure of the event { |  ( , ) }.f x zξ ξ ≥% %  Following Liu and 
Iwamura (1998b) two algorithms are developed to determine z in (6) and are presented 
below. 
Algorithm 1 Algorithm to determine z, for problem (6) under possibility measure of the event 

{ |  ( , ) }f x zξ ξ ≥% %  

1 Set z = −∞. 
2 Generate ξ0 uniformly from the β cut set of fuzzy vector .ξ%  
3 If z < f(x, ξ0) then set z = f(x, ξ0). 
4 Repeat Steps 2 and 3, N times, where N is a sufficiently large positive integer. 
5 Return z. 
6 End algorithm. 

We know that { |  ( , ) } { |  ( , ) } 1 .nes f x z pos f x zξ ξ β ξ ξ β≥ ≥ ⇒ < < −% % % %  Now roughly find 
a point ξ0 from fuzzy vector ξ, which approximately minimises f. Let this value be z0 and 
ε be a positive number. Set z = z0 − ε and if { |  ( , ) } 1pos f x zξ ξ β< < −% %  then  

increase z with ε. Again check { |  ( , ) } 1pos f x zξ ξ β< < −% %  and it continues until 

{ |  ( , ) } 1 .pos f x zξ ξ β< ≥ −% %  At this stage decrease value of ε and again try to improve z. 
When ε becomes sufficiently small then we stop and final value of z is taken as value 

of z. Using this criterion, Algorithm 2 is developed. 
Algorithm 2 Algorithm to determine z, for problem (6) under necessity measure of the event 

{ |  ( , ) }f x zξ ξ ≥% %  

1 Set z = z0 − ε, F = z0 − ε, F0 = z0 − ε. 
2 Generate ε0 uniformly from the 1 − β cut set of fuzzy vector ξ. 
3 If 0( , ) .f x zξ <%  

4  then go to Step 10. 
5 End If 
6 Repeat Step 2 to Step 5 N times. 
7 Set F = z. 
8 Set z = z + ε. 
9 Go to Step 2. 
10 If(z = F)//In this case optimum value of z < z0 − ε 
11  Set z = z0 − ε, F = F − ε, F0 = F0 − ε. 
12  Go to Step 2 
13 End If 
14 If (ε < tol) 
15  go to Step 20 
16 End If 
17 ε = ε/N 
18 z = F + ε 
19 Go to Step 2. 
20 Output F. 
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5 Fuzzy simulation-based region reducing genetic algorithm 

Gas are exhaustive search algorithms based on the mechanics of natural selection and 
genesis (crossover, mutation, etc.) and have been developed by Holland, his colleagues 
and students at the University of Michigan (Goldberg, 1989). Because of its generality 
and other advantages over conventional optimisation methods it has been successfully 
applied to different decision making problems (Zegordi et al., 2010; Simon et al., 2011; 
Das et al., 2012). 

Generally a GA starts with a single population (Goldberg, 1989; Michalewicz, 1992), 
randomly generated in the search space. One of the difficulties of Gas is that they often 
converge too quickly and tend to make quickly, uniform the population of the 
chromosomes. Consequently they are easily trapped into local optima of the objective 
function. This difficulty is mainly due to the premature loss of diversity of the population 
during the search. To overcome this difficulties, Bessaou and Siarry (2001) propose a GA 
where initially more than one population of solutions are generated. Genetic operations 
are done on every population a finite number of times to find a promising zone of 
optimum solution. Finally a population of solutions is generated in this zone and genetic 
operations are performed on this population a finite number of times to get a final 
solution. Again the convergence towards the global optima of a GA, operating with a 
constant probability of crossover pc, is ensured if the probability of mutation pm(k) 
follows a given decreasing law, in function of the generation number k (Davis and 
Principe, 1991). Following Bessaou and Siarry (2001) a GA is developed using the 
entropy generated from information theory, where promising zone is gradually reduces to 
a small neighbourhood of the optimal solution. In the algorithm any possibility constraint 
on objective function is checked via fuzzy simulation technique. This algorithm is named 
as FSRRGA and is used to solve our models. The algorithm is given below: 
Algorithm 3 FSRRGA algorithm 

1 Initialise probability of crossover pc and probability of mutation pm. 
2 Set iteration counter T = 0. 
3 Generate M sub-populations of solutions, each of order N (i.e., each sub-population 

contains N solutions), from search space of optimisation problem under consideration, 
such that the diversity among the solutions of each population is maintained. Diversity is 
maintained using the entropy originating from information theory [cf., § 2.1-(b)]. 
Solutions for each of the population are generated randomly from the search space in such 
a way that the constraints of the problem are satisfied. Possibilistic constraints are checked 
using the algorithms of Section 4.1. Let P1, P2, … PM be these populations. 

