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Cloudy fuzzy inventory model under imperfect production process with
demand dependent production rate

Ajoy Kumar Maiti*
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(Received 29 September 2018; revised 21 December 2019; accepted 15 December 2020)

The aim of this article is an effort to initiate the cloudy fuzzy number in developing
classical economic production lot-size model of an item produced in scrappy
production process with fixed ordering cost and without shortages. Here, the
market value of an item is cloudy fuzzy number and the production rate is
demand dependent. In general, fuzziness of any parameter remains fixed over
time, but in practice, fuzziness of parameter begins to reduce as time progresses
because of collected experience and knowledge that motivates to take cloudy
fuzzy number. The model is solved in a crisp, general fuzzy and cloudy fuzzy
environment using Yager’s index method and De and Beg’s ranking index
method and comparisons are made for all cases and better results obtained in
the cloudy fuzzy model. The model is solved by dominance based Particle
Swarm Optimization algorithm to obtain optimal decision and numerical
examples and sensitivity analyses are presented to justify the notion.

Keywords: EPL; reliability; De and Beg’s ranking index method; cloudy fuzzy
number; Dominance Based Particle Swarm Optimization (DBPSO)

1. Introduction
Apparently, a general scenario presents that in the development of economic pro-
duction lot-size model, usually the demand rate of inventory goods is considered to
be constant in nature. But the real scenario shows that quantities involved in inven-
tory will have slight changes from the accurate values. Thus in pragmatic situations,
demand variable should be treated as fuzzy in nature. Recently fuzzy concept has been
introduced in the production/ inventory problems. Zadeh (1965) first introduced the
fuzzy set theory. Later, Bellman and Zadeh (1970) had applied the fuzzy set theoretic
approach in making problems. Numerous researches have been done in this area.
Researchers like Kauffman and Gupta (1992), Mandal and Maiti (2002), Maiti,
Maiti, and Maiti (2014), Maiti and Maiti (2006, 2007), Bera and Maiti (2012),
Mahata and Goswami (2007, 2013), De and Sana (2015), Pakhira, Maiti, and
Maiti (2018), Garai and Chakraborty (2017), Garai, Chakraborty, and Roy (2018a,
2018b, 2019), Mondal (2018a, 2018b), Mondal, Khan, Vishwakarma, and Saha
(2018) Mahata et al. (2018) etc. have investigated extensively over this subject. Kau
and Hsu (2002) formulated a lot-size reorder point inventory model with fuzzy
demands.
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Initial stage of inventory system reveals ambiguity of demand rate which is high
because the decision maker (DM) lacks in any definite information of how many
people are accepting the product and how much will be demand rate. At the advance-
ment of time, DM will begin to get major information about the anticipated demand
over the process of stock of goods and study whether it is less or more than prior
expectation. It is generally observed that when a new product comes into the
market, common people will take much more time (no matter what offers/discounts
have been declared or what’s the quality of product) to understand and to adopt/
accept the item. After some days, it is clear to all about the inventory. Gradually,
the uncertain domain (cloud) starts getting thinner to DM’s mind. In this study, a
cloudy fuzzy inventory model is developed depending upon learning from the past
experience where fuzziness depends upon time. With advancement of time, fuzziness
becomes optimum at the optimum time. This idea is incorporated in the cloudy fuzzy
environment. In defuzzification methods, especially on ranking fuzzy numbers, after
Yager (1981), several researchers like Ezzati, Allahviranloo, Khezerloo, and Khezer-
loo (2012), Deng (2014), Zhang, Ignatius, Lim, and Zhao (2014) and others sup-
ported the method for ranking of vague numbers using the centre of gravity.
Moreover, De and Beg (2016) and De and Mahata (2017, 2019) thought out a new
defuzzification method for triangular dense fuzzy set and triangular cloudy fuzzy
set, respectively. Till now, none has addressed this type of realistic production inventory
model with cloudy fuzzy demand rate.

In the classical economic production lot-size (EPL) model, the production rate
of single item or multiple items is assumed to be inflexible and predetermined.
However, in reality, it is seen that the demand of any goods affected the pro-
duction process. When the demand tends to gradually high, consumption by
the customer is obviously more and to meet the additional requirement of the
customer, the manufactures bound to produce more items. Converse is true for
reverse situation. In this connection, several researchers’ formulated EPL
models for single/multiple items considering either uniform or variable production
rate (depends on time, demand and/or on hand inventory level). Bhunia and
Maiti (1997), Balkhi and Benkherouf (1998), Abad (2000), Mandal and Maiti
(2000), Roy, Kar, and Maiti (2010), Das, Roy, and Kar (2010, 2011a, 2011b,
2012) etc. developed their inventory models considering either uniform or variable
production rate. However, manufacturing flexibility has become a more important
factor in inventory management. In the manufacturing system, different types of
flexibility have been judged among which volume flexibility is the most important
one. In the manufacturing system, volume flexibility is the ability to change pro-
duction volume. Cheng (1989) first formulated the demand-dependent production
unit cost in the EPQ model; Khouja (1995) introduced volume flexibility and
reliability consideration in the EPQ model. Shah and Shah (2014) developed
the EPQ model for time declining demand with imperfect production process
under inflationary conditions and reliability.

