
APPENDIX A

Selected Proofs and Additional Material

A.1 Dedekind continuity

Postulate 2.4 of the existence of infima for lower-bounded chains (p. 36) guarantees that
a maximal chain in ⟨W,<⟩ is continuous in the sense of Dedekind: a Dedekind cut of
a maximal chain has neither gaps nor jumps. A Dedekind cut completely partitions a
maximal chain C into two non-empty sub-chains A and B such that every element of A
is strictly below every element of B. There is a gap if A has no maximal element and B
has no minimal element, whereas there is a jump if A has a maximal element and B has
a minimal element. Clearly, a jump is excluded by density and the chain’s maximality.
Further, a gap is excluded as well (by Postulate 2.4), which is the topic of the following
Fact: given Postulate 2.4, maximal chains are continuous.

Fact A.1. Postulate 2.4 implies that a Dedekind cut {A,B} of a maximal chain C has no
gaps.

Proof. Let {A,B}, A < B be a Dedekind cut of the maximal chainC = A∪B. Since A ̸= /0,
B is lower bounded, so B has the infimum infB by Postulate 2.4. Clearly, infB 6 B and
A 6 infB since every element of A is a lower bound for B (by the definition of infima).
Hence infB ∈C, as otherwise C would not be a maximal chain. Since {A,B} completely
partitions C, either infB ∈ A or infB ∈ B. If the former, by the definition of infima infB
is a maximal element of A; if the latter, infB is a minimal element of B. This proves that
there is no gap.

Since a maximal chain is a subset of some history (see Fact 2.1(3)), Postulate 2.5 of the
existence of history-relative suprema provides another guarantee that a maximal chain is
Dedekind continuous; the argument is analogous to the proof of Fact A.1.

A.2 Formal details of the interrelation of BST92 and BSTNF

This section complements Chapter 3 by offering details of the interrelation between the
two alternative BST frameworks, BST92 and BSTNF, that were described there. Among
other things, we provide proofs to the translatability results for BST92 and BSTNF that
were formulated in Chapter 3.6.2. We establish two translation mappings, the Λ- and the
ϒ-transform, which will be shown to preserve the basic indeterministic structure: given a
BST92 structure, its ϒ-transform replaces each choice point by the set of transitions from
that choice point, leading to a choice set and, accordingly, to a BSTNF structure. In the
other direction, the Λ transform operates on a BSTNF structure, replacing each choice set
by a single point, which will be a choice point in the resulting BST92 structure. In this
way, as announced, BST92 and BSTNF can be seen as two alternative representations of an
underlying indeterministic structure. This means that we can represent indeterministic
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scenarios without really having to decide between the different prior choice principles
of BST92 and BSTNF, and that we can take a pragmatic attitude toward the topological
consequences of BST92 vs. BSTNF as well.

A.2.1 Characterizing the transition structure of a BST92 structure

We are often only interested in indeterministic transitions, as deterministic transitions
make no difference to the branching of histories1. In the present context, however, it is
important to consider all transitions, including those that are trivial from the point of
view of indeterminism. We repeat the definition of the ϒ transform of a BST92 structure:

Definition 3.17 (The ϒ transform as the full transition structure of a BST92 structure.).
Let ⟨W,<⟩ be a BST92 structure.Then we define the transformed structure, ϒ(⟨W,<⟩), to
be the full transition structure (including trivial transitions) together with the transition
ordering ≺ from Def. 3.10, as follows:

ϒ(⟨W,<⟩) =df ⟨W ′,≺⟩, where W ′ =df TRfull(W ) = {e � H | e ∈W,H ∈ Πe}.

From here on we will mark transformed elements with primes.
Having defined the transition structure, we now characterize its properties. It turns

out that the full transition structure ϒ(⟨W,<⟩) looks very much like the original BST92
structure ⟨W,<⟩, except for what happens at the choice points. In fact, we will be able
to show that, apart from the prior choice postulate, all defining properties of BST92; that
is, the whole list of properties of a common BST structure from Def. 2.10, continue to
hold; see Lemma 3.3, which was stated in Chapter 3 and which we will repeat and prove
below. With respect to the choice points, the difference is the following. In BST92, the
branching of histories is from a choice point, shared among the histories that branch, to
the immediate possibilities for the future at that choice point. There are no first points
in these different possible futures, and this fact leads to the failure of local Euclidicity
in the global BST92 topology (see Section 4.4). In ϒ(⟨W,<⟩), on the other hand, each
choice point is replaced by all the transitions that have that choice point as an initial.
Therefore, where in BST92 there was a last point that was shared between the different
possibilities, in the transition structure there are now multiple first points characterizing
these different possibilities, and there is no longer any last shared point.2 In the structures
of Figure 3.1 (p. 44), the move from (a) to (b) exactly corresponds to the move from the
BST92 structure Ma to its transition structure Mb.3 For the topological consequences, see
Section 4.4.

In order to prove that ϒ(⟨W,<⟩) is a common BST structure, we first need to establish
the form that histories (i.e., maximal directed sets), have in that ordering. Their form is
quite intuitive, even though it turns out that the proof of that fact is somewhat lengthy.
We first establish a useful general fact about directed sets of transitions:

1 For a study along those lines, see Müller (2010).
2 This image of fanning out the transitions from a choice point motivates our notation, ϒ.
3 To be precise, the transition structure of Ma is order-isomorphic to Mb. See Chapter A.2.3 for

a formal discussion.
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FactA.2. LetT ⊆ϒ(⟨W,<⟩) be a set of transitions, and let there be e∈W andH1,H2 ∈Πe,
H1 ̸= H2, such that both τ1 = e � H1 and τ2 = e � H2 are members of T . Then T is not
directed.

Proof. Assume otherwise; that is, assume that there is some τ∗ = e∗ � H∗ ∈ T for which
τ1 4 τ∗ and τ2 4 τ∗. By Fact 3.11(1), this implies He∗ ⊆ H1 and He∗ ⊆ H2. But as H1
and H2 are different elements of the partition Πe, we have H1 ∩H2 = /0, contradicting
He∗ ⊆ H1 ∩H2. (Note that He∗ ̸= /0 by Fact 2.1(3).)

Now we can tackle the form of histories in ϒ(⟨W,<⟩).

LemmaA.1. Let ⟨W,<⟩ be a BST92 structure, and let ⟨W ′,≺⟩=df ϒ(⟨W,<⟩).The histories
(maximal directed sets) in ⟨W ′,≺⟩ are exactly the sets

Th =df {e � Πe⟨h⟩ | e ∈ h}

for h in Hist(W ).

Proof. First we establish that such sets are indeed histories in ⟨W ′,≺⟩. Thus, take some
h ∈ Hist(W ), and let Th =df {e � Πe⟨h⟩ | e ∈ h} ⊆W ′. The set Th is directed: take e1 �
Πe1⟨h⟩ and e2 � Πe2⟨h⟩ from Th, whence e1,e2 ∈ h. As h is directed, there is e3 ∈ h such
that e1,e2 6 e3. By construction, e3 �Πe3⟨h⟩ ∈ Th. And as to the ordering, He3 ⊆Πe1⟨h⟩
because e3 ∈ h and e1 6 e3. Analogously, He3 ⊆ Πe2⟨h⟩. So indeed (noting Fact 3.11(1)),
ei � Πei⟨h⟩4 e3 � Πe3⟨h⟩ (i = 1,2), establishing the common upper bound.Moreover,
Th is maximal directed. To prove this, take some τ∗ ∈ (W ′ \Th); this transition has the
form τ∗ = e∗ � H∗ for some e∗ ∈W , H∗ ∈ Πe∗ . There are two cases.

Case 1:There is some τ = e�Πe⟨h⟩ ∈ Th for which e= e∗, i.e., e∗ ∈ h.Then, as τ ̸= τ∗,
by Fact A.2, Th ∪{τ∗} cannot be directed.

Case 2: There is no τ = e � Πe⟨h⟩ ∈ Th for which e = e∗, i.e., e∗ ̸∈ h. Then we have
e∗ ∈ h′ for a different h′ ∈ Hist(W ), and by the BST92 prior choice principle, there is some
c ∈ h∩ h′ such that c < e∗ and h ⊥c h′. As c ∈ h, we have τc =df c � Πc⟨h⟩ ∈ Th. We
can now show that Th ∪{τ∗} is not directed: there can be no common upper bound for
τc and τ∗ in W ′. Assume for reductio that there is some τ ′ = e′ � H ′ ∈ Th ∪{τ∗} for
which τc 4 τ ′ and τ∗ 4 τ ′. We can rule out τ ′ = τ∗: we have τc ̸= τ∗ by c < e∗, and
τc ̸≺ τ∗ as He∗ ̸⊆ Πc⟨h⟩ (as He∗ ⊆ Πc⟨h′⟩). So we must have τ ′ ∈ Th. By the definition
of ≺, the assumed ordering relations imply He′ ⊆ Πc⟨h⟩ and He′ ⊆ H∗ ⊆ Πc⟨h′⟩. But we
have Πc⟨h⟩∩Πc⟨h′⟩= /0.

So, having shown that the sets Th are indeed histories in ⟨W ′,≺⟩, we need to show
that all histories in ⟨W ′,≺⟩ are of that form. Thus, let g ⊆ W ′ be a history in ⟨W ′,≺⟩,
maximal directed with respect to ≺. By Fact A.2, there is no e ∈W for which g contains
two transitions e � H1 and e � H2, H1 ̸= H2, so that we can write

g = {e � H(e) | e ∈ E}

for some set E ⊆W , where H(e) ∈ Πe. We first show that E is directed: Take e1,e2 ∈ E ,
so that τi =df ei � H(ei) ∈ g. By directedness of g, there is some τ3 = e3 � H(e3) ∈ g
for which τi 4 τ3 (i = 1,2), which implies e3 ∈ E , e1 6 e3, and e2 6 e3. This proves that
E is directed, and therefore there is some history h ∈ Hist(W ) for which E ⊆ h. We now
show that for all e ∈ E , we have h ∈ H(e). Thus, take some e ∈ E , which is the initial of
some τ = e � H(e) ∈ g. There are two cases.
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Case 1: τ is maximal in g. By Fact 2.1(9), τ therefore is also maximal in W ′, which
implies that e is maximal inW . By Fact 2.1(10), there is a unique history containing e, and
as e∈ h, that unique historymust be our h.We therefore have Πe = {{h}}. As H(e)∈Πe,
this implies H(e) = {h}, whence h ∈ H(e).

Case 2: τ is not maximal in g, i.e., there is some τ ′ = e′ � H(e′) ∈ g for which τ ≺ τ ′.
By Fact 3.11(1), this implies that He′ ⊆ H(e), and as e′ ∈ E ⊆ h, we have h ∈ He′ and
therefore also h ∈ H(e).

As h ∈ H(e) for all e ∈ E , we have H(e) = Πe⟨h⟩ for all e ∈ E . This implies g ⊆ Th, and
by Fact 2.1(7), we have established g = Th.

Given these facts, we can now prove that switching from a BST92 structure to its
full transition structure preserves the common BST structure axioms. We will need to
assume, however, that the BST92 structure contains no minima otherwise the historical
connection might fail: If a minimal element e ∈W is a choice point, its image under the
ϒ transformation consists of two or more minimal elements in the resulting order, which
accordingly have no common lower bound.