4 Evaluate fitness of each solution of every populations. 
5 Repeat 
 A Do for each sub-populations Pi. 
  a Select N solutions from 1P ,i  for mating pool using Roulette-wheel selection 

process (Michalewicz, 1992) (These N solutions may not be distinct. 
   Solution with higher fitness value may be selected more than once). Let this set 

be P1. 
  B Select solutions from P1, for crossover and mutation depending on pc and pm 

respectively. 
  C Make crossover on selected solutions for crossover. 
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  D Make mutation on selected solutions for mutation. 
  E Evaluate fitness of the child solutions. 
  F Replace the parent solutions with the child solutions. 
  G Replace Pi with 1P .i  

 B End Do 
 C Reduce probability of mutation pm. 
6 Until number of generations < Maxgen1, where Maxgen1 represents the maximum 

number of generations to be made on initial populations. 
7 Select optimum solutions from each sub-populations and S* be the best among these 

solutions. 
8 Select a neighbourhood V(T) of S* 
9 Repeat 
 a Generate a population of solutions of size N in V(T). Let it be P. 
 b Evaluate fitness of each solutions. 
 c Initialise probability of mutation pm. 
 d Repeat 
  1 Select N solutions from P for mating pool using Roulette-wheel selection 

process. Let this set be P1. 
  2 Select solutions from P1 for crossover and mutation depending on pc and pm 

respectively. 
  3 Make crossover on selected solutions for crossover. 
  4 Make mutation on selected solutions for mutation. 
  5 Evaluate fitness of the child solutions. 
  6 Replace the parent solutions with the child solutions. 
  7 Replace P with P1. 
  8 Reduce probability of mutation pm. 
 e Until number of generations < Maxgen2, where Maxgen2 represents the maximum 

number of generations to be made on this population. 
 f Update S* by the best solution found. 
 g Reduce the neighbourhood V(T). 
 h Increment T by 1. 
10 Until T < Maxgen3, where Maxgen3 represents the maximum number of times for which 

the search space to be reduced. 

5.1 FSRRGA procedures for the proposed model 

a Representation: A ‘K-dimensional real vector’ Xli = (xli1, xli2, .... xliK) is used to 
represent ith solution in lth population, where xli1, xli2, .... xliK represent different 
decision variables of the problem such that constraints of the problem are satisfied. 

b Initialisation: At this step M sub-populations, each of size N are randomly generated 
in the search space in such a way that diversity among the solutions of each of the 
populations is maintained and the constraints of the problem are satisfied. Possibility 
constraints are checked using the algorithms of Section 4.1. Let Xl1, Xl2, ... XlN, are 



   

 

   

   
 

   

   

 

   

    An EOQ model of an item with imprecise seasonal time via genetic algorithm 367    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

the solutions of lth population Pl, l = 1, 2, ...M. Diversity can be maintained using the 
entropy originating from information theory. Entropy of jth variable for the lth 
population Pl can be obtained by the formula: 

( ) ( )
1 1

,
N N

j l ik ik
i k i

E P p log p
= = +

= −∑∑  

where pik represents the probability that the value of jth variable of ith solution (xlij) is 
different from the one of the jth variable of the kth solution (xlkj) and is determined by 
the formula: 

X X
1 ,lij lkj

ik
j j

p
U L

−
= −

−
 

where [Lj, Uj] is the variation domain of the jth variable. The average entropy E(Pl) of 
the lth subpopulation Pl is taken as the average of the entropies of the different 
variables for the population, i.e., 

( ) ( )
1

1 .
K

l j l
j

E P E P
K =

= ∑  

It is clear that if Pl is made-up of same solutions, then E(Pl) vanishes and more 
varied the solutions, higher the value of E(Pl) and the better is its quality. So to 
maintain diversity, every time a new solution is randomly generated for Pl from the 
search space, the entropy between this one and the previously generated individuals 
for Pl is calculated. If this value is higher than a fixed threshold E0, fixed from the 
beginning, the current chromosome is accepted. This process is repeated until N 
solutions are generated. Following the same procedure all the sub-populations Pl,  
l = 1, 2, ..M are generated. This solution sets are taken as initial sub-populations. 

c Fitness value: Value of the objective function due to the solution Xij (jth solution in 
ith population), is taken as fitness of Xij. Let it be f(Xij). Objective function is 
calculated using Algorithm 2 of Section 4.1. 

d Selection process for mating pool: The following steps are followed for this purpose: 

1 For each population Pi, find total fitness of the population 
1

F (X ).
N

i ij
j

f
=

=∑  

2 Calculate the probability of selection prij of each solution Xij by the formula  
prij = f(Xij)/Fi. 

3 Calculate the cumulative probability qrij for each solution Xij by the formula 

0

qr .
j

ij ik
k

pr
=

=∑  

4 Generate a random number ‘r’ from the range [0, 1]. 
5 If r < qri1 then select Xi1 otherwise select Xij(2≤ j ≤ N) where qrij−1 ≤ r < qrij. 
6 Repeat Step 4 and 5 N times to select N solutions for mating pool. Clearly one 

solution may be selected more than once. 



   

 

   

   
 

   

   

 

   

   368 A.K. Maiti et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

7 Selected solution set is denoted by 1Pi  in the proposed FSRRGA algorithm. 

e Crossover: 

1 Selection for crossover: For each solution of 1Pi  generate a random number r 
from the range [0, 1]. If r < pc then the solution is taken for crossover, where pc 
is the probability of crossover. 

2 Crossover process: Crossover taken place on the selected solutions. For each 
pair of coupled solutions Y1, Y2 a random number c is generated from the range 
[0, 1] and Y1, Y2 are replaced by their offspring’s Y11 and Y21 respectively 
where Y11 = cY1 + (1 – c)Y2, Y21 = cY2 + (1 – c)Y1. 

f Mutation: 

1 Selection for mutation: For each solution of 1Pi  generate a random number r 
from the range [0, 1]. If r< pm then the solution is taken for mutation, where pm 
is the probability of mutation. 