Items are produced using a conventional production process with a certain
level of reliability. Higher reliability increases the efficiency of the production
process with high expectations. Any production organization targets the goal of
achieving production efficiency and ability to operate at an optimum level by
reducing the cost of scraps, rework of substandard products, wasted materials,
labor hours etc. Many researchers have published a huge number of research
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papers on imperfect production like Rosenblatt and Lee (1986), Ben-Daya and
Hariga (2000), Goyal, Hung, and Chen (2003), Maiti, Bhunia, and
Maiti (2006), Sana, Goyal, and Chaudhuri (2007), Das et al. (2011a, 2011b),
Manna, Dey, and Mondal (2014), Pal, Sana, and Chaudhuri (2014), etc.
Recently, Manna, Das, Dey, and Mondal (2016) considered multi-item EPQ
model with learning effect on imperfect production over fuzzy random
planning horizon. Khara, Dey, and Mondal (2017) developed an inventory
model under development-dependent imperfect production and reliability-depen-
dent demand.

A good number of research papers in inventory control problems were pub-
lished using soft computing techniques. Several authors use Genetic Algorithm
(GA) in different forms to find marketing decisions for their problems. Pal,
Maiti, and Maiti (2009) uses GA to solve an EPQ model with price discounted
promotional demand in an imprecise planning horizon. Bera and Maiti (2012)
used GA to solve a multi-item inventory model incorporating discount. Maiti,
Maiti, and Maiti (2009) used GA to solve an inventory model with stochastic
lead time and price-dependent demand incorporating advance payment. Mondal
and Maiti (2002), Maiti and Maiti (2006, 2007), Jiang, Xu, Wang, and Wang
(2009), Maiti et al. (2014) many other researchers use GA in inventory control
problems. Also, Bhunia and Shaikh (2015) used PSO to solve a two-warehouse
inventory model for deteriorating item under permissible delay in payment.
Here, dominance based particle swarm optimization has been developed to solve
this fuzzy inventory model.

Here, the fuzzy inventory model under imperfect production process with cloudy
fuzzy demand rate is developed where the production rate is demand dependent. The
model is solved in a crisp, general fuzzy and cloudy fuzzy environment using Yager’s
index method and De and Beg’s ranking index method for defuzzification and the
results obtained in the crisp, fuzzy and cloudy fuzzy environment are compared. In
this study, the aim is to minimize average total cost to obtain the optimum order
quantity and the cycle time using dominance based Particle Swarm Optimization
(PSO) algorithm to find optimum decision for the decision maker (DM). The
model is justified with some numerical examples and some sensitivity analyses have
been presented.

2. Definitions and preliminaries

2.1. Normalized General Triangular Fuzzy Number (NGTFN):

A NGTFN Ã = (a1 , a2, a3) (cf. Figure 1) has three parameters a1, a2, a3 where
a1<a2<a3 and is characterized by its continuous membership function
mÃ(x):X � [0, 1], where X is the set and x[X, is defined by

mã(x) =

x− a1
a2 − a1

, a1 ≤ x ≤ a2

a3 − x
a3 − a2

, a2 ≤ x ≤ a3

0, otherwise

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1)

Journal of Management Analytics 3



2.2. a-Cut of a fuzzy number

A a-cut of a fuzzy number Ã in X is denoted by Aa and is defined as crisp set
Aa={x:mÃ(x) ≥ a, x [ X} where a [ [0, 1]. Here, Aa is a non-empty bounded
closed interval contained in X and it can be denoted by Aa=[AL(a) , AR(a)] where
AL(a) = a1 + (a2 − a1)a is called left a-cut and

AR(a) = a3 − (a3 − a2)a (2)

is called the right a-cut of mÃ(x), respectively.

2.3. Yager’s ranking index
If AL(a) and AR(a) are the left and right acuts of a fuzzy number Ã, then the Yager’s
Ranking index is computed for defuzzification as

I(Ã) = 1
2

∫1
0
[AL(a)+ AR(a)] da = 1

4
(a1 + 2a2 + a3) (3)

Also, the degree of fuzziness (df) is defined by the formula df = Ub − Lb

m
where Ub

and Lb are the upper and lower bounds of the fuzzy numbers, respectively, and m is
their respective mode.

2.4. Cloudy Normalized Triangular Fuzzy Number (CNTFN) (De and Beg
(2016)):
After infinite time, the normalized triangular fuzzy number Ã = (a1 , a2, a3) becomes
a crisp singleton, then fuzzy number Ã = (a1, a2 , a3) is called the cloudy fuzzy
number. This means that both a1 , a3 � a2 as t � 1.