Lemma 3.3. Let ⟨W,<⟩ be a BST92 structure without minima. Then its full transition
structure ϒ(⟨W,<⟩) is still a common BST structure according to Definition 2.10.

Proof. We need to check that ⟨W ′,≺⟩ =df ϒ(⟨W,<⟩) satisfies all the properties (1)–(7)
listed in Definition 2.10.

1. W ′ is non-empty. See Fact 3.10(1).
2. ⟨W ′ ≺⟩ is a strict partial ordering. See Fact 3.10(2).
3. ≺ is dense.

Let (e1 � H1)≺ (e3 � H3), which means that e1 < e3 and H3 ⊆ H1. By density of
<, there is e2 ∈W forwhich e1 < e2 < e3. Take some h∈H3, so that {e1,e2,e3}⊆ h.
Let H2 =df Πe2⟨h⟩. We claim that the transition e2 � H2 is ≺-sliced between the
two transitions above. We have to show that H2 ⊆ H1 and H3 ⊆ H2. For the former,
take some h2 ∈ H2; we have h2 ≡e1 h as witnessed by e2. As H1 ∈ Πe1 , therefore,
h2 ∈ H1 iff h ∈ H1. Now as h ∈ H3 and H3 ⊆ H1, we have h ∈ H1, so that indeed,
H2 ⊆ H1. The latter claim is established analogously.

4. Any lower bounded chain in ⟨W ′,≺⟩ has an infimum in ≺.
Let l′ = {ei � Hi | i ∈ Γ} (Γ some index set) be a chain that is lower bounded by
e∗ � H∗. Then the set l =df {ei | i ∈ Γ} of initials of l′ is a chain lower bounded by
e∗, and there is a history h ⊆W for which l ⊆ h. By the BST92 postulate of infima,
l has an infimum v in <. The infimum v gives rise to the transition v′ =df v �
Πv⟨h⟩ ∈W ′. Let ei � Hi ∈ l′. We have v 6 ei (as ei ∈ l), and Hi ⊆ Πv⟨h⟩ because
ei ∈ h and v 6 ei. Thus, v′ 4 (ei � Hi), so v′ is a lower bound of l′. Let now e � H
be any lower bound of l′, whence e is a lower bound of l. As v is the infimum of
l, we have e 6 v, and as l ⊆ h, we have H = Πe⟨h⟩, which implies Hv ⊆ H . Thus
e � H 4 v′, i.e., v′ is indeed the greatest lower bound of l′.

5. Any upper-bounded chain in ⟨W ′,≺⟩ has a history-relative supremum in each
history to which it belongs.
Let the chain l′ be upper bounded by u′ in ⟨W ′,≺⟩ and l′ ∪ {u′} ⊆ h′ for
h′∈Hist(W ′,≺). Given the form of histories in Hist(W ′,≺) (see Lemma A.1),
h′ = {e � Πe⟨h⟩ | e ∈ h} for some h ∈ Hist(W ). It follows that for the set l of
initials of l′ and for u the initial of u′, l∪{u} ⊆ h; additionally, l 6 u. By the BST92
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axiom of history-relative suprema, there is a history-relative supremum s = suph l
of l in h. Consider now the transition s′ = s � Πs⟨h⟩ ∈ h′. That transition is
an upper bound of l′: for any e � H ∈ l′, we have e 6 s and Hs ⊆ H = Πe⟨h⟩.
Furthermore, s′ is the least upper bound (i.e., the supremum) of l′ in h′: let s∗′ ∈ h′

be an upper bound of l′ in h′; by the form of histories, s∗′ = s∗ � Πs∗⟨h⟩with
s∗ ∈ h. Thus, s 6 s∗ (as s is the h-relative supremum of l), and as s′,s∗′ ∈ h′, by
Fact 3.11(1), we have s′ 4 s∗′.

Summing up, we have established that for l′ ⊆ h′ an upper-bounded chain in a
W ′-history h′ = {e � Πe⟨h⟩ | e ∈ h} (where h is the corresponding W -history),
the initials satisfy l ⊆ h, and there exists the h′-relative supremum

suph′ l
′ = s � Πs⟨h⟩,

where s = suph l.
6. ⟨W ′,≺⟩ satisfies Weiner’s postulate.

We will employ the claim established at the end of the previous item (5), and the
fact that ⟨W,<⟩ satisfies Weiner’s postulate.
Let h′1,h

′
2 ∈ Hist(W ′), and let h′i={e � Πe⟨hi⟩ | e ∈ hi} for hi ∈ Hist(W )

(i=1,2). We consider two chains l′,k′ ⊆ h′1 ∩h′2, their respective chains of initials
l,k ⊆ h1 ∩h2, and their history-relative suprema s′i = si � Πsi⟨hi⟩= suph′i

(l′) and
c′i = ci � Πci⟨hi⟩ = suph′i

(k′), where si = suphi
l and ci = suphi

k, for i = 1,2.
Suppose that s′1 4 c′1, i.e., s1 6 c1 and Πc1⟨h1⟩ ⊆ Πs1⟨h1⟩ (see Fact 3.11(3)). By
Weiner’s postulate of BST92 applied to the chains l and k, from s1 6 c1 wemay infer
s2 6 c2. Note that s2 ∈ h2. Hence Πc2⟨h2⟩ ⊆ Πs2⟨h2⟩. In terms of the transition
ordering, this means that s′2 4 c′2.

7. Historical connection. Note that by assumption, W has no minima. Let h′1,h
′
2 ∈

Hist(W ′) be histories, which by Lemma A.1 correspond to h1,h2 ∈ Hist(W ). By
historical connection for W , there is some e ∈ h1 ∩h2, and by no minima, there is
some e∗ ∈W for which e∗ < e. It follows that e∗ ∈ h1∩h2. Let τ =df e∗ � Πe∗⟨h1⟩.
By Lemma A.1, we have τ ∈ h′1. Now e > e∗ is a witness for h1 ≡e∗ h2, so that
Πe∗⟨h1⟩= Πe∗⟨h2⟩, i.e., τ ∈ h′2 as well.

A.2.2 BST92 transition structures are BSTNF structures

We can now show that the full transition structure of a BST92 structure without minima
is indeed a BSTNF structure. The only thing that is still missing is to show that the new
prior choice principle PCPNF is satisfied. To this end we need an auxiliary fact that shows
how BST92 choice points give rise to BSTNF choice sets.

Fact A.3. Let ⟨W,<⟩ be a BST92 structure without minima, and let h1 ⊥c h2 for h1,h2 ∈
Hist(W ). Then c′1 =df c � Πc⟨h1⟩ and c′2 =df c � Πc⟨h2⟩ belong to ϒ(⟨W,<⟩) and are
elements of a choice set c̈ for which h′1 ⊥c̈ h′2, where h′i = {e � Πe⟨hi⟩ | e ∈ hi} (i = 1,2)
are the histories in ϒ(⟨W,<⟩) corresponding to h1 and h2.

Proof. Let ⟨W ′,<′⟩=df ϒ(⟨W,<⟩), let h1,h2 ∈ Hist(W ), and let c ∈ h1 ∩h2 be such that
h1 ⊥c h2. By LemmaA.1, h′i = {e � Πe⟨hi⟩ | e ∈ hi} ∈ Hist(W ′) (i = 1,2). Let c′i =df c �
Πc⟨hi⟩, so that c′i ∈ h′i (i = 1,2). In order to show that c′1,c

′
2 are elements of a choice set c̈
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that fulfills h′1 ⊥c̈ h′2, we need to show that every chain l′ ∈ Cc′1
, for which suph′1

l′ = c′1,
has c′2 as another history-relative supremum, and vice versa. Since c is not a minimal
element of W , Cc′1

̸= /0. Pick an arbitrary chain l′ ∈ Cc′1
, and note that it has the form

l′ = {e � Πe⟨h1⟩ | e ∈ l} for some chain l ⊆ h1, with c = suph1
l. Since h1 ⊥c h2, l ⊆ h2

as well, and as l < c, we have that for every e ∈ l, Πe⟨h1⟩ = Πe⟨h2⟩. Hence l′ ⊆ h′1 ∩h′2.
It follows that suph′1

l′ = c′1 and suph′2
l′ = c′2 (note that the c′i ∈ h′i are upper bounds of l′

and that their initial, c, is the h1- as well as the h2-relative supremum of l). Since l′ is an
arbitrary chain in Cc′1

, we showed that every chain in Cc′1
has at least two history-relative

suprema, c′1 and c′2, i.e., there is a choice set c̈′ such that {c′1,c
′
2}⊆ c̈′. Since h′1∩ c̈′ = c′1 ̸=

c′2 = h′2 ∩ c̈′, we have h′1 ⊥c̈′ h′2.

Given this auxiliary fact, we can establish our lemma:

Lemma 3.4. Let ⟨W,<⟩ be a BST92 structure without minima. Then that structure’s full
transition structure ⟨W ′,<′⟩=df ϒ(⟨W,<⟩) satisfies the PCPNF as in Definition 3.14.

Proof. Let l′ be a chain in ⟨W ′,<′⟩ that is lower bounded by u′, and let h′1,h
′
2 ∈ Hist(W ′)

be such that (†) l′ ⊆ h′1 but (‡) l′ ∩ h′2 = /0. By Lemma A.1, h′i = {e � Πe⟨hi⟩ | e ∈ hi}
for some hi ∈ Hist(W ), i = 1,2. By (†) we have that l′ = {e � Πe⟨h1⟩ | e ∈ l} for a
chain l ⊆ h1 that is lower bounded by u, where u is the initial of u′. By (‡), for every
e�Πe⟨h1⟩ ∈ l′, either e ̸∈ h2, or (e∈ h2 but Πe⟨h1⟩ ̸=Πe⟨h2⟩).There are now four cases,
depending on the form of l′: (i) l′ has a minimal element v′ = v � Πv⟨h1⟩, v ∈ h1 ∩h2,
and Πv⟨h1⟩= Πv⟨h2⟩, or (ii) l′ has a minimal element v′ = v � Πv⟨h1⟩, v ∈ h1 ∩h2, but
Πv⟨h1⟩ ̸= Πv⟨h2⟩, or (iii) l′ has a minimal element v′ = v � Πv⟨h1⟩, and v ∈ h1 \h2, or
(iv) l′ has no minimal element at all. Case (i) is impossible as it contradicts (‡). Consider
then case (ii): since h1 ⊥v h2, by Fact A.3 and no minimal elements in ⟨W,<⟩, the two
transitions, v′1 = v � Πv⟨h1⟩ and v′2 = v � Πv⟨h2⟩ are distinct elements of a choice set
v̈′ at which histories h′1 and h′2 split, h′1 ⊥v̈′ h′2. Furthermore, as v′1 is the minimal element
of l′, v′1 4 l′, as required by PCPNF. In cases (iii) and (iv), no element e ∈ l can belong
to h2: (iii) if l′ has a minimum v′ = v � Πv⟨h1⟩ with v ∈ h1 \ h2, no point above v can
belong to h2 (Fact 2.1(6)), and (iv) in case l′ has no minimum at all, the assumption
that e ∈ l ∩ h2 implies that there is also some other e1 ∈ l ∩ h with e1 < e, and hence
e1 �Πe1⟨h2⟩ ∈ l′∩h′2, contradicting (‡).Thus, l∩h2 = /0 in cases (iii) and (iv). Applying
the PCP of BST92 to the chain l ⊆ h1 \ h2 that is lower bounded by u, we get v ∈ W
such that v < l and h1 ⊥v h2. Exactly as in case (ii) we thus invoke the assumption of
no minimal elements in ⟨W,<⟩ and Fact A.3 to produce the sought-after choice set v̈′

containing v � Πv⟨h1⟩ and v � Πv⟨h2⟩, for which h′1 ⊥v̈′ h′2. Since v < l and given the
form of l′, we have v � Πv⟨h1⟩4 l′ as well.