2 Mutation process: To mutate a solution Xli = (xli1, xli2, .... xliK) select a random 
integer r in the range [1, K]. Then replace xijr by randomly generated value 
within the boundary of rth component of Xij. 

g Reduction process of pm: Let pm(0) is the initial value of pm. pm(T) is calculated by 
the formula pm(T) = pm(0)exp(–T/α), where α is calculated so that the final value of 

pm is small enough (10−3 in our case). So 3
p (0)

Maxgen1/log
10

mα −

⎡ ⎤= ⎢ ⎥
⎣ ⎦

 for initial 

populations Pi, i = 1, 2, .. M and 3
p (0)

Maxgen2/log
10
mα −

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 for the population P(T) 

in the promising zone. 

h Reduction process of neighbourhood: V(0) is the initial neighbourhood of S*. V(T) is 
calculated by the formula V(T) = V(0)exp(–T/α), where α is calculated so that the 
final neighbourhood is small enough(10−2 in our case). So 

2
V(0)Maxgen2/log .
10

α −
⎡ ⎤= ⎢ ⎥⎣ ⎦

 

6 Assumptions and notations for the proposed models 

The following notations and assumptions are used in developing the models. 

1 Inventory system involves only one item. 

2 Time horizon (H) is finite and H = H1 + H2 + H3. 

3 Unit cost, i.e., purchase price, p(t) is a function of time t and is of the form 

1

1 1 1 2

1 2 1 2 3

for  0
( ) for  

for  

a bt t H
p t a bH H t H H

A Bt H H t H H H

− ≤ ≤⎧
⎪= − ≤ ≤ +⎨
⎪ + + ≤ ≤ + +⎩
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where 1 1 2 3

3

( )bH H H H
A a

H
+ +

= −  and 1

3
.

bH
B

H
=  

4 Selling price s(t) is mark-up m of p(t) and m takes the values m1, m2 and m3 during 
(0, H1), (H1, H1 + H2) and (H1 + H2, H1 + H2 + H3), i.e., s(t) = m[= m1, m2, m3]p(t). 

5 Demand is a function of selling price s(t) and is of the form 

6 The lead time is zero. 

7 Ti is the total time that elapses up to and including the ith cycle  
(i = 1, 2, ..., n1 + n2 + n3) where n1 + n2 + n3 denotes the total number of 
replenishment to be made during the interval (0, H1 + H2 + H3) and T0 = 0. 

8 n1 is the number of replenishment to be made during (0, H1) at t = T0, T1 ...., Tn1−1. 
So, there are n1 cycles in this duration. As purchase cost decreases during this 
session, demand increases, so successive cycle length must decrease. Here, α is the 
rate of reduction of successive cycle length and t1 is the first cycle length. So, ith 
cycle length ti = t1 − (i − 1)α.= it1 − α. 

1
1

( 1)
2

i

i j
j

i iT t it α
=

−
= = −∑  

for i = 1, 2, ...., n1. Clearly, Tn1 = H1. 

Thus, 
( )1 1

1 1 1
1

2
n n

n t Hα
−

− =  

( )
( )
1 1 1

1 1

2
1

n t H
n n

α
−

⇒ =
−

 (7) 

Here, t1 and α are decision variables. 

9 n2 is the number of replenishment to be made during (H1, H1 +H2). Since purchase 
cost is constant, demand is also constant during this interval. So, all the subcycle 
length in this interval is assumed as constant. Replenishment are done at 

1 1 1 21 1, , ,n n n nt T T T+ + −= K  where 
1 1

2

2
( 1)n j n

H
T T j

n+ = + −  for j = 1, 2, ..., n2. 

10 n3 is the number of replenishment to be made during (H1 + H2, H1 + H2 + H3). During 
this interval, purchase cost increases, as a result demand decreases. So, duration of 
order gradually increases. Here, β be the rate of increase of cycle length. Let /

1t  be 

the initial cycle length and ith cycle length / /
1 ( 1) .it t i β= + −  Thus, 

/ /
3 1 3( 1) .nt t n β= + −  Orders are made at 

1 2 1 2 1 2 31 1, , ,n n n n n n nt T T T+ + + + + −= K  where 

( )
1 2 1 2

/ /
1 2 1

1

( 1)
2

i

n n i n n j
j

i iT T t H H it β+ + +
=

−
= + = + + +∑  

Clearly, 
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1 2 3 1 2 3.n n nT H H H+ + = + +  

( )

( )
( )

3 3/
1 2 3 1 1 2 3

/
3 3 1

3 3

1
.

2
2

1

n n
H H n t H H H

H n t

n n

β

β

−
⇒ + + + = + +

−
⇒ =

−

 (8) 

11 ch is the holding cost per unit/unit time. 

12 co is the ordering cost. 

13 Q(Ti) is the order quantity at t = Ti. 

14 q(t) is the inventory level at time t. 

15 Shortages are not allowed. 

16 Z1 and Z2 are the total profit for Scenario 1 and 2 respectively. 

A wavy bar (~) is used with these symbols to represent corresponding fuzzy numbers 
when required. 

Figure 2 Pictorial representation of p(t) 

 

Figure 3 Inventory situation of the model 
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7 Model development and analysis 

In the development of the model, it is assumed that at the beginning of every jth cycle 
[Tj−1, Tj], an amount Q1j units of the item is ordered. As lead time is negligible, 
replenishment of the item occurs as soon as order is made. Item is sold during the cycle 
and inventory level reaches zero at time t = Tj. Then order for next cycle made. 
Depending upon the selling price of seasonal product, two scenarios may arise. 

Scenario 1 When selling price is a mark-up of present purchase cost. 

Scenario 2 When selling price is a mark-up initial purchase cost for each cycle. 

7.1 Formulation of Scenario 1 in crisp environment 

This part is formulated in three phases. 