So, the cloudy fuzzy number takes the following form

Ã = (a2(1− r

1+ t
), a2 , a2(1+ s

1+ t
)) for 0 , r, s , 1 (4)

It is to be noted that lim
t�1 (1− r

1+ t
)a2 = a2 and lim

t�1 (1+ s

1+ t
)a2 = a2. So,

Ã � {a2}.

Figure 1. Membership function of a triangular fuzzy number.
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Its membership function becomes a continuous function of x and t, defined by

m(x, t) =

x− a2 1− r

1+ t

( )

a2r
1+ t

, if a2 1− r

1+ t

( )
≤ x ≤ a2

a2 1+ s

1+ t

( )
− x

a2s
1+ t

, if a2 ≤ x ≤ a2 1+ s

1+ t

( )

0, otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

The graphical representation of CNTFN is shown in Figure 2. Let left and right a-cut
of m(x, t) from (5) denoted as L(a, t) and R(a, t), respectively. According to the
definition of a-cut given in subsection 2.2,

L(a, t) = a2 1− r

1+ t
+ ra

1+ t

( )
and R(a, t) = a2 1+ s

1+ t
− sa

1+ t

( )
(6)

2.5. De and Beg’s ranking index on CNTFN
Let left and right a-cut off m(x, t) from (5) be denoted as L(a, t) and R(a, t),
respectively. Then the defuzzification formula under time extension of Yager’s
ranking index is given by

J(Ã) = 1
2T

∫1

a=0

∫T

t=0

{L(a, t)+ R(a, t)} da dt (7)

Figure 2. Membership function of CNTFN.
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Note that a and t are independent variables. Thus using (5), (6) becomes

J(Ã) = a2
2T

2T + s− r

2
log (1+ T)

[ ]
(8)

Obviously, lim
T�1

log (1+ T)
T

= 0 (Using L’Hopital’s rule) and, therefore, J(Ã) � a2

as T � 1. Note that
log (1+ T)

T
is taken as cloud index (CI) (9).

In practice, T is measured in days/months.

2.6. Arithmetic operations on Normalized General Triangular Fuzzy Number
(NGTFN)

Ã = (a1, a2 , a3) and B̃ = (b1, b2 , b3) are two triangular fuzzy numbers, then for
usual arithmetic operations +, − , × , 4, respectively, namely addition, subtrac-
tion, multiplication and division between Ã and B̃ are defined as follows:

(i) Ã+ B̃ = (a1 + b1, a2 + b2, a3 + b3)
(ii) Ã− B̃ = (a1 − b3, a2 − b2, a3 − b1)

(iii) Ã× B̃ = (a1 b1, a2 b2, a3b3)

(iv)
Ã

B̃
= (

a1
b3

,
a2
b2

,
a3
b1

), b1, b2, b3 = 0

(v) k Ã = (ka1, ka2 , ka3) if k ≥ 0

and k Ã = (ka3, ka2 , ka1) if k , 0

3. Dominance based particle swarm optimization technique (DBPSO)
During the last decade, nature-inspired intelligence became increasingly popular
through the development and utilization of intelligent paradigms in advance
information systems design. Among the most popular nature inspired approaches,
when task is to optimize with in complex decisions of data or information, PSO
draws significant attention. Since its introduction, a very large number of appli-
cations and new ideas have been realized in the context of PSO (Marinakis &
Marinaki, 2010; Najafi, Niakib, & Shahsavara, 2009). A PSO normally starts
with a set of solutions (called swarm) of the decision making problem under con-
sideration. Individual solutions are called particles and food is analogous to
optimal solution. In simple terms, the particles are flown through a multi-dimen-
sional search space, where the position of each particle is adjusted according to
its own experience and that of its neighbors. The particle i has a position vector
(Xi(t)), velocity vector (Vi(t)), the position at which the best fitness Xpbesti(t)
encountered by the particle so far and the best position of all particles Xgbest(t)
in current generation t. In generation (t+1), the position and velocity of the
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particle are changed to Xi(t+1) and Vi(t+1) using the following rules:

Vi(t+ 1) = wVi(t) + m1r1 (Xpbest i(t)− Xi(t)) + m2r2 (Xgbest(t)− Xi(t)) (10)

Xi(t+ 1) = Xi(t)+ Vi(t+ 1) (11)

The parameters m1 and m2 are set to constant values, which are normally taken as
2, r1 and r2 are two random values uniformly distributed in [0,1], w (0 <w< 1) is
inertia weight which controls the influence of previous velocity on the new velocity.
Here (Xpbesti(t)) and (Xgbest(t)) are normally determined by the comparison of
objectives due to different solutions. So for optimization problem involving crisp
objective, the algorithm works well. If the objective value for the solution Xi dom-
inates the objective value for the solution Xj, we say that Xi dominates Xj. Using
this dominance property, PSO can be used to optimize crisp optimization problem.
This form of the algorithm is named dominance based PSO (DBPSO) and the
algorithm takes the following form. In the algorithm Vmax represent maximum vel-
ocity of a particle, Bil(t) and Biu(t) represent lower and upper boundary of the i-
th variable, respectively. check_constraint (Xi(t)) function check whether solution
Xi(t) satisfies the constraints of the problem or not. It returns 1, if the solution
Xi(t) satisfies the constraints of the problem, otherwise it returns 0.