Given this result, we have shown that the full transition structure of a BST92 structure
is a BSTNF structure:

Theorem 3.2. Let ⟨W,<⟩ be a BST92 structure without minima. Then that structure’s full
transition structure ϒ(⟨W,<⟩) is a BSTNF structure.

Proof. From Lemma 3.3 and Lemma 3.4.

For ease of reference, we repeat as a separate numbered Fact the result of Exercise 3.2,
the proof of which is given in Appendix B.3:

Fact A.4. Let ⟨W,<⟩ be a BST92 structure without maxima or minima. Then its ϒ-
transform, ⟨W ′,<′⟩, has no maxima or minima either.
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A.2.3 From new foundations BSTNF to BST92

We have seen how the move from a BST92 structure to its full transition structure brings
us from BST92 to BSTNF. In the other direction, there is also a fairly simple translation,
viz., combining all the elements of a choice set to form a single point.

The Λ transformation from BSTNF to BST92 is defined in Chapter 3, Def. 3.18, which
we repeat here for convenience’s sake before we establish some pertinent facts:

Definition 3.18 (The Λ transformation from BSTNF to BST92.). Let ⟨W,<⟩ be a BSTNF
structure. Then we define the companion Λ-transformed (“collapsed”) structure as
follows:

Λ(⟨W,<⟩) =df ⟨W ′,<′⟩, where
W ′ =df {ë | e ∈W};

ë1 <
′ ë2 iff e′1 < e′2 for some e′1 ∈ ë1,e′2 ∈ ë2.

We extend the Λ notation to points and subsets of W setting Λ(e) =df ë for e ∈ W , and
Λ(A) =df {ë | e ∈ A} for A ⊆W .

Fact A.5 (Facts about Definition 3.18). The following holds:

1. Let e1,e2 ∈W and let e1 < e2. Then Λ(e1)<
′ Λ(e2).

2. Let t ⊆W be a chain (with respect to<). Then Λ(t) is a chain (with respect to<′).
3. Let E ⊆W be directed. Then Λ(E) is also directed.

Proof. (1): holds by the definition of <′. (2) and (3) follow immediately.

Fact A.6 (Justification of the notation in Definition 3.18). In BSTNF: (1) If e1 < e2 and
e′2 ∈ ë2, then e1 < e′2. So we can write e1 <

′ ë2. (2) If e1 <
′ ë2 and e∗1 ∈ ë1, e1 ̸= e∗1, then

e∗1 ̸<′ ë2. So given ë1 <
′ ë2, there is a unique e1 ∈ ë1 for which e1 <

′ ë2. (3) If ë1 <
′ ë2, then

there are no e∗i ∈ ëi (i = 1,2) for which e∗2 < e∗1.

Proof. (1): By Fact 3.23.
(2): Let e1 <′ ë2 as witnessed by e2 (i.e., e1 < e2), and e∗1 ∈ ë1, e1 ̸= e∗1. Assume for

reductio e∗1 <
′ ë2, then there has to be some witness e∗2 ∈ ë2 for which e∗1 < e∗2. Then by

(1), we also have e∗1 < e2, so that (by downward closure of histories) there is a history
containing e1 and e∗1, contradicting Fact 3.13(1).

(3): Let ë1 <
′ ë2 as witnessed by e1 and e2 (i.e., e1 ∈ ë1, e2 ∈ ë2, and e1 < e2). Assume

for reductio that there are e∗1 ∈ ë1 and e∗2 ∈ ë2 for which e∗2 < e∗1. Then by (1), we have
e1 < e∗2, and by transitivity, e1 < e∗1. Thereby e1 and e∗1, being different elements of ë1 (by
irreflexivity of <), would have to belong to one history, contradicting Fact 3.13(1).

Similarly to what we established about the properties of the transition structure of a
BST92 structure, we can characterize the Λ-transform of a BSTNF structure. It transpires
that, as announced, the Λ-transform leads us back to BST92. As above, we split the proof
into a number of steps.

FactA.7. Let ⟨W,<⟩ be a BSTNF structure.Then itsΛ-transform, ⟨W ′,<′⟩=df Λ(⟨W,<⟩),
is (1) non-empty and (2) a strict partial ordering.
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Proof. (1) By construction, W ′ is non-empty (given that W was non-empty).
(2) Asymmetry follows from Fact A.6(3). For transitivity, let ë1 <′ ë2 and ë2 <′ ë3.

Then by Fact A.6(2), there is a unique e2 ∈ ë2 for which e2 <′ ë3, and a unique e1 ∈ ë1
for which e1 <

′ ë2. So by e2 ∈ ë2 and by transitivity of < we have e1 <
′ ë3, which proves

ë1 <
′ ë3.

Before we can establish the history-relative suprema of upper bounded chains, we need
to prove a lemma about the form of histories in W ′. From here on, we need to work
under the assumption that the BSTNF structures under consideration have no maxima,
as otherwise the transformed structure may contain fewer histories.

Lemma A.2. Let ⟨W,<⟩ be a BSTNF model without maxima, and let ⟨W ′,<′⟩ =df
Λ(⟨W,<⟩). The histories (maximal directed sets) in ⟨W ′,<′⟩ are exactly the sets Λ(h), for
h ∈ Hist(W ). That is, (1) for h ∈ Hist(W ), the set Λ(h) is maximal directed and (2) for
any maximal directed set h′ ∈ Hist(W ′) there is a unique history h ∈ Hist(W ) such that
h′ = Λ(h).

Proof. (1)The set Λ(h)⊆W ′ is directed by Fact A.5(3), so there is somemaximal directed
h′ ∈ Hist(W ′) for which Λ(h) ⊆ h′. By Fact A.7, ⟨W ′,<′⟩ is a non-empty strict partial
ordering. Thus, by Fact 2.1(9), h′ cannot have a maximum. This allows us to define a
function f : h′ 7→ W that establishes the converse of Λ on h′, in the following sense: (i)
for any ë ∈ h′, Λ( f (ë)) = ë, (ii) for any ë1, ë2 ∈ h′, we have ë1 <

′ ë2 iff f (ë1)< f (ë2), and
(iii) for any e ∈ h, f (Λ(e)) = e. (Note that the primed histories and the primed ordering
refer to Λ(⟨W,<⟩), not to the BSTNF structure.)

To define f , let ë1 ∈ h′. Let ë2 ∈ h′ such that ë1 <
′ ë2; such an element exists as h′ has

nomaxima. By Fact A.6(2), there is a unique v ∈W for which ë1 = Λ(v) and v <′ ë2.That
v is, moreover, independent of the chosen upper bound ë2 ∈ h′: let v∗ ∈ ë1 be such that
v∗ <′ ë3 for some ë3 ∈ h′ for which ë1 <

′ ë3. Then by the directedness of h′, there is some
common upper bound ë4 of ë2 and ë3, and again invoking Fact A.6(2), we have v∗ = v.
So we can set f (ë1) = v as specified. Note that thereby, f (ë1) ∈ ë1. Constraint (i) holds
by construction, as Λ( f (ë)) = Λ(v) = ë. For (ii, “⇒”), let ë1, ë2 ∈ h′ satisfy ë1 <′ ë2.
Then f (ë1) <

′ ë2 by construction (as ë2 is an upper bound of ë1 in h′), and the claim
follows by Fact A.6(1), noting that f (ë2) ∈ ë2. For (ii, “⇐”), let ë1, ë2 ∈ h′ be such that
f (ë1) < f (ë2). By (i) and by the definition of the ordering <′, this implies ë1 <

′ ë2. For
(iii), let e1 ∈ h. As h contains no maxima, there is some e2 ∈ h for which e1 < e2. Let
ëi = Λ(ei) (i = 1,2), so that (by the definition of <′) we have ë1 <

′ ë2. By the definition
of f , f (ë1) = e∗ for the unique member e∗ ∈ ë1 for which e∗ <′ ë2. Given e1 < e2, we
have e∗ = e1, i.e., f (Λ(e1)) = f (ë1) = e1.

Now formaximality of the directed set Λ(h)⊆ h′, assume for reductio that h′ = Λ(h)∪
A′ with Λ(h)∩A′ = /0 and A′ ̸= /0 (i.e., assume that Λ(h) is not maximal directed). Let
A =df { f (ë) | ë ∈ A′}, so that A ̸= /0 and A∩h = /0. By property (ii) of f , h∪A is directed,
violating the maximality of h.

(2) Let h′ ∈ Hist(W ′), and define f as above. Let E =df { f (ë) | ë ∈ h′}, so that by (i),
Λ(E) = h′. By (ii), E is directed, so that there is some h ∈ Hist(W ) with E ⊆ h. It follows
that h′ = Λ(E) ⊆ Λ(h). By (1), we have that Λ(h) = h′′ for some h′′ ∈ Hist(W ′). So we
have two histories h′,h′′ ∈ Hist(W ′) for which h′ ⊆ h′′, whence, by Fact 2.1(7), h′ = h′′.
This means that we have found some h ∈ Hist(W ) for which Λ(h) = h′. For uniqueness of
h, let h1,h2 ∈ Hist(W ) be such that Λ(h1) = Λ(h2) = h′. Then h1 = f (h′) and h2 = f (h′),
establishing h1 = h2.
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We can now prove the two main Lemmas and the resulting Theorem for this translata-
bility direction, as claimed in Chapter 3.

Lemma 3.5. Let ⟨W,<⟩ be a BSTNF structure without maxima. Then its
Λ-transform, ⟨W ′,<′⟩=df Λ(⟨W,<⟩), is a common BST structure.

Proof. Our task is to show that ⟨W ′,<′⟩ satisfies the postulates of Definition 2.10 of a
common BST structure.

1. Non-emptiness: By Fact A.7(1).
2. Partial ordering: By Fact A.7(2)
3. <′ is dense.

Let ë1 <′ ë2, so by Fact A.6(2), there is a unique e1 ∈ ë1 for which e1 <′ ë2. Let
e2 ∈ ë2; in particular, e1 < e2. By density of<, we have e∗ ∈W such that e1 < e∗ <
e2. By the definition of the <′ ordering, this establishes ë1 = Λ(e1) <

′ Λ(e∗) <′

Λ(e2) = ë2, which proves density of <′.
4. Lower bounded chains have infima in <′.