7.1.1 Formulation for first phase (i.e., 0 ≤ t ≤ H1) 

Duration of jth(1 ≤ j ≤ n1) cycle is [Tj−1, Tj], where Tj = jt1 − αj(j − 1)/2 and at the 
beginning of the cycle inventory level is Q1j. So instantaneous state q(t) of the item 
during Tj−1 ≤ t ≤ Tj is given by 

1( )
( )

Ddq t
dt a bt γ= −

−
 (9) 

Solving the above differential equation using the initial condition at t = Tj, q(t) = 0 we get 

( )111( ) ( )
(1 ) j
D

q t a bt a bT
b

γγ

γ
−−⎡ ⎤= − − −⎢ ⎥⎣ ⎦−

 (10) 

when 

( ) ( ) ( )1 11
1 1 1, 1

(1 )j j j j j
D

t T Q q T a bT a bT
b

γ γ

γ
− −

− − −
⎡ ⎤= = = − − −⎢ ⎥⎣ ⎦−

 (11) 

So, holding cost for jth(1 ≤ j ≤ n1) cycle, H1j, is given by 

( ) ( ) ( ) ( )

1

2 2
111

1

1 ( )

(1 ) (2 )

j

j

T

j h
T

j jh
j j j

H c q t dt

a bT a bTc D
a bT T T

b b

γ γ
γ

γ γ

−

− −
−−

−

=

⎡ ⎤− − −⎢ ⎥= − − −⎢ ⎥− −
⎢ ⎥⎣ ⎦

∫
 

Thus, total holding cost during (0, H1), HOC1, is given by 

1

1

1 1
n

j
j

HOC H
=

=∑  (12) 
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Total purchase cost during (0, H1), PC1, is given by 

( ) ( )

( ) ( ) ( )

1

1

1 1
1

1 11
1 1

1

1

(1 )

n

j j
j

n

j j j
j

PC Q T p T

D
a bT a bT a bT

b
γ γ

γ

− −
=

− −

− −
=

⎡ ⎤= ⎣ ⎦

⎡ ⎤= − − − −⎢ ⎥⎣ ⎦−

∑

∑
 (13) 

Total ordering cost during (0, H1), OC1, is given by 

( )
1

1 2 1
1

1
n

o o j
j

OC c c Q T −
=

⎡ ⎤= +⎣ ⎦∑  (14) 

Selling price for jth(1 ≤ j ≤ n1) cycle, SP1j, is given by 

( ) ( )
1

1
1

2 21
1

1 ( )
( )

(2 )

j

j

T

j
T

j j

D
SP m a bt dt

a bt

mD a bT a bT
b

γ

γ γ

γ

−

− −

−

= −
−

⎡ ⎤= − − −⎢ ⎥⎣ ⎦−

∫
 (15) 

Thus, total selling price during (0, H1), SP1, is given by 

1

1

1 1
n

j
j

SP SP
=

=∑  (16) 

7.1.2 Formulation for second phase (i.e., H1 ≤ t ≤ H1 + H2) 

In the second phase (H1 ≤ t ≤ H1 + H2), demand of customer is taken as constant,  

i.e., 1

1

( ) .
( )

D
D t

a bH γ=
−

 Duration of jth(n1 ≤ j ≤ n1 + n2) cycle is [Tj–1, Tj], where 2

2
j

H
t

n
=  

and at the beginning of the cycle, inventory level is Q2 which is constant in each of cycle 
during H1 ≤ t ≤ H1 +H2. Thus, order quantity, Q2, is given by 

1 2

1

2
( )

D H
Q

a bH γ=
−

 (17) 

So, total holding, ordering and purchase costs, HOC2, OC2 and PC2 are respectively 
given by 

2 22
2

hc H Q
HOC =  (18) 

( )2 1 22 2o oOC n c c Q= +  (19) 

( )2 12 2PC n Q a bH= −  (20) 
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Total selling price SP2, is given by 

( )2 12 2SP Q m a bH⎡ ⎤= −⎣ ⎦  (21) 

7.1.3 Formulation for third phase (i.e., H1 + H2 ≤ t ≤ H1 + H2 + H3) 

In this phase, duration of jth(n1 + n2 ≤ j ≤ n1 + n2 + n3) cycle is [Tj–1, Tj], where 
/

1 2 1 2 1 1 2 1 2( ) ( )( 1) / 2jT H H j n n t j n n j n n β= + + − − + − − − − −  and at the beginning of 
the cycle inventory level is Q3j. So instantaneous state q(t) of the item during Tj–1 ≤ t ≤ Tj 
is given by 

1( )
( )

Ddq t
dt A Bt γ= −

−
 (22) 

Solving the above differential equation using the initial condition at t = Tj, q(t) = 0 we get 

( ) ( )
1 11( )

(1 ) j
D

q t A BT A Bt
B

γ γ

γ
− −⎡ ⎤= − + − +⎢ ⎥⎣ ⎦−

 (23) 

When 

( ) ( ) ( )1 11
1 1 1, 3

(1 )j j j j j
D

t T Q q T A BT A BT
B

γ γ

γ
− −

− − −
⎡ ⎤= = = + − +⎢ ⎥⎣ ⎦−

 (24) 

So, holding cost for jth(n1 + n2 ≤ j ≤ n1 + n2 + n3) cycle, H3j, is given by 

( ) ( ) ( ) ( )
1

2 2
1 11

1

3 ( )