3.1. Proposed DBPSO algorithm

1. Initialize m1, m2, w, N and Maxgen.
2. Set iteration counter t = 0 and randomly generate initial swarm P(t) ofN par-

ticles (solutions).
3. Determine objective value of each solution Xi(t) and find Xgbest(t) using dom-

inance property.
4. Set initial velocity Vi(t), ∀Xi(t) [ P(t) and set Xpbesti(t)=Xi(t), ∀Xi(t) [ P(t).
5. While (t<Maxgen) do
6. For i= 1:N do
7. Vi(t+ 1) = wVi(t) + m1r1 (Xpbest i(t)− Xi(t)) + m2r2 (Xgbest(t)− Xi(t))
8. If (Vi(t+1) >Vmax) then set Vi(t+1) =Vmax.
9. If (Vi(t+1) <−Vmax) then set Vi (t+1) =−Vmax

10. Xi(t+1)=Xi(t) +Vi(t+1)
11. If (Xi(t+1) >Biu(t)) then set Xi(t+1) =Biu(t).
12. If (Xi(t+1) <Bil(t)) then set Xi(t+1)= Bil(t).
13. If check_constraint (Xi(t+1))= 0
14. Set Xi(t+1) =Xi(t), Vi(t+1)=Vi(t)
15. Else
16. If Xi(t+1) dominates Xpbesti (t) then set Xpbesti (t+1)=Xi(t+1).
17. If Xi(t+1) dominates Xgbest (t) then set Xgbest (t+1) =Xi(t+1).
18. End If.
19. End For.
20. Set t = t+1.
21. End While.
22. Output: Xgbest(t).
23. End Algorithm

Journal of Management Analytics 7



3.2. Implementation of DBPSO

(a) Representation of solutions: A n-dimensional real vector Xi = (xi1, xi2,… … .,
xin) is used to represent i-th solution, where xi1, xi2,… … , xin represent n
decision variables of the decision making problem under consideration.

(b) Initialization: N such solutions Xi=(xi1, xi2,… … .,xin), i=1,2,… .,N, are ran-
domly generated by random number generator within the boundaries for
each variable [Bjl, Bju], j=1,2,… … ,n. Initialize (P(0)) sub function is used
for this purpose.

(c) Dominance property: For crisp maximization problem, a solution Xi domi-
nates a solution Xj if the objective value of Xi is greater than that of Xj.

(d) Implementation: With the above function and values the algorithm is
implemented using C-programming language. Different parametric values
of the algorithm used to solve the model are as follows (Engelbreach,
2005),m1 = 1.49618, m2 = 1.49618, w = 0.7298.

4. Notations and assumptions
The following notations and assumptions are adopted to develop the proposed inven-
tory model.

4.1. Notations

k Production rate per cycle.
d Demand rate per cycle (d< k).
r Production process reliability.
q(t) Instantaneous inventory level
Q Maximum inventory level (decision variable)
T Cycle length (decision variable).
t1 Production period (decision variable)
c Production cost per unit.
c3 Setup cost per cycle.
h Inventory carrying cost per unit quantity per unit time.
Z Average total inventory cost.
Q* Optimum value of Q.
T* Optimum value of T.
Z* Optimum value of Z.
t1* Optimum value of t1.

4.2. Assumptions

(i) Replenishment occurs instantaneously on placing of order quantity, so lead
time is zero.

(ii) The inventory is developed for a single item in an imperfect production
process.

(iii) Shortages are not allowed.
(iv) The time horizon of the inventory system is infinite.
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(v) The production rate k is demand dependent and is of the form

k = a+ b/d (12)

where a and b are positive constants.
(vi) At the beginning of the inventory system, ambiguity of demand rate is high

because the decision maker (DM) has no any definite information how many
people are accepting the product and how much will be demand rate. As the
time progresses, DM will begin to get more information about the expected
demand over the process of inventory and learn whether it is below- or over-
expected. It is generally observed that when a new product comes into the
market, people will take much more time (no matter what offers/discounts
have been declared or what’s the quality of product) to adopt/accept the
item. Gradually, the uncertain region (cloud) gets thinner in DM’s mind.
In this respect, demand rate is assumed to be cloudy fuzzy (§ 2.4).