Let t ′ ⊆W ′ be a lower bounded chain, and let b̈ ∈W ′ be a lower bound for t ′. The
elements of t ′ are of the form ë = Λ(e) with e ∈ W . We distinguish two cases. (a)
If t ′ has a least element (which covers the case that t ′ has only one element), then
that least element is the infimum of t ′ with respect to <′, by definition. (b) If t ′

has no least element, pick some ë ∈ t ′, and let t∗′ =df {x ∈ t ′ | x <′ ë}. We have
inf t∗′ = inf t ′ by the definition of the infimum. And by Fact A.6(2), for all ë1 ∈ t∗′

there are unique e1 ∈W for which e1 ∈ ë1 and e1 < ë, and there is a unique b∗ ∈ b̈
for which b∗ < ë. So there is a unique set t∗ ⊆W given by

t∗ = {e1 ∈W | e1 < ë∧ ë1 ∈ t∗′},

which is a chain since t∗′ is a chain; furthermore, t∗ is lower bounded by b∗ ∈ W .
By the properties of BSTNF, t∗ therefore has an infimum a =df inf t∗, a ∈ W . We
claim that ä is the infimum of t ′ with respect to<′. As a < t∗, we have ä <′ t ′ by the
definition of <′. Now let c̈ 6′ t ′. Again by Fact A.6(2), there is a unique c ∈ c̈ for
which c < ë. By the fact that a is the infimum of t∗, we have c 6 a, which implies
c̈ 6′ ä. So ä is indeed the greatest lower bound (i.e., the infimum), of t ′.

5. Upper bounded chains have history-relative suprema in <′.
Let t ′ be an upper bounded chain with b̈ an upper bound, and let b̈ ∈ h′ for h′ some
history in ⟨W ′,<′⟩, so that t ′ ⊆ h′ as well. As h′ has a unique pre-image h under Λ
(by Lemma A.2), also b̈ and t ′ have unique pre-images b ∈ h and t ⊆ h. So by the
BSTNF axioms, t has an h-relative supremum s ∈ h. By Fact A.5(1), we have t ′ 6′ s̈,
and for any ä∈ h′ for which t ′ 6′ ä, we can consider the unique pre-image a∈ h∩ ä,
for which t 6 a. By the fact that s is the h-relative supremum of t, we have s 6 a,
which translates into s̈ 6′ ä; that is, s̈ is the least upper bound in h′, and therefore
the h′-relative supremum, of t ′.

6. Weiner’s postulate.
Consider two histories h′1,h

′
2 ∈ Hist(W ′), two chains l′,k′ ⊆ h′1 ∩ h′2, and their

history-relative suprema s̈i = suph′i
l′ and c̈i = suph′i

k (i = 1,2). Assume that
s̈1 6′ c̈1. We denote the unique pre-images of h′1,h

′
2, l

′,k′, s̈1, s̈2, c̈1, and c̈2 under
Λ by h1,h2, l,k,s1, s2, c1, and c2, respectively. By the uniqueness of pre-images
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and properties of <′, we have l,k ⊆ h1 ∩h2, si = suphi(l), ci = suphi(k) (i = 1,2),
and s1 6 c1. Then by Weiner’s postulate of BSTNF, s2 6 c2. Since s̈2 = Λ(s2) and
c̈2 = Λ(c2), we have s̈2 6′ c̈2.

7. Historical connection. Pick h′1,h
′
2 histories in ⟨W ′,<′⟩, and consider their unique

pre-images h1,h2 by Λ, which by Lemma A.2 are histories in the BSTNF structure
⟨W,<⟩. By historical connection for BSTNF structures, we have h1 ∩h2 ̸= /0. Hence
Λ(h1)∩Λ(h2) ̸= /0, i.e., h′1 ∩h′2 ̸= /0.

Lemma 3.6. The Λ-transform Λ(⟨W,<⟩) of a BSTNF structure without maxima ⟨W,<⟩
satisfies the BST92 prior choice principle.

Proof. Let h′1,h
′
2 be histories in ⟨W ′,<′⟩, and let t ′ ⊆ h′1 \h′2 be a lower bounded chain in

h′1 that contains no element of h′2. We have to find a maximal element c ∈ h′1 ∩h′2 that lies
below t ′, c<′ t ′, and forwhich h′1 ⊥c h′2.Thehistories h′1,h

′
2 have as unique pre-images the

⟨W,<⟩-histories h1,h2. As t ′ ⊆ h′1, the unique pre-image t ⊆ h1. Furthermore, t ∩h2 = /0,
for an element e ∈ t ∩h2 would give rise to ë ∈ t ′∩h′2, violating our assumption about t ′.
So t ⊆ h1\h2. From the BSTNF prior choice principle, we have a choice set s̈ and s1 ∈ h1∩ s̈
for which s1 6 t, while there is some s2 ∈ s̈∩h2. Let c′ =df Λ(s1) = s̈; we claim that c′ is
the sought-for choice point. (a) By Lemma 3.2 we have s̈1 = s̈2, and as si ∈ hi, we have
s̈i ∈ h′i (i = 1,2), so that c′ = s̈1 = s̈2 ∈ h′1 ∩h′2. (b) As c′ lies at the intersection of h′1 and
h′2, it cannot be that s̈1 ∈ t ′. This excludes s1 ∈ t, so that in fact s1 < t. This in turn implies
c′ = s̈1 <

′ t ′. (c) For the maximality of c′ in h′1 ∩h′2, assume that there is ä ∈ h′1 ∩h′2 for
which c′ < ä. Then we have a unique pre-image a1 ∈ h1 ∩h2 for which both s1 < a1 and
s2 < a1, so that both s1 and s2 belong to history h1.This contradicts Fact 3.13(1). So c′ = s̈
is in fact maximal in h′1∩h′2. (d) By the definition of⊥c′ , we therefore have h′1 ⊥c′ h′2.

Theorem 3.3. The Λ-transform Λ(⟨W,<⟩) of a BSTNF structure without maxima ⟨W,<⟩
is a BST92 structure.

Proof. By Lemma 3.5 and Lemma 3.6.

For the Λ transformwe can prove, just like for the ϒ transform, that a structure without
maxima or minima is transformed into one that has no maxima or minima either.

Fact A.8. Let ⟨W,<⟩ be a BSTNF structure without maxima and minima. Then its
Λ-transform, ⟨W ′,<′⟩, has no maxima and minima either.

Proof. Let ë ∈W ′. There is some e1 ∈W for which ë = Λ(e1). As W has no maximal nor
minimal elements, there are e2,e3 ∈ W for which e2 < e1 < e3. Then by the definition
of the ordering, ë2 <

′ Λ(e1) = ë, establishing that ë cannot be a minimum, and Λ(e1) =
ë <′ ë3, establishing that ë cannot be a maximum.

A.2.4 Going full circle

We have now established that there is a way to get from BST92 structures without minima
to BSTNF structures and from BSTNF structures without maxima to BST92 structures.
This leads to the question of where we land when we concatenate these transformations
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(restricted to structures without minima and maxima). We can show that, as one might
hope, we end up where we started: the resulting structures are order-isomorphic to the
ones we started with.

A.2.4.1 From BST92 to BSTNF to BST92
We can prove the following Theorem, already presented in Chapter 3:

Theorem A.4. The function Λ ◦ϒ is an order isomorphism of BST92 structures without
maximal or minimal elements: Let ⟨W1,<1⟩ be a BST92 structure without maximal or
minimal elements, let ⟨W2,<2⟩=df ϒ(⟨W1,<1⟩), and let ⟨W3,<3⟩=df Λ(⟨W2,<2⟩). Then
there is an order isomorphism φ between ⟨W1,<1⟩ and ⟨W3,<3⟩, i.e., a bijection between
W1 and W3 that preserves the ordering. Accordingly, ⟨W3,<3⟩ has no minima and no
maxima.

Proof. We claim that we can use the mapping φ , defined for e ∈W1 to be

φ(e) =df {e � H | H ∈ Πe}.

We have to show (1) that φ is indeed a mapping from W1 to W3, (2) that φ is injective,
(3) that φ is surjective, and (4) that φ preserves the ordering.

(1) Mapping: We have to show that for any e ∈ W1, φ(e) = {e � H | H ∈ Πe} ∈ W3.
Since ⟨W1,<1⟩ has no minimal elements, the set W2 is the full transition structure of
⟨W1,<1⟩, so that for e ∈ W1 and for any H ∈ Πe, the transition e � H ∈ W2. Thus, for
e ∈ W1, the set φ(e) ⊆ W2. The set W3 contains, for any τ ∈ W2, the set Λ(τ) = τ̈ ∈ W3,
and τ̈ ⊆W2 as well. Let now e ∈W1, and pick some H∗ ∈ Πe,which fixes some τ = e �
H∗ ∈W2. We claim that

τ̈ = {e � H | H ∈ Πe},

which establishes τ̈ = φ(e), so that indeed, φ(e) ∈W3. The claim is an equality between
subsets of W2, so that we show inclusion both ways.

“⊆”: Let τ ′ = e′ � H ′ ∈ τ̈ ; we have to show that τ ′ ∈ {e � H | H ∈ Πe}. We have
τ ∈ h and τ ′ ∈ h′ for h,h′ ∈ Hist(W2). By Lemma A.1 we know that these histories are of
the form

h = {e1 � Πe1⟨h1⟩ | e1 ∈ h1}; h′ = {e′1 � Πe′1
⟨h′1⟩ | e′1 ∈ h′1}

for some h1,h′1 ∈ Hist(W1). The set τ̈ is defined as the intersection of all sets of history-
relative suprema of any chain l ⊆ W2 ending in, but not containing τ (l ∈ Cτ ), so that
for any l ∈ Cτ , we have suph l = τ and suph′ l = τ ′, since τ ′ ∈ τ̈ . As τ = e � H∗ ∈ h, we
have e ∈ h1. We now claim that e ∈ h′1 as well. Assume otherwise, so that e ∈ h1 \h′1. By
PCP92, there is then some c<1 e for which h1 ⊥c h′1. Let τc =df c�Πc⟨h1⟩, so that τc ∈ h
and τc <2 τ . There is thus some chain l ∈ Cτ for which τc ∈ l. As suph′ l = τ ′ (by τ ′ ∈ τ̈ ,
see above), we have l ⊆ h′, which implies τc ∈ h′ and c ∈ h′1. Elements of h′ are of the
form e′1 � Πe′1

⟨h′1⟩; we therefore must have Πc⟨h1⟩ = Πc⟨h′1⟩, contradicting h1 ⊥c h′1.
So indeed e ∈ h1 ∩h′1.

Now take some l ∈Cτ ; we have l ⊆W2 and indeed l ⊆ h∩h′. Let l1 be the set of initials
of the elements of l, i.e., l1 ⊆W1 and l = {e1 � Πe1⟨h1⟩ | e1 ∈ l1}. Note that suph1

l1 =
e = suph′1

l1 from suph l = τ and e ∈ h1∩h′1, and as l ⊆ h∩h′, we have Πe1⟨h1⟩= Πe1⟨h′1⟩
for all e1 ∈ l1. We now claim that suph′ l = τ ′′ =df e � Πe⟨h′1⟩. We have τ ′′ ∈ h′ because
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e ∈ h′1, and l <2 τ ′′ because l1 <1 e, so τ ′′ is an upper bound of l in h′. Let now τ∗ = e∗ �
Πe∗⟨h′1⟩ ∈ h′ be some upper bound of l in h′. Then e∗ is an upper bound of l1 in h′1, and
thus e 61 e∗ as suph′1

l1 = e, so that τ ′′ 62 τ∗, proving that τ ′′ is the h′-relative supremum
of l. So we have shown that τ ′′ = e � Πe⟨h′1⟩ = suph′ l = τ ′. So indeed, τ ′ ∈ {e � H |
H ∈ Πe}.