(1 ) (2 )

j

j

T

j h
T

j jh
j j j

H c q t dt

A BT A BTc D
A BT T T

B B

γ γ
γ

γ γ

−

− −
− −

−

=

⎡ ⎤+ − +⎢ ⎥= − − −⎢ ⎥− −
⎢ ⎥⎣ ⎦

∫
 

Thus, total holding cost during (H1 + H2, H1 + H2 + H3), HOC3, is given by 

1 2 3

1 2 1

3 3
n n n

j
j n n

HOC H
+ +

= + +

= ∑  (25) 

Total purchase cost during (H1 + H2, H1 + H2 + H3), PC3, is given by 

( )

( ) ( ) ( )

1 2 3

1 2

1 2 3

1 2

1
1

1 11
1 1

1

1 3

(1 )

n n n

j j
j n n

n n n

j j j
j n n

PC Q p T

D
A BT A BT A BT

b
γ γ

γ

+ +

−
= + +

+ +
− −

− −
= + +

⎡ ⎤= ⎣ ⎦

⎡ ⎤= + − + +⎢ ⎥⎣ ⎦−

∑

∑
 (26) 
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Total ordering cost during (H1 + H2, H1 + H2 + H3), OC3, is given by 

1 2 3

1 2

1 2
1

3 3
n n n

o o j
j n n

OC c c Q
+ +

= + +

⎡ ⎤= +⎣ ⎦∑  (27) 

Selling price for jth(n1 + n2 ≤ j ≤ n1 + n2 + n3) cycle, SP3j, is given by 

( ) ( )
1

1
3

2 21
1

3 ( )
( )

(2 )

j

j

T

j
T

j j

D
SP m A Bt dt

A Bt

mD A BT A BT
B

γ

γ γ

γ

−

− −

−

= +
+

⎡ ⎤= + − +⎢ ⎥⎣ ⎦−

∫
 (28) 

Thus, total selling price during (H1 + H2, H1 + H2 + H3), SP3, is given by 

1 2 3

1 2 1

3 3
n n n

j
j n n

SP SP
+ +

= + +

= ∑  (29) 

Thus, total profit under the Scenario 1 over the planning horizon H1 + H2 + H3, Z1, is 
given by 

1 ( 1  2  3) ( 1  2  3)
         ( 1  2  3) ( 1  2  3)
Z SP SP SP PC PC PC

HOC HOC HOC OC OC OC
= + + − + +

− + + − + +
 (30) 

7.1.4 Mathematical model of Scenario 1 in crisp environment 

Now the problem reduces to determination of the decision variables /
1 1 1 2,  ,  , ,t t m m  

3 1 2,  ,  m n n  and n3 so as to 

1Maximise   Z  (31) 

7.1.5 Mathematical model of Scenario 1 in fuzzy environment 

Generally for seasonal items the duration of above mentioned phases change due to 
various environmental effects. So, in general H1, H2 and H3 are imprecise in nature. Thus, 
we take H1, H2 and H3 as fuzzy numbers, i.e., 1 2,  H H% %  and 3H%  respectively. According to 

this assumption, α and β becomes fuzzy numbers α%  and β%  respectively and then the 

profit Z1 becomes fuzzy number 1,Z%  whose membership function is a function of the 

decision variables /
1 1 1 2 3 1 2, , , , , ,t t m m m n n  and n3. In this case, since optimisation of a 

fuzzy number is not well defined one can optimise the optimistic (pessimistic) return 
corresponding to the fuzzy objective 1,Z%  with some degree of possibility (necessity) α1 
(α2), as described in §3. Accordingly, in optimistic sense the problem reduces to 

{ }1 1

    max                z
subject to,              pos Z z α≥ ≥  (32) 
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and in pessimistic sense the problem reduces to 

{ }
{ }

1 2

1 2

    max                z
subject to,            

          i.e.,           1

nes Z z

pos Z z

α

α

≥ ≥

≤ < −

 (33) 

7.2 Formulation of Scenario 1 in crisp environment 

This part is formulated in three phases. 

7.2.1 Formulation for first phase (i.e., 0 ≤ t ≤ H1) 

Duration of jth(1 ≤ j ≤ n1) cycle is [Tj−1, Tj], where Tj = jt1 − αj(j − 1)/2 and at the 
beginning of the cycle inventory level is Q1j. So instantaneous state q(t) of the item 
during Tj−1 ≤ t ≤ Tj is given by 

( )
1

1

( )

j

Ddq t
dt a bT

γ
−

= −
−

 (34) 

Solving the above differential equation using the initial condition at t = Tj, q(t) = 0 we get 

( )
1

1

( ) j

j

D
q t T t

a bT
γ

−

⎡ ⎤= −⎣ ⎦
−

 (35) 

When 

( ) ( )
1

1 1 1
1

, 1j j j j j
j

D
t T Q q T T T

a bT− − −
−

⎡ ⎤= = = −⎣ ⎦−
 (36) 

So, holding cost for jth(1 ≤ j ≤ n1) cycle, H1j, is given by 

( )
( )

1

2
1 1

1

1 ( )

2

j

j

T

j h
T

h j j

j

H c q t dt

c D T T

a bT
γ

−

−

−

=

−
=

−

∫
 

Thus, total holding cost during (0, H1), HOC1, is given by 

1

1

1 1
n

j
j

HOC H
=

=∑  (37) 
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Total purchase cost during (0, H1), PC1, is given by 

( )

( )
( )

1

1

1
1

1
1

1 1

1 1

1

n

j j
j

n

j j
j j

PC Q p T

D
T T

a bT
γ

−
=

−
= −

⎡ ⎤= ⎣ ⎦

= −
− −

∑

∑
 (38) 