5. Model development and analysis

The process reliability r means that among the items produced in a production run,
only r percent is acceptable that can be used to meet the customer’s demand. Initially,
the production process starts with zero inventories with production rate k and
demand rate d. During the interval [0, t1], inventory level gradually built up at a
rate rk – d and reached at its maximum level Q at the end of production process.
The inventory level gradually depleted during the period [t1, T] due to customer’s
demand and ultimately became zero at t= T. The graphical representation of this
model is shown in Figure 2. The instantaneous state of q(t) describing the differential
equations in the interval [0,T] of that item is given by

dq(t)
dt

= r k− d, 0 ≤ t ≤ t1

= −d, t1 ≤ t ≤ T where r k− d . 0
(13)

with boundary condition

q(0) = 0, q(t1) = Q, q(T) = 0 (14)

The solution of the differential equation (13) using the boundary condition (14) is
given by

q(t) = (rk− d)t, 0 ≤ t ≤ t1
d(T − t) , t1 ≤ t ≤ T

{
(15)

The length of each cycle is

T = Q
rk− d

+Q
d
= Qrk

d(r k− d)
(16)

Journal of Management Analytics 9



Total holding cost for each cycle is given by

hH1(Q, r, k) (17)

where H1(Q, r, k) = �T
0
q(t) dt = �t1

0
(rk− d)t dt+ �T

t1

d(T − t)dt = Q2r k
2d(rk− d)

.

Total production cost per cycle is

cPc(Q, r, k) (18)

where Pc(Q, r, k) = �t1
0
kdt = k t1 = k

Q
rk− d

where Q = (rk− d)t1.

Total cost = Production cost + Set up cost + Holding cost

= c Pc(Q, r, k)+ c3 + hH1(Q, r, k)

= c kQ
rk− d

+ c3 + hQ2r k
2d(rk− d)

Therefore, the total average cost is

Z = ckQ
rk− d

+ c3 + hQ2rk
2d(rk− d)

[ ]
/T

= cd
r
+ c3

T
+ hT(rk− d)d

2rk

= cd
r
+ c3

T
+ hdT(a r+ (b r− 1) d)

2(a+ b d)r

Hence, our problem is given by Minimizing Z=
cd
r
+ c3

T
+ hdT(a r+ (b r− 1) d)

2(a+ b d)r

subject to d(T − t1) = (rk− d)t1 i.e. r k t1 = d T , Q = d(T − t1) (19)

Now, the problem is reduced to minimize the average cost Z and to find the
optimum value of Q and T for which Z (Q, T) is minimum and the corresponding
value of t1 . The average cost is minimized by DBPSO.

5.1. Fuzzy mathematical model

Initially, when production process starts, the demand rate of an item is ambiguous.
Naturally, demand rate is assumed to be general fuzzy over the cycle length. Then
fuzzy demand rate d̃ is as follows d̃ = (d1, d2, d3) for NGTFN.

Therefore, the problem (19) becomes a fuzzy problem, as given by

Minimize Z̃ = cd̃
r
+ c3

T
+ hd̃T(a r+ (b r− 1) d̃)

2(a+ b d̃)r

subject to r k̃ t1 = d̃ T , Q̃ = d̃ (T − t1)

(20)
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Now, using (1), the membership function of the fuzzy objective, fuzzy order quan-
tity and fuzzy production rate under NGTFN are given by

m1(Z) =

Z−Z1

Z2 −Z1
, Z1 ≤ Z ≤ Z2

Z3 −Z
Z3 −Z2

, Z2 ≤ Z ≤ Z3

0, otherwise

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

where

Z1 = c d1
r

+ c3
T
+ h d1T{a r+ (b r− 1)d1}

2r(a+ b d3)

Z2 = c d2
r

+ c3
T
+ h d2T{a r+ (b r− 1)d2}

2r(a+ b d2)

Z3 = c d3
r

+ c3
T
+ h d3T{a r+ (b r− 1)d3}

2r(a+ b d1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(21)

m2(Q) =

Q−Q1

Q2 −Q1
, Q1 ≤ Q ≤ Q2

Q3 −Q
Q3 −Q2

, Q2 ≤ Q ≤ Q3

0, otherwise

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

where
Q1 = d1 (T − t1)
Q2 = d2 (T − t1)
Q3 = d3 (T − t1)

⎧⎨
⎩ (22)

m3(k) =

k− k1
k2 − k1

, k1 ≤ k ≤ k2

k3 − k
k3 − k2

, k2 ≤ k ≤ k3

0, otherwise

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

where
r k1 t1 = d1 T
rk2 t1 = d2 T
rk3 t1 = d3 T

⎧⎨
⎩ (23)

The index value of the fuzzy objective, fuzzy order quantity and fuzzy production
rate are respectively, obtained using (2) and (3) as

I(Z̃) = 1
4
(Z1 + 2Z2 + Z3)

= c(d1 + 2d2 + d3)
4r

+ c3
T

+ hT
8r

d1{a r+ (b r− 1)d1}
a+ b d3

+ 2d2{a r+ (b r− 1)d2}
a+ b d2

+ d3{a r+ (b r− 1)d3}
a+ b d1

[ ]

I(Q̃) = 1
4
(Q1 + 2Q2 +Q3) = (T − t1)

4
(d1 + 2d2 + d3)

I(k̃) = 1
4
(k1 + 2k2 + k3) = T

4 r t1
(d1 + 2d2 + d3) [using (21), (22) and (23)]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

5.1.1. Particular cases

Subcase-4.1.1.1: If d1, d2, d3 � d then I(Z̃) � cd
r
+ c3

T
+ hdT(a r+ (b r− 1) d)

2(a+ b d)r

I(Q̃) � d(T − t1)

and I(k̃) � d T
r t1
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This is a classical EPQ model with process reliability r.