“⊇”: Given τ = e�H∗, consider an arbitrary τ ′ ∈ {e�H |H ∈Πe}, i.e., τ ′ = e�H
for the e in question and for some H ∈ Πe. We have to show that τ ′ ∈ τ̈ . We have τ ∈ h
and τ ′ ∈ h′ for some h,h′ ∈ Hist(W2), which are again of the form

h = {e1 � Πe1⟨h1⟩ | e1 ∈ h1}; h′ = {e′1 � Πe′1
⟨h′1⟩ | e′1 ∈ h′1}

for some h1,h′1 ∈ Hist(W1), so that τ ′ = e � Πe⟨h′1⟩.
Let l ∈Cτ ; we have suph l = τ = e�H∗ by assumption.Wenow claim that suph′ l = τ ′,

which establishes τ ′ ∈ τ̈ . To prove that τ ′ is the h′-relative supremumof l, as above, let l1 be
the set of initials of the elements l, so that l1 ⊆W1 and l = {e1 �Πe1⟨h1⟩ | e1 ∈ l1}. Again
as above, l1 <1 e, and thus τ ′ is an upper bound of l in h′. Let now τ∗ = e∗ �Πe∗⟨h′1⟩ ∈ h′

be some upper bound of l in h′. Then e∗ ∈ h′1 is an upper bound of l1 in h′1, and thus
e 61 e∗ as suph′1

l1 = e (note that e ∈ h′1 as τ ′ ∈ h′). Therefore τ ′ 62 τ∗, proving that τ ′ is
the h′-relative supremum of l. As l was an arbitrary chain from Cτ , we have indeed τ ′ ∈ τ̈ .

(2) Injectivity: Let e,e′ ∈ W1 with e ̸= e′. Then φ(e) ̸= φ(e′). This is clear as the sets
φ(e) and φ(e′) have different members.

(3) Surjectivity: Let a ∈ W3. We have to find some e ∈ W1 for which φ(e) = a. As
a ∈ W3, we have a = τ̈ for some τ = e � H ∈ W2, where e ∈ W1 and H ∈ Πe. Above
under (1) we have established that for τ = e � H ∈W2, we have τ̈ = {e � H | H ∈ Πe},
i.e., a = τ̈ = φ(e).

(4) Order preservation: We have to show that for e1,e2 ∈ W1, e1 <1 e2 iff φ(e1) <3
φ(e2). (The claim about equality follows from the fact that φ is a bijection.) We know
from the definition of φ that φ(ei) = {ei � H | H ∈ Πei} (i = 1,2).

“⇒”: Let e1,e2 ∈ W1 with e1 <1 e2, and let h2 ∈ He2 . Let τ1 =df e1 � Πe1⟨h2⟩ and
τ2 =df e2 � H for some H ∈ Πe2 ; we have τ1,τ2 ∈ W2 and φ(ei) = τ̈i (i = 1,2). By the
definition of the transition ordering<2, we have τ1 <2 τ2, and by the definition of<3 in
terms of instances, we thus have τ̈1 <3 τ̈2, i.e., φ(e1)<3 φ(e2).

“⇐”: Let φ(e1)<3 φ(e2), i.e., there are some τ1 ∈φ(e1), τ2 ∈φ(e2) forwhich τ1 <2 τ2.
These transitions have the form τi = ei � Hi for some ei ∈ W1 and Hi ∈ Πei (i = 1,2).
Thus, in particular, from τ1 <2 τ2 we have that e1 <1 e2.

A.2.4.2 From BSTNF to BST92 to BSTNF
Before we can tackle the main Theorem below (which has also been presented in
Chapter 3), we need to establish an additional fact.
Fact A.9. Let ⟨W1,<1⟩ be a BSTNF structure without maxima and ⟨W2,<2⟩ =df
Λ(⟨W1,<1⟩) the corresponding BST92 structure. Then for any h1,h2 ∈ Hist(W1), we have
h1 ⊥1

ë h2 iff Λ(h1)⊥2
ë Λ(h2), where⊥i

ë is the relation of splitting for histories inWi.
Proof. “⇒” Let h1,h2 ∈ Hist(W1), and let h1 ⊥1

ë h2. Then there are e1,e2 ∈ ë such that
e1 ̸= e2 and hi ∩ ë = {ei} (i = 1,2). Then Λ(e1) = Λ(e2) = ë, so ë ∈ Λ(h1)∩ Λ(h2).
Moreover, ë is maximal in Λ(h1)∩Λ(h2), which establishes Λ(h1) ⊥2

ë Λ(h2). To prove
this, assume for reductio that there is some ë′ >2 ë in the intersection of Λ(h1) and Λ(h2).
This means that there are some e′1,e

′
2 ∈ ë′ with e′1 ∈ h1, e′2 ∈ h2, and Λ(e′1) = Λ(e′2) = ë′.

The ordering ë <2 ë′ implies that for some e∗ ∈ ë, e∗ <2 ë′, which further implies (by
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Fact A.6(1)) that e∗ <1 e′1 and e∗ <1 e′2. But then e∗ ∈ h1 ∩h2, and by Fact A.6(2), it must
be that e∗ = e1 = e2, which contradicts h1 ⊥1

ë h2.
“⇐” Let Λ(h1)⊥2

ë Λ(h2), which implies that ë ∈ Λ(h1)∩Λ(h2). Note that there are ei
such that ei ∈ hi and Λ(ei) = ë (i = 1,2). Therefore, hi∩ ë ̸= /0, so that h1 and h2 fulfill the
precondition for either h1 ≡1

ë h2 or h1 ⊥1
ë h2 (see Def. 3.13). For reductio, assume

the former, which means that h1 ∩ ë = h2 ∩ ë, i.e., e1 = e2. As there are no maxima in
the intersection of histories in BSTNF (Fact 3.17), there is some e∗ ∈ h1 ∩ h2 for which
e1 <1 e∗. Now for ë∗ =df Λ(e∗) we have ë∗ ∈ Λ(h1)∩Λ(h2), and ë <2 ë∗. This, however,
contradicts the maximality of ë implied by Λ(h1)⊥2

ë Λ(h2). So in fact, we have h1 ⊥1
ë h2.

Note that by contraposing the above Fact (andmaking a simple observation) we have that
for any h1,h2 ∈ Hist(W1), h1 ≡1

ë h2 iff Λ(h1)≡2
ë Λ(h2).

Theorem 3.5. The function ϒ ◦Λ is an order isomorphism of BSTNF structures without
maximal or minimal elements: Let ⟨W1,<1⟩ be a BSTNF structure without maximal or
minimal elements, let ⟨W2,<2⟩=df Λ(⟨W1,<1⟩), and let ⟨W3,<3⟩=df ϒ(⟨W2,<2⟩). Then
there is an order isomorphism φ between ⟨W1,<1⟩ and ⟨W3,<3⟩, i.e., a bijection between
W1 and W3 that preserves the ordering. Accordingly ⟨W3,<3⟩ has no minima and no
maxima.

Proof. We claim that we can use the mapping φ , defined for e ∈W1 to be

φ(e) =df ë � Πë⟨Λ(h)⟩ for arbitrary h ∈ He ⊆ Hist(W1).

First we show that φ(e) is well-defined. Thus, let h,h′ ∈ He; we need to show that
Πë⟨Λ(h)⟩ = Πë⟨Λ(h′)⟩. By Lemma A.2 (1), Λ(h),Λ(h′) ∈ Hist(W2). Also, by Fact 3.13,
h ≡ë h′, and so by Fact A.9, Πë⟨Λ(h)⟩= Πë⟨Λ(h′)⟩.

We now have to show (1) that φ is indeed a mapping from W1 to W3, (2) that φ is
injective, (3) that φ is surjective, and (4) that φ preserves the ordering.

(1) Mapping: We have to show that for any e ∈W1, φ(e) = ë � Πë⟨Λ(h)⟩ ∈W3, where
h ∈ He ⊆ Hist(W1). The set W3 is defined via W2, and the set W2 = Λ[W1], which means
that for every e ∈ W1, ë ∈ W2. By Lemma A.2, Λ(h) is a history in ⟨W2,<2⟩ for any h ∈
Hist(W1). Since for any h∈He, ë=Λ(e)∈Λ(h), we get that Πë⟨Λ(h)⟩ is an basic outcome
of ë, so indeed ë � Πë⟨Λ(h)⟩ ∈W3.

(2) Injectivity: Let e,e′ ∈ W1 and e ̸= e′. If ë ̸= ë′, then obviously φ(e) ̸= φ(e′), as
these two transitions then have different initials. If ë = ë′ but e ̸= e′, then e and e′ are
incompatible elements of the choice set ë, and moreover, for any h,h′ ∈ Hist(W1), if e ∈
h,e′ ∈ h′, then h ⊥ë h′, and hence by Fact A.9, Λ(h)⊥ë Λ(h′). Accordingly, Πë⟨Λ(h)⟩ ̸=
Πë⟨Λ(h′)⟩, and hence φ(e) ̸= φ(e′).

(3) Surjectivity: Let a ∈ W3. We have to find some e ∈ W1 for which φ(e) = a. As
a ∈ W3, we have a = ë′ � H , where ë′ ∈ W2 and H ∈ Πë′ . Since ⟨W2,<2⟩ is the result
of Λ-transform applied to ⟨W1,<1⟩, there is (possibly more than one) e∗ ∈W1 for which
Λ(e∗) = ë′. We need to find which of these is the sought-after e. Clearly, there is some
h∗ ∈ Hist(W2) for which H = Πë′⟨h∗⟩. By Lemma A.2(2), there is a unique h ∈ Hist(W1)
such that h∗ = Λ(h), and hence H = Πë′⟨Λ(h)⟩. For the sought-after e we thus take the
unique e ∈ ë′∩h; clearly ë′ = ë. It follows that φ(e) = ë � H , where H = Πë⟨Λ(h)⟩.

(4) Order preservation: We have to show that for e1,e2 ∈ W1, e1 <1 e2 iff φ(e1) <3
φ(e2). (The claim about equality follows from the fact that φ is a bijection.)
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“⇒”: Let e1,e2 ∈W1 with e1 <1 e2. We show that φ(e1)<3 φ(e2). Since for φ(e1) we
may pick an arbitrary member of He1 , we pick h2 ∈ He2 ⊆ He1 , so that e1,e2 ∈ h2. We
get, as required, ë1 <2 ë2 and hence, as the basic outcomes φ(ei) are defined by the same
history Λ(h2), we get Hë2 ⊆ Πë1⟨Λ(h2)⟩. Hence, ë1 � Πë1⟨Λ(h2)⟩<3 ë2 � Πë2⟨Λ(h2)⟩.

“⇐”: Let φ(e1) <3 φ(e2), i.e., (ë1 � Πë1⟨Λ(h1)⟩ <3 (ë2 � Πë2⟨Λ(h2)⟩), for hi ∈
Hei ,ei ∈ ëi. Hence for some e′1 ∈ ë1: (i) e′1 <2 ë2, and hence Hë2 ⊆ He′1

, so h2 ∈ He′1
(because He2 ⊆ Hë2 ). Since h2 ∈ He2 ⊆ He1 , and it is impossible that {e1,e′1} ⊆ h2 (by
Fact 3.13(1)), it must be that e1 = e′1 and hence e1 < e2 (by (i)).

A.2.5 The translatability of some notions pertaining to MFB

We assume in this section that there is a BSTNF structure W = ⟨W,<⟩ with no maximal
elements, and we consider its Λ-transform, W ′ = ⟨W ′,<′⟩=df Λ(W ), which is a BST92
structure. We use relational symbols with primes for relations on W ′, and relational
symbols without primes for relations on W .