Total ordering cost during (0, H1), OC1, is given by 

1

1 2
1

1 1
n

o o j
j

OC c c Q
=

⎡ ⎤= +⎣ ⎦∑  (39) 

Selling price for jth(1 ≤ j ≤ n1) cycle, SP1j, is given by 

( )

1

1
1 1

1

1
11

1

1 ( )
( )

j

j

T

j j
jT

j j

j

DSP m a bT dt
a bT

mD
T T

a bT

γ

γ

−

−
−

−−

−

= −
−

⎡ ⎤= −⎣ ⎦
−

∫
 (40) 

Thus, total selling price during (0, H1), SP1, is given by 

1

1

1 1
n

j
j

SP SP
=

=∑  (41) 

7.2.2 Formulation for second phase (i.e., H1 ≤ t ≤ H1 + H2) 

In the second phase (H1 ≤ t ≤ H1 + H2), demand of customer is taken as constant,  

i.e., 1

1

( ) .
( )

D
D t

a bH γ=
−

 So, selling price and all costs are same, as done in Section 7.1.2. 

7.2.3 Formulation for third phase (i.e., H1 + H2 ≤ t ≤ H1 + H2 + H3) 

In this phase, duration jth(n1 + n2 ≤ j ≤ n1 + n2 + n3) cycle is [Tj–1, Tj], where 
/

1 2 1 2 1 1 2 1 2( ) ( )( 1) / 2jT H H j n n t j n n j n n β= + + − − + − − − − −  and at the beginning of 
the cycle inventory level is Q3j. So instantaneous state q(t) of the item during Tj–1 ≤ t ≤ Tj 
is given by 

1

1

( )
( )j

Ddq t
dt A BT γ

−

= −
−

 (42) 

Solving the above differential equation using the initial condition at t = Tj, q(t) = 0 we get 

( )
1

1

( ) j

j

D
q t T t

A BT
γ

−

⎡ ⎤= − −⎣ ⎦
+

 (43) 
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When 

( )
( )

1
1 1 1

1

, 3j j j j j

j

D
t T Q q T T T

A BT
γ− − −

−

⎡ ⎤= = = −⎣ ⎦
+

 (44) 

So, holding cost for jth(n1 + n2 ≤ j ≤ n1 + n2 + n3) cycle, H3j, is given by 

( )
( )

1

21
1

1

3 ( )

2

j

j

T

j h
T

h
j j

j

H c q t dt

c D
T T

A BT
γ

−

−

−

=

⎡ ⎤= −⎢ ⎥⎣ ⎦−

∫
 

Thus, total holding cost during (H1 + H2, H1 + H2 + H3), HOC3, is given by 

1 2 3

1 2 1

3 3
n n n

j
j n n

HOC H
+ +

= + +

= ∑  (45) 

Total purchase cost during (H1 + H2, H1 + H2 + H3), PC3, is given by 

( )

( )

1 2 3

1 2

1 2 3

1 2

1
1

1
1

1 3

3

n n n

j j
j n n

n n n

j j
j n n

PC Q p T

Q A BT

+ +

−
= + +

+ +

−
= + +

⎡ ⎤= ⎣ ⎦

= +

∑

∑
 (46) 

Total ordering cost during (H1 + H2, H1 + H2 + H3), OC3, is given by 

1

1 2
1

3 3
n

o o j
j

OC c c Q
=

⎡ ⎤= +⎣ ⎦∑  (47) 

Selling price for jth(n1 + n2 ≤ j ≤ n1 + n2 + n3) cycle, SP3j, is given by 

( )
( )

( )
1

1
3 1

1

1
1 1 1

3
j

j

T

j j
T j

j j j

D
SP m A BT dt

A BT

mD A BT T T

γ

γ

−

−

−

−

− −

= +
+

⎡ ⎤= + −⎣ ⎦

∫
 (48) 

Thus, total selling price during (H1 + H2, H1 + H2 + H3), SP3, is given by 

1 2 3

1 2 1

3 3
n n n

j
j n n

SP SP
+ +

= + +

= ∑  (49) 

Thus, total profit under the Scenario 2 over the planning horizon H1 + H2 + H3, Z2, is 
given by 
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2 ( 1  2  3) ( 1  2  3)
         ( 1  2  3) ( 1  2  3)
Z SP SP SP PC PC PC

HOC HOC HOC OC OC OC
= + + − + +

− + + − + +
 (50) 

7.2.4 Mathematical model of Scenario 2 in crisp environment 

Similar to Scenario 1, the problem reduces to determine the decision variables /
1 1 1,  ,  ,t t m  

2 3 1 2, ,  ,  m m n n  and n3so as to 

2Maximise   Z  (51) 

7.2.5 Mathematical model of Scenario 2 in fuzzy environment 

As in Scenario 1, when phase intervals H1, H2 and H3 are imprecise in nature,  
i.e., 1 2,  H H% %  and 3H%  respectively, the profit Z2 reduces to the fuzzy number 2 ,Z%  whose 

membership function is a function of the decision variables /
1 1 1 2 3 1 2,  ,  ,  ,  ,  ,  t t m m m n n  

and n3. Proceeding the same way, in this case also, in optimistic sense the problem 
reduces to 

{ }2 1

    max                z
subject to,             pos Z z α≥ ≥  (52) 

and in pessimistic sense the problem reduces to 

{ }
{ }

2 2

2 2

    max                z
subject to,            

          i.e.,           1

nes Z z

pos Z z

α

α

≥ ≥

≤ < −

 (53) 