Subcase-4.1.1.2: If r � 1, b � 0 then I(Z̃) � cd + c3
T

+ hdT
2a

(a− d)

I(Q̃) � d(T − t1)

I(k̃) � d T
t1

Also, this is a classical EPQ model with production rate a.

5.2. Cloudy fuzzy mathematical model

Initially, when production process starts, the demand rate of an item is ambiguous. As the
time progresses, hesitancy of demand rate tends to a certain demand rate over the cycle
length. Then fuzzy demand rate d̃ becomes cloudy fuzzy following the equation (4)

Now, using (5), the membership function of the fuzzy objective, fuzzy order quan-
tity and fuzzy production rate under CNTFN are given by

x1(Z,T)=

Z−Z11

Z12−Z11
, Z11 ≤Z≤Z12

Z13−Z
Z13−Z12

, Z12 ≤Z≤Z13

0, otherwise

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

where

Z11 =
c(1− r

1+T
)d

r
+ c3
T

+
hTd(1− r

1+T
)

2r

ar+ (br−1)d (1− r

1+T
)

a+bd (1+ s

1+T
)

⎡
⎢⎣

⎤
⎥⎦

Z12 = cd
r
+ c3
T
+hdT{ar+ (br−1)d}

2r(a+bd)

Z13 =
c(1+ s

1+T
)d

r
+ c3
T

+
hTd(1− r

1+T
)

2r

ar+ (br−1)d (1+ s

1+T
)

a+bd (1− r

1+T
)

⎡
⎢⎣

⎤
⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

x2(Q,T)=

Q−Q11

Q12−Q11
, Q11 ≤Q≤Q12

Q13−Q
Q13−Q12

, Q12 ≤Q≤Q13

0, otherwise

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

where

Q11 = d(1− r

1+T
)(T− t1)

Q12 = d(T− t1)

Q13 = d(1+ s

1+T
)(T− t1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(26)
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x3(k, T) =

k− k11
k12 − k11

, k11 ≤ k ≤ k12

k13 − k
k13 − k12

, k12 ≤ k ≤ k13

0, otherwise

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

where

k11 = d(1− r

1+ T
)
T
r t1

k12 = d T
r t1

k13 = d(1+ s

1+ T
)
T
r t1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(27)

Using (7) the index value of the fuzzy objective, fuzzy order quantity and fuzzy
production rate are respectively are given by

J(Z̃) = 1
4t

∫t

T=0

(Z11 + 2Z12 + Z13) dT = 1
4t

∫t

0

c d
r
(4+ s− r

1+ T
)+ 4 c3

T

[ ]
dT

+ 1
4t

∫t

0

h d T
2 r

(1− r

1+ T
)
a r+ (b r− 1) d(1− r

1+ T
)

a+ b d(1+ s

1+ T
)

+ 2
a r+ (b r− 1) d

a+ b d

⎡
⎢⎣

+(1+ s

1+ T
)
a r+ (b r− 1) d(1+ s

1+ T
)

a+ b d(1− r

1+ T
)

⎤
⎥⎦dT [Using (25)]

= I1 + h d
8 t r

(I2 + I3 + I4)

(28)

The expression of I1 , I2, I3 and I4 are given in Appendix

J(Q̃) = 1
t

∫t

0

1
4
(Q11 + 2Q12 +Q13) dT = d

4t

∫t

0

4+ s− r

1+ T

( )
(T − t1) dT [Using (26)]

= d
4t

[2t2 − 4 t t1 + (s− r) (t− (1+ t1) ln |1+ t|)]
(29)

J(k̃) = 1
t

∫t

0

1
4
(k11 + 2k12 + k13) dT = 1

4t

∫t

0

d T
r t1

4+ (s− r)
1+ T

{ }
dT [Using (27)]

= d
4t r t1

[2 t2 + (s− r)(t− ln |1+ t|)]

(30)

Stability analysis and particular cases
(i) If r, s � 0 then p � q and u � v Also, I2 � p

2u
t2, I4 � p

2u
t2, I3 = p

u
t2

So, J(Z̃) � c d
r
+ c3

t
ln

t

1

∣∣∣ ∣∣∣+ h d
4rt

pt2

u
, J(Q̃) � d(

t

2
− t1) , J(k̃) � d

2 rt1
t
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(ii) If r, s � 0then the model reduces to (i). The above expressions deduced in (i)
are in the form of classical EPQ model. Thus we choose 1in such a way that above
expressions reduced to the classical EPQ model.