We define what we will claim to be the transform of basic transitions in W to basic
transitions in W ′. Note that for set-theoretical reasons, since Λ(c̈) = {c̈} rather than c̈,
we cannot identify the transform of basic transitions with our standard transform Λ. For
this new transform we use Λ̃. We write transitions X �Y as pairs ⟨X ,Y ⟩ for clarity here.

Definition A.1. Let τ = ⟨c̈,Hc′⟩, with c′ ∈ c̈, be a basic transition in W . Then Λ̃(τ) =df
⟨c̈,Λ(Hc′)⟩= ⟨c̈,{Λ(h) | c′ ∈ h}⟩. We extend this notation to sets of basic transitions, so
we write Λ̃(T ) = {Λ̃(τ) | τ ∈ T}.

Observe that in the deterministic case c̈ is a singleton, c̈ = {c}, so τ = ⟨{c},Hc⟩, and its
transform is Λ̃(τ) = ⟨{c},Λ(Hc)⟩. We next prove the claim announced above:

Fact A.10. Let τ = ⟨c̈,Hc′⟩ with c′ ∈ c̈ be a basic transition in W . Then Λ̃(τ) is a basic
transition in W ′.

Proof. Wenote that for every h∈Hc′ we have c̈∈Λ(h). Next, we observe that no histories
in Λ(Hc′) split at c̈ in the sense of⊥′

c̈. This follows from Fact A.9, since no histories in Hc′

split at c̈ in the sense of ⊥c̈.

Our next lemma says that MFB-related notions translate between W and Λ(W ). To
recall, while each: consistency, downward closure of a set of transitions, explanatory
funny business, and combinatorial funny business is defined exactly the same in BST92
and BSTNF, combinatorial consistency is defined somewhat differently, by Def. 5.5 for
BST92 and Def. 5.11 for BSTNF.

Lemma A.3. Let W = ⟨W,<⟩ be a BSTNF structure with no maximal elements and let
W ′ = ⟨W ′,<′⟩=df Λ(W ) be the corresponding BST92 structure. Let T ⊆ TR(W ) be a set
of basic transitions, and let T ′ =df {Λ̃(τ) | τ ∈ T} ⊆ TR(W ′). Then:

1. T is consistent iff T ′ is consistent.
2. For τ1,τ2 ∈ TR(W ), τ1 ≺ τ2 iff Λ̃(τ1) ≺′ Λ̃(τ2). Hence τ belongs to the downward

extension of T iff Λ̃(τ) belongs to the downward extension of T ′.
3. T is combinatorially consistent in the sense of Def. 5.11 iff T ′ is combinatorially

consistent in the sense of Def. 5.5.
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4. T is a case of combinatorial funny business (CFB) iff T ′ is a case ofCFB (see Def. 5.6).
5. T is a case of explanatory funny business (EFB) iff T ′ is a case of EFB (see Def. 5.8).

Proof. (1) By the form of histories in W ′, h witnesses the consistency of T ⊆ TR(W ) iff
Λ(h) witnesses the consistency of T ′ ⊆ TR(W ′), from which the claim follows.

(2) Let τi = ⟨ëi,He′i
⟩ for e′i ∈ ëi and i = 1,2. Since the initial of τi is the same as the

initial of Λ̃(τi), we need only look at their outcomes. However, He′1
⊆ He′2

is equivalent
to Λ(He′1

)⊆ Λ(He′2
), so the claim follows.

(3) We need to check whether the following equivalences hold: a pair τ1,τ2 ∈ TR(W )
satisfies a clause ofDef. 5.11 iff the pair Λ̃(τ1), Λ̃(τ2)∈TR(W ′) satisfies the corresponding
clause of Def. 5.5. To begin with clause (1), since τi and Λ̃(τi) share the same initial,
the absence of blatant inconsistency in the former pair means the absence of blatant
inconsistency in the latter pair. Turning to clause (2), its antecedent in Def. 5.11 is
equivalent to its antecedent in Def. 5.5, since the Λ̃ transform leaves the initials intact.
The consequent of clause (2) in Def. 5.11 is Hë2 ⊆ He′1

, which holds iff e′1 is the unique
member of ë1 forwhich allmembers e′2 of ë2 satisfy e′1 < e′2 (see Fact 4.9). Furthermore, by
Theorem3.1we have, for all e′2,e

′′
2 ∈ ë2, that e′1 < e′2 iff e′1 < e′′2 . So Hë2 ⊆He′1

iff He′2
⊆He′1

,
where He′2

is the given outcome of τ2. Clause (2) of Def. 5.5 follows as He′2
⊆ He′1

iff
Λ(He′2

)⊆ Λ(He′1
). Thus, a pair τ1,τ2 ∈ TR(W ) satisfies clause (2) (or (3), which is proved

in exactly the same way) of Def. 5.11 iff the pair Λ̃(τ1), Λ̃(τ2) ∈ TR(W ′) satisfies the
corresponding clause of Def. 5.5. Turning to condition (4), it is satisfied because of
the following equivalence: for any e′1 ∈ ë1 and e′2 ∈ ë2, e′1 and e′2 are incomparable in the
sense of< and e′1,e

′
2 ∈ h for some history h iff ë1 and ë2 are incomparable in the sense of

<′ and ë1, ë2 ∈ Λ(h).
(4) Let T be a case of CFB (i.e., it is combinatorially consistent but inconsistent). Then

by (1) and (3) above, T ′ is combinatorially consistent as well, but inconsistent (i.e., a case
of CFB). The opposite direction follows analogously.

(5) To recall, EFB means inconsistency plus no downward extension being blatantly
inconsistent. From (2) we have that T ∗ is a downward extension of T iff Λ̃(T ∗) is a
downward extension of T ′. By item (3) of this Lemma we have that there is a blatantly
inconsistent pair in T iff there is a blatantly inconsistent pair in T ′. Together with (1) this
implies that T is a case of EFB iff T ′ is a case of EFB.

A.3 Proof ofTheorem 5.1

InChapter 5, we defined two different notions ofmodal funny business, namely combina-
torial funny business (Def. 5.6) and explanatory funny business (Def. 5.8). We discussed
their interrelation in Chapter 5.2.4, announcing themainTheorem 5.1 that states that the
two notions are equivalent at the level of BST92 structures. Here we present a proof of that
theorem. First, we repeat the definitions for convenience’s sake.

Definition 5.6 (Combinatorial funny business). A set of basic transitions T constitutes a
case of combinatorial funny business (CFB) iff T is combinatorially consistent (Def. 5.5),
but inconsistent (H(T ) = /0).

Definition 5.8 (Explanatory funny business). A set T of transitions is a case of explana-
tory funny business (EFB) iff (1) T is inconsistent (H(T ) = /0) and (2) there is no
downward extension T ∗ of T that is blatantly inconsistent.
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Theorem 5.1 (There is combinatorial funny business iff there is explanatory funny
business). Let ⟨W,<⟩ be a BST92 structure. For its set of basic indeterministic transitions,
TR(W ), the following holds: There is a subset T1 ⊆ TR(W ) exhibiting combinatorial funny
business iff there is a subset T2 ⊆ TR(W ) exhibiting explanatory funny business.

Proof. “⇒”: This has been established via Lemma 5.3.
“⇐”: Assume that there is no CFB in the given BST92 structure. We will show that

the assumption that there is EFB in that structure leads to a contradiction. Thus, assume
for reductio that a set of transitions T in the given structure witnesses EFB (i.e., it is
inconsistent), but no downward extension of T is blatantly inconsistent. Since there is
no CFB, T must be combinatorially inconsistent. Let T ∗ be the maximal downward
extension of T , which contains all transitions τ∗ forwhich for some τ ∈ T , we have τ∗ 4 τ .
By Lemma 5.2, T ∗ is also inconsistent and combinatorially inconsistent. Combinatorial
inconsistencymeans that there are transitions τ1 = e1 �H1 and τ2 = e2 �H2 in T ∗ that
fail at least one of the four clauses of Definition 5.5. By our assumption that T witnesses
EFB, T ∗ is not blatantly inconsistent. The fact that T ∗ is not blatantly inconsistent shows
that the first three clauses of Definition 5.5 cannot be what accounts for the combinatorial
inconsistency: If e1 = e2, then by no blatant inconsistency, H1 = H2 (i.e., τ1 = τ2). And
if e1 < e2, then τ =df e1 � Πe1(e2) ∈ T ∗ by the fact that T ∗ is maximally downward
extended (note that τ ≺ τ2), and as τ1 also has the initial e1 and T ∗ is not blatantly
inconsistent, we have τ = τ1, so that τ1 ≺ τ2. For e2 < e1 we argue in the same way. Thus,
the combinatorial inconsistency of T ∗ must be due to the existence of some τ1 = e1 �H1
and τ2 = e2 � H2 in T ∗ for which e1 and e2 are not order related and do not share any
history (are not SLR )—all other ways for a set of transitions to witness combinatorial
inconsistency are excluded.

We let E∗ be the set of initials of transitions from T ∗. By no blatant inconsistency,
for any e ∈ E∗ there is exactly one transition τ = e � H ∈ T ∗. We will denote that
transition by τe. Let now e1,e2 ∈ E be two initials of transitions from T ∗ that witness its
combinatorial inconsistency; that is, e1,e2 are incomparable and not SLR , so there is no
history h ⊇ {e1,e2}. We will now find a set of transitions TC ⊆ T ∗ that is combinatorially
consistent but inconsistent, violating our initial assumption of no CFB (by Lemma 5.2).
By this we will have established the right to left direction of our theorem. Note that, to
establish the combinatorial consistency of a set of transitions TC ⊆ T ∗, it suffices to show
that all initials of transitions from TC are pairwise consistent (they share a history), as
having inconsistent initials of transitions was the only way for T ∗, and therefore for any
of its subsets to be combinatorially inconsistent.

Let nowCi be the set of choice points in the past of ei splitting off some ei-history from
some non-ei-history (i = 1,2).⁴ That is, we define

Ci = {c < ei | ∃hi ∈ Hei∃h ̸∈ Hei [hi ⊥c h]}.

We haveC1 ∪C2 ⊆ E∗ as T ∗ is downward maximal, and we know thatC1 andC2 are each
consistent, and thus in particular, if e,e′ ∈Ci, then there exists h such that e,e′ ∈ h: since
Ci < ei, for any hi containing ei we have Ci ⊆ hi (i = 1,2). We set (again, for i = 1,2)

⁴ In previous papers on MFB, the term “past causal loci” was used for the members of Ci, with
the notation Ci = pcl(ei).
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Ti =df {τc | c ∈Ci}, τc = c � Πc(ei),

where the form of τc (which, to recall, was unique in T ∗ for any e ∈ E∗) follows from the
fact that ei ∈ E∗ and T ∗ is downward maximal.

We will now define a maximal pairwise consistent subsetC ofC1∪C2 (which might be
equal to C1 ∪C2), as follows. Let

A =df {c ∈C2 | ∀c1 ∈C1∃h ∈ Hist [c ∈ h∧ c1 ∈ h]}.