8 Numerical experiments 

8.1 Results obtained for crisp environment 

To illustrate the model following hypothetical set of data is used. This dataset is taken for 
items like rice, potato, wheat, onion, etc., whose demand exists in the market throughout 
the year. When new crops come in the market, then its price gradually decreases during 
some weeks (say H1) and reaches a lowest level. This minimum price prevails for few 
weeks (say H2). Then again it gradually increases during few weeks (say H3) and reaches 
its normal value. This normal price prevails remaining part of the year. For an item like 
potato values of H1, H2 and H3 are about 5 weeks, 15 weeks, 7 weeks in the state of West 
Bengal, India. Normal price of the item through out the year is about $3 for a 10 kg bag. 
Lowest price of it in the season is about $2 for a 10 kg bag. Keeping this real life 
situation in mind the following dataset is fixed to illustrate the modes in crisp 
environment. In the dataset 10 kg of the item is considered as one unit item, one week is 
considered as unit time and costs are represented in $. 

1 2 3

0 1 2

  3,   0.2,    5,   15,    7,
  3,000,    4.5,    0.5,    2,  0.1.

a b H H H
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For the above parametric values, results are obtained via RRGA and presented in Table 1. 
From Table 1, it is found that profit for Scenario 1 gives better than that of Scenario 2 
which normally occurs. 
Table 1 Results obtained for the Scenario 1 and 2 via RRGA 

Scenario n1 n2 n3 t1 /
1t  m1 m2 m3 Profit($) 

Scenario 1 7 9 7 0.97 0.63 1.47 1.62 1.43 217.17 
Scenario 2 6 9 7 1.14 0.66 1.44 1.62 1.47 216.98 

For the above parametric values, results are obtained for different values of γ and 
presented in Table 2. It is observed that as γ increases profit decreases due to decrease of 
demand which agrees with reality. 
Table 2 Results obtained for Scenario 1 and 2 for different γ 

Scenario γ n1 n2 n3 t1 /
1t  m1 m2 m3 Profit($) 

Scenario 1 4.6 7 9 6 0.97 0.74 1.46 1.61 1.43 187.79 
4.7 6 9 6 1.13 0.73 1.48 1.60 1.42 162.15 
4.8 5 9 5 1.35 0.89 1.50 1.59 1.43 139.42 
4.9 5 9 5 1.35 0.88 1.50 1.58 1.43 119.68 
5.0 5 9 5 1.36 0.87 1.49 1.57 1.42 102.22 

Scenario 2 4.6 6 9 7 1.15 0.65 1.43 1.61 1.46 187.63 
4.7 6 9 6 1.15 0.77 1.42 1.60 1.48 161.87 
4.8 5 9 6 1.38 0.76 1.44 1.59 1.47 139.26 
4.9 5 9 6 1.39 0.76 1.43 1.58 1.46 119.34 
5.0 5 9 5 1.39 0.93 1.42 1.57 1.49 101.89 

8.2 Results obtained for fuzzy environment 

To illustrate the proposed inventory models, following input data are considered. In this 
case also hypothetical dataset is used and source of this data has discussed for crisp 
model. For crisp model it was considered that unit price of the item decreases during a 
period H1 = 5 weeks, but in reality it is about five weeks which is fuzzy in nature. Due to 
this reason here H1 is considered as a TFN (4.5, 5, 5.5). Following same argument other 
fuzzy parameters are fixed and the dataset is presented below. In the dataset fuzzy 
numbers are considered as TFN types. 

1 2 3

0 1 2 1 2

 3,    0.2,   (4.5,  5,  5.5),  (14,  15,  16),  (6.5,  7,  7.5),
 3,000,     4.5,   0.9,   0.1   0.5,    2,    0.1.h

a b H H H
D c co coγ α α
= = = = =

= = = = = = =

% % %
 

For the above parametric values, results are obtained via FSRRGA for both the  
Scenarios 1 and 2 in optimistic and pessimistic sense and presented in Tables 3 and 4 
respectively. 

Here, results are presented via FSRRGA in optimistic and pessimistic. It is observed 
from Tables 3 and 4 that profit for Scenario 1 is better than Scenario 2. But for optimistic 
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DM more risk is involved in the decision. On the other hand for pessimistic DM 
minimum profit is ensured. 
Table 3 Results obtained via FSRRGA in optimistic sense 

Scenario n1 n2 n3 t1 /
1t  m1 m2 m3 Profit($) 

Scenario 1 7 9 7 0.98 0.63 1.48 1.62 1.43 221.42 
Scenario 2 6 9 7 1.15 0.66 1.44 1.62 1.47 221.18 

Table 4 Results obtained via FSRRGA in pessimistic sense 

Scenario n1 n2 n3 t1 /
1t  m1 m2 m3 Profit($) 

Scenario 1 6 9 6 1.11 0.75 1.50 1.61 1.44 212.99 
Scenario 2 6 9 7 1.13 0.66 1.44 1.61 1.47 212.85 

Table 5 Sensitivity analysis for the Scenario 1 and 2 in optimistic sense 

Scenario α1 n1 n2 n3 t1 /
1t  m1 m2 m3 Profit($) 

Scenario 1 0.92 7 9 7 0.98 0.63 1.48 1.62 1.43 220.56 
0.94 7 9 7 0.97 0.63 1.47 1.62 1.43 219.71 
0.96 7 9 7 0.97 0.63 1.47 1.62 1.43 218.86 
0.98 7 9 7 0.97 0.63 1.47 1.62 1.43 218.01 
1.0 7 9 7 0.97 0.63 1.47 1.62 1.43 217.17 