Hence,
c d
r
+ c3

t
ln

t

1

∣∣∣ ∣∣∣+ h d
4rt

pt2

u
� c d

r
+ c3

T
+ hdT

2
p
ur
. Comparing we have

1
T

= 1
t
ln

t

1

∣∣∣ ∣∣∣, T = t

2

From these, we get 1 = 2T
e2

. Also, if t = 2 then T = 1. Hence, 1 � 2e−2 ,, 1

Since 2 , e ⇒ 2T
e2

,
T
2
⇒ 1 ,

T
2

6. Numerical illustration

The following values of inventory parameters are used to calculate the minimum
values of average cost function (Z*) along with the optimum inventory level (Q*),
optimum production period (t1*) and optimum cycle length (T*) a= 100, b= 1.22,
c3= $300, h = $ 1.5 per unit, c= $ 3 per unit, r = .8, d= 500 units for the crisp
model; for fuzzy model demand rate < d1, d2, d3> = <460, 500, 600> units
keeping other inventory parameters are the same as taken in the crisp model
and that for the cloudy fuzzy model, s = 0.16 , r = 0.13, 1 = 0.6. Optimum
results are obtained via dominance based particle swarm optimization and pre-
sented in Table 1.

It is noted that for computation of degree of fuzziness, apply formula

df = Ub − Lb

m
where Ub, Lb, respectively are the upper and lower bounds of fuzzy

components and m is the Mode which is obtained using the formula Mode(m) = 3-
×Median-2×Mean. For fuzzy demand rate <460, 500, 600>, Median=500, Mean
= 520, Ub= 600, Lb= 460, m= 460.

From the above results, it has been observed that minimum cost is obtained in the
cloudy fuzzy model and the value of optimum cost Rs. 2115.33 after the completion
of 2.22 months. In the cloudy fuzzy environment, degree of fuzziness is less than the
general triangular number as the hesitancy of fuzzy gradually decreases due to the
taking experience over time.

6.1. Sensitivity analysis of cloudy fuzzy model

Using the above numerical illustration, the effect of under- or over-estimation of

various parameters on average cost is studied. Here using Dz = (z/ − z)
z

× 100% as

a measure of sensitivity where z is the true value and z/ is the estimated value. The
sensitivity analysis is shown by increasing or decreasing the parameters by 5%,
10% and 15%, taking one at a time and keeping the others as true values. The
results are presented in Table 2.

It is observed form Table 2 that the parameters d and c are highly sensitive. For the
changes of demand at −15%, average inventory cost reduces to −13.32% and for 15%,
the average inventory cost increases at +13.29%, respectively. This result shows that
production rate increases with the increase of demand which, in turn, increases of
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average cost. Also, for the changes of a and b from −15% to +15%, production rate
also increases. Thus average cost moderately increases due to the increase of demand.
Again, the same results were observed for the changes of unit production cost. These
phenomena agree with reality. But for the changes of c3, h, s and rfrom −15% to
+15%, there are moderately variations on the average cost. This sensitivity table
reveals that the observations done on inventory model are more realistic and more
practicable.

6.2. Effect of changing cycle time
Comparing the results obtained in the crisp, general fuzzy and cloudy fuzzy
environment, it has been observed from the graphical illustration (Figure 3)
that the cloudy fuzzy model predicts the minimum cost 2068.57 ($) and the
minimum cost is obtained at cycle time 4 months, which is shown in Figure 4.
In Figure 4, the curve shows U-shaped pattern under the cloudy fuzzy model.
So the curve is convex. So, it is interesting to note that the cloudy fuzzy
model is more reliable.

6.3. Effect of changing reliability

Relibility is the most important factor in the manufacturing system as reliability is
defined to be the capability of manufacturing units without breakdown of the
system. It has been observed from the graphical illustration (Figure 5) that as the
reliability increases, average cost gradually decreases as the increase of reliabilty
resulted in the increase of production rate. So, the cost of finished good consistently
decreases.

Also, the performance level, as measured by reliability, can significantly improve
the manufacturing system. Since the present model is minimization problem, averege
cost decreases with the increase of reliability.

6.4. Comparison of average cost under different cycle time

Difference in average inventory cost of the crisp model and the general fuzzy model
with respect to the cloudy fuzzy model for different value of cycle time is shown in
Table 3. From this Table 3, it is seen that the cloudy fuzzy model that gives the
minimum average inventory cost at time 4 months which is the better choice of inven-
tory practinioner and decision maker.

Table 1. Optimum values of the EPL model by DBPSO.

Model
t1*

(months)
T*

(months)
Q*
units Z* ($) df = Ub − Lb

m
CI = log (1+ T)

T
Crisp 1.5 1.704 102.00 2127.56
Fuzzy 1.9 2.58 346.30 2164.49 0.304
Cloudy
Fuzzy

1.85 2.22 183.03 2115.33 0.227
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Table 2. Sensitivity analysis for the cloudy fuzzy model.