We claim thatC =df C1∪A is pairwise consistent, andmaximally so as a subset ofC1∪C2.
For pairwise consistency, let e,e′ ∈C. There are three cases: if e,e′ ∈C1, the claim follows
by the consistency of C1; similarly for e,e′ ∈ A ⊆C2 by the consistency of C2, and for e ∈
C1, e′ ∈ A, the claim follows from the definition of A. Formaximality, let e∈ (C1∪C2)\C,
i.e., e ∈ C2 \A. By the definition of A, there is then some c1 ∈ C1 for which there is no
h ∈ Hist containing both e and c1, i.e., C∪{e} is not pairwise consistent.

We now let TC =df {τc | c ∈C}, which implies TC ⊆ T1∪T2. AsC is pairwise consistent
and TC ⊆ T ∗, the set TC is combinatorially consistent. We claim that TC is inconsistent.
Once we have established this, then our work here is done. So assume for reductio that
TC is consistent, so that there is some h ∈ H(TC). We can write C =C′

1 ∪C′
2 with C′

i ⊆Ci,
via C′

i =Ci ∩C (i = 1,2). The fact that h ∈ H(TC) then implies that

h ∈
∩

c∈C′
1

Πc(e1)∩
∩

c∈C′
2

Πc(e2),

by the form of T1 and T2 noted above. Note that C ⊆ h, as C constitutes the set of initials
for the transitions from TC . We now show that e1 ∈ h and e2 ∈ h, which is the sought-
for contradiction, as no history can contain both e1 and e2. To establish ei ∈ h (i = 1,2),
assume that ei ̸∈ h, so that ei ∈ hi \ h for some hi ∈ Hei . Now by PCP92, there is some
c∗ < ei for which hi ⊥c∗ h. By the definition ofCi, we have c∗ ∈Ci. AsC ⊆ h and c∗ ∈ h, we
have that C∪{c∗} is consistent (as witnessed by h), and thereby also pairwise consistent.
As C was maximally pairwise consistent, we thus must have c∗ ∈ C, implying c∗ ∈ C′

i .
The fact that hi ⊥c∗ h implies that h ̸∈ Πc∗(hi) = Πc∗(ei). But then h ̸∈ H(TC) after all,
contradicting our assumption.

So, bringing all of these disparate strands together, we have shown that TC , a set of
transitions in our BST92 structure, exhibits CFB, contrary to our initial assumption. So
the set of transitions T cannot witness EFB after all, and we have shown that if there is no
CFB in a BST92 structure, there is also no EFB.

A.4 Additional material for Chapter 8

A.4.1 Extensions by one point or by multiple points?

The Bell-Aspect setup discussed in Chapter 8.4.4 contains four cases of PFB. In this
section we justify our decision to analyze this setup using only a single new choice
point ⟨e∗,0⟩. The alternative option would be to consider a surface structure with four
candidates for new choice points, e∗i j , one for each case of PFB. Each e∗i j would then need
to be placed below ai and below b j . This choice of “one vs. many” is the BST version
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of the distinction between multiple separate screener-off systems and a single common
screener-off system in the purely probabilistic framework of Hofer-Szabó, Rédei, and
Szabó (see Hofer-Szabó, 2008).⁵

Let us investigate the option with many e∗i j ’s, that is, let us suppose that in a surface
structure for the Bell-Aspect experiment there are four point events e∗i j , each intended to
take care of a single case of PFB. Observe that e∗i j cannot be above L or R; otherwise it
would prohibit the occurrence of one of the settings ai or b j . By the same observation,
every point e∗i j must belong to every history to which ai ∩ b j belongs, for every i = 1,2,
j = 3,4.Thatmeans that all these points have to be SLR to or below both selection events
L and R.

In addition, if one of the e∗i j is below some other e∗i′ j′ , this makes the bottom one
irrelevant for PFB, so they all need to be pairwise SLR . And as they are introduced in
order to explain instances of PFB, they had better not lead to additional cases of PFB
in the multiplied structure. The latter structure is produced by making four subsequent
multiplications, each with respect to a different e∗i j . Given that e∗i j is associated with an
Ni j-multiplication, we produce the N13 ·N14 ·N23 ·N24-multiplication. The SLR relation
between any two e∗i j and e∗i′ j′ ensures that a subsequent multiplication leaves ⟨e∗i j, /0⟩
intact, so eventually we obtain an extended event E∗

0 =df {⟨e∗i j, /0⟩ | i = 1,2, j = 3,4}
with N13 · N14 · N23 · N24 elementary outcomes. Each elementary outcome of E∗

0 is
identified with the intersection Hn

13 ∩Hn′
23 ∩Hn′′

14 ∩Hn′′′
24 of some four outcomes of events

⟨e∗13, /0⟩,⟨e∗14, /0⟩,⟨e∗23, /0⟩, and ⟨e∗24, /0⟩, respectively. (Here the superscripts n,n′,n′′,n′′′

point to elementary outcomes of events ⟨e∗i j /0⟩, i.e., npoints to the n-th outcomeof ⟨e∗13, /0⟩,
n′ points to the n′-th outcome of ⟨e∗14, /0⟩, etc.). These intersections, being elementary
outcomes, provide the most fine-grained partition of outcomes involved in the cases of
PFB, as offered by a N13N14N23N24-multiplied BST92 structure.

Now, if Outcome Independence is satisfied with respect to the elementary outcomes of
E∗

0 , we just have an N13N14N23N24-multiplied probabilistic structure with one extended
event E∗

0 that serves the role of a single hidden variable. Its values are given by transitions
E∗

0 � Hn
13∩Hn′

23∩Hn′′
14 ∩Hn′′′

24 . The difference between this structure and an N-multiplied
structure with a single point event ⟨e∗,0⟩ is inessential.

On the remaining option, Outcome Independence is not satisfied by the elementary
outcomes of E∗

0 , but is satisfied by the elementary outcomes of each ⟨e∗i j,0⟩. However,
an elementary outcome of ⟨ei j,0⟩ is identifiable with a non-elementary outcome of E∗

0 .
Accordingly, Outcome Independence is not satisfied by elementary outcomes of E∗

0 , but
is satisfied by some non-elementary outcomes of it. We may re-phrase this fact in terms
of partitions: the condition is satisfied on a less than maximally fine-grained level, while
failing at the most fine-grained level. This looks like a fluke, and in any case, does not
explain the four cases of PFB we started with.

To sumup, in the context of the Bell-Aspect experiment, the construction of a structure
with many hidden variables for PFB either reduces to the construction with a single
hidden variable, or abandons any explanation of PFB.⁶

⁵ The distinctionwas, however, first introduced and argued for in the BST framework (see Belnap
and Szabó, 1996), where it was phrased it in terms of common causes and common common causes.
The framework of Hofer-Szabó, Rédei, and Szabó was introduced in Hofer-Szabó et al. (1999). For a
recent presentation of their results in this framework, see Hofer-Szabó et al. (2013).

⁶ For a similar diagnosis in a purely probabilistic framework, see Wroński et al. (2017, p. 95).
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A.4.2 Proofs for Chapter 8

Lemma 8.4. Let W = ⟨W,<,µ,e∗,E,C⟩ be a probabilistic BST92 surface structure and
W ′—the N-multiplied structure corresponding to W . Then

(1) For every history h ∈ Hist(W ) the set φn(h) is a maximal directed subset ofW ′, i.e.,
a history inW ′.

(2) For every maximal directed subset A′ ⊆ W ′ there is a history h ∈ Hist(W ) and
n ∈ {1, . . . ,N} for which A′ = φn(h).

Proof. (1) It is easy to see that φn is an order-preserving bijection between h and φn(h),
which implies that φn(h) is directed. To establish maximal directedness, take a directed
set A′ ⊆ W ′ for which φn(h) ⊆ A′. Note that by the definition of the ordering, there are
no upper bounds for elements ⟨x1,n1⟩ and ⟨x2,n2⟩ if n1,n2 ∈ {1, . . . ,N} and n1 ̸= n2. It
follows that A′ can be written as the union of A′ = {⟨x,0⟩ | e∗ ̸< x∧ x ∈ W}∪ {⟨x,n⟩ |
e∗ < x ∧ x ∈ W} for some n ∈ {1, . . . ,N}. We claim now that the set A =df {x ∈ W |
⟨x,0⟩ ∈ A′}∪ {x ∈ W | ⟨x,n⟩ ∈ A′} is directed: Let e1,e2 ∈ A, so that there are unique
⟨e1,n′1⟩,⟨e2,n′2⟩ ∈ A′, with n′1,n

′
2 ∈ {0,1, . . . ,N}. By directedness of A′, these elements

have a common upper bound ⟨e3,n′3⟩ ∈ A′, so that e3 ∈ A, and by the definition of the
ordering, e1 6 e3 and e2 6 e3, so A is directed, indeed. Finally, by φn(h) ⊆ A′ we have
h ⊆ A. Now as h is maximal directed, it must be that A = h, whence A′ = φn(h).

(2) Let A′ be a maximal directed subset of W ′. In (1) above we established that
A′={⟨x,0⟩ | e∗ ̸< x∧ x ∈ W}∪ {⟨x,n⟩ | e∗ < x∧ x ∈ W} for some n ∈ {1, . . . ,N} and
that the set A =df {x ∈W | ⟨x,0⟩ ∈ A′}∪{x ∈W | ⟨x,n⟩ ∈ A′} is directed. We now claim
that there is h ∈ Hist st A = h. Since A is a directed subset ofW and histories are maximal
directed subsets of W , there is an h ∈ Hist(W ) st A ⊆ h. Suppose that A ( h. But then

A′ ( {⟨x,0⟩ | e∗ ̸< x∧ x ∈ h}∪{⟨x,n⟩ | e∗ < x∧ x ∈ h},

As the set on the RHS is directed, A′ is not maximally directed, which contradicts the
premise. Hence A = h, which implies, given the form of A′, that A′ = φn(h).

Fact 8.15. Let W = ⟨W,<,µ,e∗,E,C⟩ be a probabilistic BST92 surface structure and let
W ′ be the N-multiplied structure corresponding to W . Then

(1) for every n ∈ {1, . . . ,N} and every h1,h2 ∈ He∗ : φn(h1)≡⟨e∗,0⟩ φn(h2).
(2) for every n,m∈ {1, . . . ,N} such that n ̸=m and every h∈He∗ :φn(h)⊥⟨e∗,0⟩ φm(h).
(3) ⟨e∗,0⟩ is a choice point with N outcomes Π⟨e∗,0⟩⟨φn(h)⟩, where h is an arbitrary

history from He∗ ;
(4) for every n ∈ {1, . . . ,N}, every e ∈ W , and every h1,h2 ∈ Hist(W ): h1 ⊥e h2 iff

φn(h1)⊥⟨e,l⟩ φn(h2), where l = n iff e∗ < e, and l = 0 otherwise;
(5) for every m,n, l ∈ {1, . . . ,N} with m ̸= n, every e ∈W such that e∗ < e, and every

h1,h2 ∈ Hist(W ): neither φm(h1)≡⟨e,l⟩ φn(h2), nor φm(h1)⊥⟨e,l⟩ φn(h2);
(6) for everym,n∈ {1, . . . ,N}withm ̸= n, every e ̸> e∗ and every h∈He:φm(h)≡⟨e,0⟩

φn(h).