Scenario 2 0.92 6 9 7 1.15 0.66 1.44 1.62 1.47 220.33 
0.94 6 9 7 1.15 0.66 1.44 1.62 1.47 219.49 
0.96 6 9 7 1.15 0.66 1.44 1.62 1.47 218.65 
0.98 6 9 7 1.14 0.66 1.44 1.62 1.47 217.82 
1.0 6 9 7 1.14 0.66 1.44 1.62 1.47 216.98 

Table 6 Sensitivity analysis for the Scenario 1 and 2 in pessimistic sense 

Scenario α2 n1 n2 n3 t1 /
1t  m1 m2 m3 Profit($) 

Scenario 1 0.12 6 9 6 1.10 0.75 1.49 1.61 1.44 212.18 
0.14 6 9 6 1.10 0.75 1.49 1.61 1.44 211.37 
0.16 6 9 6 1.10 0.75 1.49 1.61 1.44 210.57 
0.18 6 9 6 1.09 0.75 1.49 1.61 1.44 209.76 
0.20 6 9 6 1.09 0.75 1.49 1.61 1.44 208.96 

Scenario 2 0.12 6 9 7 1.12 0.66 1.44 1.61 1.47 212.03 
0.14 6 9 7 1.12 0.66 1.44 1.61 1.47 211.22 
0.16 6 9 7 1.12 0.66 1.44 1.61 1.47 210.40 
0.18 6 9 7 1.11 0.66 1.44 1.61 1.47 209.59 
0.20 6 9 7 1.11 0.65 1.44 1.61 1.47 208.78 

From Tables 5 and 6, it is observed that as the degree of acceptability (α1) for optimistic 
sense increases, the profit decreases and the increase of degree of acceptability (α2) for 
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pessimistic sense brings down, the profit also decreases. All these observations agree 
with reality. 

9 Practical implications 

The present models have the following practical usages: 

• It is applicable for the inventory control of seasonal goods like paddy, wheat, pulses, 
etc., whose demand exists throughout the year and their price found stable about half 
of the year. But at the beginning of the production season their price gradually 
decreases to a stable lowest value for a period. This lowest price persist for a period 
and then again gradually increases to normal price of the year. The model is 
developed for these types of items during their seasonal period. 

• Determination of possibility/necessity of a fuzzy event is possible analytically only if 
membership function of the related fuzzy numbers are found. But most of the real 
life problems it is not possible to find analytical form of membership function of 
objectives. As a result possibility/necessity of any event related to objective can not 
be obtained analytically and so analytical solution cannot be found in those cases. In 
these cases fuzzy simulation can be used to find possibility/necessity measure of a 
fuzzy event and GA (or any other heuristic) can be used to find optimal decision. So 
present methodology is applicable in these real life situations. 

• The methodology used for the formulation and determination of solution is quiet 
general and can be useable on any inventory control/supply chain/optimisation 
problem in fuzzy environment. 

10 Conclusions 

Here, a real-life inventory model for a seasonal product is developed whose demand 
depends upon the unit cost of the product in fuzzy environment. Unit cost of the product 
is time dependent. Unique contribution of the paper is three fold: 

• The model is developed for such items like food grains, pulses, potato, onion, etc., 
whose stable demand exists in the market throughout the year but it fluctuates for a 
part of the year when they are produced in the field. Here modelling is done for such 
products during their season of grown. For the best of authors knowledge none have 
considered this type of inventory model. 

• Here for the first time unit cost of an item is modelled following real life situation, 
which gradually decreases with time during grown of the item in the field, then it 
retains the lowest value for a period and again gradually increases with time to 
normal price of the year. Though it is found for above mentioned items in every year, 
inventory practitioners overlooked this real life phenomenon. 

• It is assumed that time horizon of the season is fuzzy in nature. For the first time 
season of an item is considered as a combination of three imprecise intervals. In fact 
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three parts in which unit cost function can be divided are considered as fuzzy 
numbers, which agree with reality. 

The model is formulated to maximise optimistic/pessimistic return of the profit from the 
system for the season. Optimistic/pessimistic return of the profit function is obtained 
using possibility/necessity measure on fuzzy event and a simulation approach is proposed 
to find this optimistic/pessimistic return of the profit. A GA is developed based on 
entropy theory where region of search space is gradually decreases to a small 
neighbourhood of the optima. This is named as RRGA and is used to solve the model 
when planning horizon is crisp. When this algorithm is used to solve the fuzzy model 
using fuzzy simulation process to evaluate the optimistic/pessimistic return of the profit, 
the algorithm is named as FSRRGA. For a DM following managerial implications can be 
made 

• If the DM allows some risk for his/her concern then he/she will follow optimistic 
approach. 

• If the DM thinks that any risk may effect very bad for his/her concern then he/she 
will follow pessimistic approach. 

• He/she may follow the model during the season of the item. As demand and price of 
the item is approximately constant during other part of the year, so normal inventory 
decision is applicable for that period. 

At length, though model is formulated in fuzzy environment, here demand is not 
considered as imprecise in nature, though it is appropriate for any product. In fact 
consideration of fuzzy demand leads to fuzzy differential equation for formulation of the 
model. Using proposed solution approach one can not considered imprecise demand, 
which is the major limitation of the approach. So further research work can be done 
incorporating fuzzy demand in imprecise planning horizon. Though the model is 
presented in crisp and fuzzy environment, it can also be formulated in stochastic,  
fuzzy-stochastic environment. 
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