Parameters % Change Average cost (z*)
(z

′ − z)
z

× 100%

d −15% 1833.44 −13.32
−10% 1927.49 −8.88
−5% 2021.45 −4.44
5% 2209.13 +4.43
10% 2302.87 +8.86
15% 2396.55 +13.29

a −15% 2099.51 −0.75
−10% 2104.86 −0.49
−5% 2110.13 −0.25
5% 2120.45 +0.24
10% 2125.51 +0.48
15% 2130.48 +0.69

b −15% 2006.40 −5.15
−10% 2046.12 −3.27
−5% 2082.28 −1.56
5% 2145.66 +1.43
10% 2173.58 +2.75
15% 2199.39 +3.97

c3 −15% 2108.56 −0.32
−10% 2110.82 −0.21
−5% 2113.07 −0.11
5% 2122.09 +0.32
10% 2128.87 +0.64
15% 2135.63 +0.96

c −15% 1833.27 −13.37
−10% 1927.29 −8.90
−5% 2021.31 −4.44
5% 2209.35 +4.44
10% 2303.37 +8.89
15% 2397.38 +13.33

h −15% 2100.38 −0.71
−10% 2105.36 −0.47
−5% 2110.35 −0.23
5% 2120.31 +0.23
10% 2125.28 +0.47
15% 2130.28 +0.71

s −15% 2111.02 −0.20
−10% 2112.46 −0.14
−5% 2113.90 −0.07
5% 2116.77 +0.07
10% 2118.20 +0.14
15% 2119.64 +0.20

r −15% 2118.80 +0.16
−10% 2117.64 +0.11
−5% 2116.49 +0.05
5% 2114.18 −0.05
10% 2113.02 −0.11
15% 2111.86 −0.16
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7. Conclusion and future research

The defuzzification of cloudy fuzzy is the well-established (De &Mahata, 2017, 2019)
and latest methodology in fuzzy environment, but a few research works have been
done in this area. For the first time, the fuzzy inventory model under imperfect pro-
duction process with cloudy fuzzy demand rate is developed where the production
rate is demand dependent. The model has been discussed over a crisp, fuzzy and
cloudy fuzzy environment exclusively and cloudy fuzzy defuzzification using
Yager’s index method and De and Beg’s ranking index method for comparing the
results obtained in crisp, fuzzy and cloudy fuzzy environment. It has been observed
that average cost is 2068.57 (Rupees/Dollar) which is minimum at cycle length 4
(months/years) for the cloudy fuzzy environment where as average cost obtained in

Figure 3. Average cost vs. cycle time.

Figure 4. Average cost vs. cycle time for the cloudy fuzzy model.
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general fuzzy environment is 2187.59 (Rupees/Dollar) at the same cycle length which
is more than that of the cloudy fuzzy environment. Changes in different inventory
parameters and fuzzy variables predict that cloudy fuzzy number is more reliable
than general fuzzy number and hesitancy of fuzzy gradually decreases in the cloudy
fuzzy environment due to gathering experience over time. Further extension of this
model can be done considering some realistic situations such as multi-item, quantity
discount, price and reliability-dependent demand, learning effect etc. Moreover, in
future, this model can be formulated with random planning horizon, fuzzy planning
horizon in stochastic, fuzzy stochastic environments. Sensitivity analyses reveal the
superiority of the cloudy fuzzy environment with respect to that of the general
fuzzy model. The managerial insights are observed as follows:

. The cloudy fuzzy model gives average minimum cost

. Parameters involved in this model are not equally responsible for minimization
of cost function.

. It is not really true that less fuzziness guarantees minimum cost.

Figure 5. Average cost vs. reliability for the cloudy fuzzy model.

Table 3. Average cost under different model.

Crisp model Genral fuzzy model Cloudy fuzzy model

Cycle time T t1* Q* Z* t1* Q* Z* t1* Q* Z*

3 2.64 179.58 2109.86 2.68 164.80 2167.25 1.35 74.68 2079.64
4 3.52 239.46 2129.58 3.62 195.70 2187.59 1.80 99.52 2068.57
5 4.41 299.29 2159.47 4.55 231.75 2217.92 2.21 149.04 2070.79
6 5.20 359.15 2194.36 5.51 252.35 2253.35 2.69 154.26 2079.68
7 6.11 419.01 2232.11 6.45 283.25 2291.45 3.13 189.16 2092.40
8 7.04 478.87 2271.65 7.37 323.42 2331.43 3.59 203.02 2107.53
9 7.92 538.73 2312.33 8.34 339.90 2372.59 4.04 228.91 2124.26
10 8.81 598.59 2353.95 9.20 394.49 2414.60 4.53 238.13 2142.13

Bold face in Table-3 indicates that objective value is minimum at cycle time 4 in crisp model, general fuzzy
model and cloudy fuzzy model respectively. Here comparison is made for three models and cloudy fuzzy
model provide minimum cost.
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Appendix

The expressions of I1 , I2, I3 and I4 are given below.
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