Proof. (1) Since e∗ is deterministic, h1 ≡e∗ h2, so there is e > e∗ such that e ∈ h1 ∩ h2.
Accordingly ⟨e,n⟩ >′ ⟨e∗,0⟩ and ⟨e,n⟩ ∈ φn(h1)∩φn(h2), which proves φn(h1) ≡⟨e,0⟩
φn(h2).
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(2) Take any h ∈ He∗ . Then ⟨e∗,0⟩ ∈ φn(h)∩φn′(h) for any n,n′ ∈ {1, . . . ,N}. For any
e > e∗ any m and any different n,n′, event ⟨e,m⟩ cannot be shared by φn(h) and φn′(h).
This proves that φn(h)⊥⟨e∗,0⟩ φn′(h), and hence that N histories split at ⟨e∗,0⟩.

(3) By (1) and (2) above.
(4) Take h1,h2 ∈ Hist(W ) such that h1 ⊥e h2. It follows that ⟨e, l⟩ ∈ φn(h1)∩φn(h2).

Also, there is no e′ > e such that e′ ∈ h1 ∩ h2. Hence there is no ⟨e′, l′⟩ with ⟨e′, l′⟩ >′

⟨e, l⟩ such that ⟨e′, l′⟩ ∈ φn(h1)∩φn(h2), which proves the ⇒ direction. In the opposite
direction, assume for reductio that h1 ̸⊥e h2. If e ̸∈ h1 ∩h2, then ⟨e, l⟩ ̸∈ φn(h1)∩φn(h2),
which contradicts φn(h1)⊥⟨e,l⟩ φn(h2). So let h1 ≡e h2.There is then ⟨e′, l′⟩>′ ⟨e, l⟩ such
that ⟨e′, l′⟩ ∈ φn(h1)∩φn(h2), which contradicts φn(h1)⊥⟨e,l⟩ φn(h2).

(5) Since e > e∗, it can only be associated with some l ∈ {1, . . . ,N}. Furthermore, for
different l, l′, ⟨e, l⟩ and ⟨e, l′⟩ have no upper bound with respect to<′, and hence there is
no history to which they belong. Thus, neither φm(h1) ≡⟨e,l⟩ φn(h2), nor φm(h1) ⊥⟨e,l⟩
φn(h2).

(6) Let e ̸> e∗. Then ⟨e,0⟩ ∈ φn(h) for every n ∈ {1, . . . ,N} and every h ∈ He. If e is
maximal in W , ⟨e,0⟩ is maximal in W ′, and hence φm(h) ≡⟨e,0⟩ φn(h) for every m,n ∈
{1, . . . ,N} and every h ∈ He. If e is not maximal in W , pick an arbitrary h ∈ He; there is
then e′ ∈ h such that e′ > e and e′ ̸> e∗ as well (by density). Each e and e′ is associable
with 0 only, ⟨e,0⟩<′ ⟨e′,0⟩ and ⟨e′,0⟩ ∈φn(h) for any n∈{1, . . . ,N}. Hence φm(h)≡⟨e,0⟩
φn(h) for any m,n ∈ {1, . . . ,N}.

Lemma 8.6. Let W = ⟨W,<,µ,e∗,E,C⟩ be a probabilistic BST92 surface structure in
which transitions {I1 � 11, . . . , IK � 1K} with random variables X1, . . . ,XK exhibit PFB,
where 1k = {Ôk,γ(k) | γ(k) ∈ Γ(k)}, Γ(k) are index sets and 1 6 k 6 K. Let cll(Ik �
Ôk,γ(k))⊆ E for every k 6 K and every γ(k)∈ Γ(k) andC = /0.Then there exists a structure
with a probabilistic hidden variable for this case of PFB. Moreover, the structure satisfies
C/E propensity independence.
Proof. Let us suppose that there is e∗ ∈W that is below every Ik. We will explicitly exhibit
a structure W = ⟨W ′,<′,µ ′⟩ with a probabilistic hidden variable, in which event ⟨e∗,0⟩
has N outcomes H1,H2, . . . ,HN and there are N sets of uncorrelated random variables
{Xn

1 , . . . ,X
n
K} (1 6 n 6 N) corresponding to {X1, . . . ,XK}, resp. Since the cardinality

of S is N, we may number elements of S as T1,T2, . . .TN . Note that each Tn ∈ S is
determined as well by a sequence of values of random variables, X1(Tn) = γ(1),X2(Tn) =
γ(2), . . . ,XK(Tn) = γ(K) with γ(k) ∈ Γ(k), which is the observation we use below. By
means of Outcome Independence we get

pn(Xn
1 = γ(1))pn(Xn

2 = γ(2)) . . . pn(Xn
K = γ(K)) =

pn(Xn
1 = γ(1)∧Xn

2 = γ(2)∧ . . .∧Xn
K = γ(K)) = µ ′(T n

l ),

where T n
l is a unique element of Sn st Xn

k (T
n

l ) = γ(k) for k = 1,2, . . .K and γ(k) ∈ Γ(k).
By adequate probabilistic assignment we get

µ(Tl) =
N

∑
n=1

µ ′(⟨e∗0⟩� Hn)µ ′(T n
l ), where Tl ∈ S corresponds to T n

l ∈ Sn.

Given this correspondence, Tl is given by the same values of the corresponding random
variables as T n

l , so we have µ(Tl) = p(X1 = γ(1)∧X2 = γ(2)∧ . . .∧XK = γ(K)); then
the above equations yield
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p(X1 = γ(1)∧X2 = γ(2)∧ . . .∧XK = γ(K)) =

N

∑
n=1

µ ′(⟨e∗0⟩� Hn)pn(Xn
1 = γ(1))pn(Xn

2 = γ(2)) . . . pn(Xn
K = γ(K)).

Let us abbreviate the above formula as:

Zγ(1)γ(2)...γ(K) =
N

∑
n=1

αnqn
1,γ(1)q

n
2,γ(2) . . .q

n
K,γ(K), (A.1)

where Zγ(1)γ(2)...γ(K) = p(X1 = γ(1)∧X2 = γ(2)∧ . . .∧XK = γ(K)), qn
k,γ(k) = pn(Xn

k =

γ(k)), and αn = µ ′(⟨e∗0⟩ � Hn). Formula A.1 encapsulates |Γ(1)| × · · · × |Γ(K)|
equations. To construct a sought-after structure means to solve these equations for N
unknown variables αn and N(|Γ(1)|+ |Γ(2)|+ . . .+ |Γ(K)|) unknown variables qn

k,γ(k).
Here is a simple set of solutions (there are other sets of solutions):

αn = p(Tn)

qn
k,γ(k) =

{
1 iff Xk(Tn) = γ(k)
0 otherwise.

It is easy to calculate that this ascription of values satisfies the above equations.The LHS is
equal to: p(Tl), where Tl ∈ S is such that for every k ∈ {1, . . . ,K}: Xk(Tl) = γ(k).The RHS
is α l′ql′

1,γ(1)q
l′
2,γ(2) . . .q

l′
K,γ(K) =α l′ = p(Tl′), where Tl′ is such that for every k ∈{1, . . . ,K}:

Xk(Tl′) = γ(k). Thus, Tl = Tl′ and so the equation holds.

Lemma 8.7. Let W = ⟨W,<,µ,e∗,E,C⟩ be a probabilistic BST92 surface structure
harboring multiple cases of PFB for which C = /0. Let µ be defined on every subset of
TR(W ). Then there is an N-multiplied probabilistic BST92 structure corresponding to W
that provides a hidden variable for every case of PFB in W . Moreover, that extended
structure satisfiesC/E propensity independence.

Proof. We first decide how large a multiplication we will introduce. We are after a quasi-
deterministic hidden variable. By the finitistic assumptions, each T̃E and SE is finite,
and they contain all basic transitions in W , and all maximal consistent subsets of basic
transitions inW , respectively. For N, the size of themultiplication, we take the cardinality
of SE . By the above there are finitely many cases of PFB as well. Note also that e∗ is
below the initial of every transition in T̃E . In what follows we will need some bijection
f : SE 7→ {1,2, . . . ,N}.

We consider next anN-multipliedBST92 structureW ′ = ⟨W ′,<′⟩ corresponding toW .
We construct µ ′, which is intended to be adequate for W and N. In accord with Def. 8.20,
it is enough to specify what µ ′ yields for every element of SE and new transitions. We
define µ ′ as follows:⁷

1. For every basic transition ⟨e∗,0⟩� Hn: µ ′({⟨e∗,0⟩� Hn}) = µ( f−1(n)), where
Hn ∈ Π⟨e∗,0⟩;

2. For everyT ∈ SE and n∈{1, . . . ,N}: µ ′(T n)= δ f (T )
n (where δ is Kronecker’s delta).

⁷ Note the simplification below due to the fact that every e ∈ ET is above e∗.
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It is immediately discernible that µ ′ is adequate for W and N. To calculate a single non-
trivial clause of Def. 8.20: ∑n6N µ ′(⟨e∗,0⟩ � Hn)· µ ′(T n) = ∑n6N µ( f−1(n))δ f (T )

n =
µ(T ). Note that the rules above induce a zero-one assignment to sets corresponding to
subsets of T̃E : for any Y ⊆ T̃E and any n ∈ {1, . . . ,N},

µ ′(Y n) =

{
1 if there is T ∈ SE such that Y ⊆ T and µ ′(T n) = 1
0 otherwise.

To check if Outcome Independence is satisfied, pick an arbitrary case of PFB in W .
This is given by a set of transitions {I1 � 11, . . . , IK � 1K} with SLR initials, each
transition being associated with a random variable, X1, . . . ,XK , respectively, and where
1k = {Ôk,γ(k) | γ(k) ∈ Γ(k)}, with finite index sets Γ(k), and 1 6 k 6 K. Then these
random variables X1, . . . ,XK exhibit PFB, We abbreviate: Y⟨γ(1),...,γ(K)⟩ =df CC(G �
Ô1,γ(1) ∪ . . . ∪ ÔK,γ(K)) and Y⟨k,γ(k)⟩ =df CC(Ik � Ôk,γ(k)), where G =

∪
k6K Ik. Our

random variables are defined on CPS, for which the base set is: S = {Y⟨γ(1),...,γ(K)⟩ | γ(1)∈
Γ(1), . . . ,γ(K) ∈ Γ(K)}. We write Y n

⟨γ(1),...,γ(K)⟩ and Y n
⟨k,γ(k)⟩ for the sets corresponding to

Y⟨γ(1),...,γ(K)⟩ and Y⟨k,γ(k)⟩, respectively.
Consider now a corresponding CPS, ⟨Sn,A n, pn⟩ with an arbitrary n 6 N. We need to

check if the following identity is satisfied:

pn(Xn
1 = γ(1)∧ . . .∧Xn

K = γ(K)) = pn(Xn
1 = γ(1)) · . . . · pn(Xn

K = γ(K)), (†)

which is equivalent to

µ ′(Y n
⟨γ(1)...γ(K)⟩) = µ ′(Y n

⟨1,γ(1)⟩) . . . · . . .µ
′(Y n

⟨K,γ(K)⟩).

By the definition of µ ′, each value of µ ′ above must be either 0 or 1 . Then the argument
that this identity (†) holds is exactly the same as in the proof of Lemma 8.6. This means
that Outcome Independence is satisfied. As the propensity assignment µ ′ is adequate
as well, ⟨W ′,<′,µ ′⟩ is an N-multiplied BST92 probabilistic structure corresponding to W
that provides a hidden variable for every case of PFB inW . Furthermore, theN-multiplied
structure satisfies independence with respect to images ofC and E , sinceC is assumed to
be empty.
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